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Is there new physics in the “mini-Centauro” events?
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We demonstrate, by detailed Monte Carlo simulation with standard interaction parameters as input, that the
“mini-Centauro” events reported by the Brazil-Japan group can be understood as due to fluctuations in the high-
energy hadron and electromagnetic components of extensive air showers generated by primary cosmic-ray protons.
Thus it is not necessary to invoke a new type of interaction to understand them.

The Brazil-Japan collaboration group'~* re-
ported, among others, two classes of strange
cosmic-ray events, which they call “Centauro”
and “mini-Centauro” events, observed in their
emulsion-chamber detector exposed to cosmic
rays at Mount Chacaltaya (atmospheric depth:

530 g/cm?). They interpret these events as due

to interactions in the atmosphere above the de-
tector of hadrons of energy ~10'5 eV in which about
100 baryons in the case of Centauro and 15 baryons
in the case of mini-Centauro events are produced
with anaverage transverse momentum of 1.7 GeV/c
via the formation and decay of fireballs of mass
200 and 30 GeV/c?, respectively, in the two cases,
with practically no pion production, suggesting

the advent of new physics at these energies. The-
oretical attempts® are made to explain these phe-
nomena in terms of new states of matter. Ex-
periments® are also being planned to look for these
events at the forthcoming pp colliders at CERN
and Fermilab and at ISABELLE. Thus it is ap-
propriate at this time to examine the possibility
that these events are due to known processes,
particularly their fluctuations. We already ex-
plained” some of the Centauro events in terms

of conventional physics. In this paper we con-

sider fluctuations in high-energy hadron and elec- '

tromagnetic components of extensive-air-shower
(EAS) cascades generated by protons in primary
cosmic rays and indeed find that all the observed
features of mini-Centauro events can be explained
in this manner. '
Any explanation of the mini-Centauro events has
to account for all the observed features. These
are as follows: comparable numbers of high-en-
ergy hadrons and y rays (hereafter the term “y
rays” will be used to denote both y rays and elec-
trons as is the convention in emulsion-chamber
work); large fractional energy content in hadrons;
exponential nature of distributions in fractional
energy and energy-weighted lateral spread of
hadrons; and exponential dependence of the for-
mer on the latter. At the outset we note that there
is no divect evidence that all or even most of the
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observed hadrons in each event originated from a
sz’nglé vertex. Since the observed particles in
each event are parallel to each other, they could
as well be the products from different interactions
in a high-energy nuclear and electromagnetic cas-
cade in the atmosphere. In such a cascade, par-
ticles are produced presumably with the normal
average transverse momentum® of 0.3-0.4 GeV/c
in interactions in a wide energy range distributed
over the entire atmosphere above the detector.
These events, when analyzed under the assumption
that they are due to a single interaction in which
the average transverse momentum is large, would
yield an interaction height rather low in the at-
mosphere and vice versa even though the cascade
is in reality initiated near the top of the atmos-
phere. The energy carried by the electromag-
netic component in these cascades is in general
greater than that in the hadron component even
at the atmospheric depth of 530 g/cm?. However,
due to fluctuations in the cascade development,
the reverse situation could occur in a certain
fraction of the events as in the case of mini-Cen-
tauro and Centauro events.

In order to see whether the detailed features
of the mini-Centauro events can be reproduced,
we have carried out detailed three-dimensional
Monte Carlo simulation of the high-energy hadron
and electromagnetic components of EAS due to
primary protons. We use as input the scaling
model for nuclear interactions and inelastic cross
sections rising with energy, which seems to ac-
count for the bulk of air-shower data.® The details
of the model'® and the method of simulation” are
given elsewhere. The hadrons are further fol-
lowed through the emulsion-chamber detector

~ with cross sections for baryons on Pb and C tar-

gets given by Roberts ef al.!’ The cross sections
for pions and kaons are taken to be % of those for
baryons. The total energy E, transferred during
its cascading in the detector to neutral pions by

each hadron is then obtained. This is the visible
energy of the hadron in the detector. Thus, for

each event, the visible energy and the spatial co-
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FIG. 1. Scatter plot of number of ¥ rays, N,, vs
number of hadrons, N,, with threshold energy 1.5 TeV
for simulated events with visible energy E,>100 TeV.

ordinates of each hadron and y ray “observed” in
the detector are obtained. A total of 850 events
are generated in the primary energy interval
1015-10'® eV with an assumed differential energy
spectrum f(E)dE <E~3%dE.

A cut is made on the simulated events with the
following criteria similar to those adopted by the
Brazil-Japan (BJ) group?:3+!2 for selecting their
mini-Centauro events: 5< N, < 20, N, <40, E,
=Y E,+23E,> 100 TeV, 1 E,/2JE,< 2.0, Ey*"/E,
<0.5, where N, and N, are the number of hadrons
interacting in the detector and y rays of energy
21.5 TeV contained within 15 ¢cm frém the energy-
weighted center, E, the total visible energy of the
event, Ey** the maximum hadron energy in the
event and the summations are over all particles of
each type above the same threshold energy. We
are left with 29 events after these cuts; we shall
call them mini-Centauro-like events. The lateral
spread of the selected events varied from 5 to 20
cm with very few particles outside. Figures 1 and
2 show the scatter plot of N, vs N, and Z}EY Vs
> E,, respectively, for all the 222 generated
events with E,> 100 TeV. We note that the mini-
Centauro-like events populate one edge of the dis-
tributions. These events then do not represent the
average behavior of the cascades, but are due to
fluctuations in the cascade development. The
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FIG. 2. Scatter plot of the energy content of y rays,
T E,, vs the energy content of hadrons, X E, for the
simulated events shown in Fig. 1.

mini-Centauro events of the BJ group also popu-
late the same region if plotted on these diagrams.
The. triangles are candidates for Centauro IV type
of events which will be discussed in a separate
paper.

Detailed analysis of the mini-Centauro-like
events is carried out in the same way as adopted
by the BJ group. Figure 3 shows the distribution
of fractional energy of hadrons for a sample of
50 events which includes, besides the 29 events
mentioned above, ‘an additional sample of 21
events with 50 TeV< E <100 TeV, selected with
the same criteria as above except that E,/2JE,
<1.0. We note that three of the BJ group’s mini-
Centauro events have observed energies in this
range. The straight line in the figure shows that
an exponential function can be fitted fairly well to
points in the range 0.03<E,/E,<0.2. The upward
deviation of the points from the straight line out-
side this range, particularly for E,/E,<0.03, is
similar to that observed by the BJ group?.

Figure 4 shows the distribution of normalized
energy-weighted lateral spread, E R,/(E,R,),
where R, is the distance of the hadron from the
energy-weighted center. The striking similarity
of this figure with Fig. 1 of Ref. 3 can be noticed.!?
We plot in Fig. 5 the fractional energy of the had-
rons, ) E,/E, vs their energy-weighted lateral
spread (E,R,). Here E, =) E +f )} E,, where
f=1/0.7 is the correction factor for “escape”
hadrons following the BJ group. Their mini-Cen-
tauro events are also shown in the figure. Clearly
the mini-Centauro events and the simulated events
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FIG. 3. Integral distribution of the fractional energy
of hadrons for the mini-Centauro-like simulated events.

cannot be distinguished from each other by their
distributions.

In their analysis, the BJ group adds in some
events the energies of y rays in the neighborhood
of a hadron to the energy of the hadron. They
interpret that the hadron and the y rays in such
groups are the products of an interaction, in the
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FIG. 4. Integral distribution of the normalized energy-
weighted lateral spread of hadrons in the mini-Centauro-
like simulated events.
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FIG. 5. Diagram of S E,/E, vs (E,R,) for the mini-
Centauro-like events in the two regions of visible en-
ergy. The upper scale for abscissa is for the fictitious
interaction height above the detector under the assump-
tion (k,p,)=0.34 GeV/c following the Brazil-Japan
group.

atmosphere very close to the detector, which they
call an A jet. In our analysis of the simulated
events, we have not combined hadrons and y rays
in this manner. From a detailed examination of
the simulated events we find it very difficult to
formulate objective criteria for identifying A jets
since in many cases particles originating from
the same interaction are well spread out with
other particles interspersing while in several
other cases particles originating from different
interactions cluster together. In such a case, if
A jets are identified according to the criterion
of the BJ group,® the energy balance would tilt in
favor of hadrons, the energy-weighted lateral
spread might decrease in some cases, and it
would appear as though a mini-Centauro type of
interaction has occurred closer to the detector.
Reanalysis including such A jets has changed the
ratio 2JE,/2JE, in three simulated mini-Cen-
tauro-like events with 50 TeV< E,<100 TeV from
0.54 to 0.09, 0.20 to 0.08, and 0.35 to 0.0 and in
one event with E,=308 TeV from 0.55 to 0.14,

The average number of hadrons with E,/E,
=20.03 for the 26 simulated events for which the
“fictitious” interaction height is less than ~1 km
is 5.9, in excellent agreement with the value 6.1
for the ten mini-Centauro events of the BJ group
satisfying the same conditions. The percentage
of mini-Centauro events, among all events with
E,> 100 TeV, in the completely scanned portion
of the emulsion chambers,'? is 16 +7 (6/37), in
good agreement with 13 +2 (29/222) for the simu-
lated events.'*

There is no compelling reason from the exist-
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ing air-shower data to drastically alter the usual ~
picture of multiparticle production in which pions
are the dominant particles produced. Since the
mini-Centauro-like events in our simulations are
mainly due to fluctuations in the cascade develop-
ment rather than the details of the model, we can
expect any reasonable model, in which the dom-
inant particles produced are pions, also to re-
produce these events. Thus we conclude that there

is no need to invoke a new type of interaction in
which only baryons are produced to understand
the mini-Centauro events.
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