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To account for observed luminosity limitations in electron-positron colliding rings we identify parametric pumping

of vertical betatron oscillations by horizontal oscillations as the leading effect, solve the nonlinear single-particle

equation exactly, obtain the strong-beam-strong-beam equilibrium by numerical simulation, calculate the

luminosity, and identify regions of bad beam lifetime.

Existing e'-e colliding r'ings have luminosities
less than design values by factors of 10 or more.
For sufficiently large beam current I, the lum-
inosity fails to increase proportional to I', as it
would if the beam shapes remained constant.
Also, beyond a current I„,the beam lifetimes
become unacceptably short. These effects are due
to the "beam-beam" interaction; that is, the elec-
trostatic and magnetostatic forces on the particles
in one beam as they pass through the other.

In this paper we identify "parametric pumping"
of vertical betatron oscillations by horizontal
oscillations as the effect leading to the observed
behavior and we describe the solution of the equa-
tions governing the situation. The 'results conform
with observations. %'e also give machine parame-
ters expected to yield good and bad luminosity.

This beam-beam interaction has attracted rather
broad interest. ' A reason for this is that it sug-
gests the possibility of experimental investigation
of the onset of stochastic behavior in classical
mechanics. Questions first raised in celestial
mechanics' can, it is hoped, be studied in accel-
erators. But the presence of strong fluctuations
and damping in electron rings (the only case con-
sidered here) reduces the characteristic number of
revolutions to, say, 10' instead of, say, 10"rele-
vant for protons. As a result, recent rigorous
mathematical studies of stability' do not enter our
discussion.

Our theoretical investigations have proceeded at
two independent levels: (a) An exact analytic so-
lution of the single-particle equation of motion in
the presence of a strong beam and accounting for
all resonances, and (b) numerical simulation of
the entire strong-beam-strong-beam system, in-
cluding self-consistent relaxation to equilibrium
in both transverse directions. The analytic so-
lution at level (a) identifies the important reso-
nances controlling the situation and gives esti-
mates of the beam currents at which they become
important. The numerical simulation at level (b)
is necessary for more quantitative predictions.

We feel it is obligatory to develop parallel intui-
tive understanding at levels (a) and (b) to produce
reliable quantitative results.

The single-particle equation of motion in the
presence of the other beam is a nonlinear differ-
ence equation potentially exhibiting arbitrarily
many resonances. The vertical component y on
the neth passage satisfies4

y „-2ycosta„+y,=sin&„,ay'(x, y ), (1)

where ~,$2~ is called the vertical single-beam
betatron tune v„and similarly for x. Ay' is the

9p
vertical angular deflection on the ~th passage
through the other beam. It can be obtained by an
electrostatic and magnetostatic calculation from
the charge density p(x, y ) of the other beam.
Since we assume a ribbon beam, as is typical for
most e'-e machines, the transverse standard
deviations satisfy v, o„.In that ease Ay' can
be obtained approximately using Gauss's theorem.
For Gaussian profiles this yields'

sy'(x, y„)= —4w~
2

$»e "~ ' o, erf~ . (2)

Here $» is the customary vertical "linear tune
shift" parameter specifying the strength of the
beam-beam interaction. For small values of y,
a leading term in (2) proportional to y can be
grouped with the second term in (1) leading to a
tune shift $». For sufficiently large values of $»
no real tune would exist, corresponding to expo-
nential growth that would occur except for non-
linearity (such as the next term, proportional to

y ', which causes the tune to depend on amplitude).
In practice, controlled vertical beam growth

normally sets in at a much lower value of $» than
is suggested by the previous paragraph. %e un-
derstand this as being due to the modulation of
Ay' due to periodic variation of x . At caleulation-
al level (a) we assume that x is given inexorably
by

x =a„cosmic„Xp
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Parametric amplification of vertical oscillations
ean occur through terms in (2) such as y a„2cos'
(m(o„,), due to horizontal betatron (or synchrotron)
osci11ations. That is, the vertical oscillations
are parametrically pumped by horizontal oscilla-
tions in much the way a garden swing is pumped by
the systematic shortening and lengthening of the
pendulum length, and hence the natural frequency. '

%'e now describe an iterative procedure for
solving (1}with x„given by (3). Assume a double
Fourier-series expansion

y„=a„cos(m&o,)

+ a„g y'm My Syn(d„+"' cos " cos

(4)
where the sum is extended over all combinations
of sin and cos. The analysis truncates this series
to a finite number of terms. It is not obvious that
such an expansion should exist. Damping would
usually, but not always, rule it out as it remains
finite at large m. Empirically, for relevant values
of $», we have always succeeded in finding such
an expansion. The difference of &„from +„is
due to the perturbation.

When (4) is substituted into (2) a similar expan-
sion for ~y' can be made since Ly' is periodic in
m~„and m~„. The coefficients can be found by
finite (fast) Fourier transform (FFT). The eigen-
functions of the linear difference operator on the
left-hand side of (1) are linear sinusoids. Expand-
ing the Fourier transforms of y and Ly' into sums
of linear sinusoids (all possible sum and difference
frequencies appear) enables the iterative produc-
tion of new a„,'s from oM. An instability thresh-
old $ .„.is reasonably well defined as that value
at which the number of harmonics necessary for
convergenc e prolif crates. Allowing more harmon-
ics, say 32 instead of 16, or more iterations
usually makes little difference to the threshold.
Normally one or two harmonics are especially
large owing to the "resonance denominators" ap-
pearing in the iterative scheme.

For values of $» roughly equal to ),„andhigher,
phase-space plots of the motion become very con-
torted and orbits of sufficient amplitude no longer
spiral into the origin when damping is turned on.
They damp instead to stable limit cycles reminis-
cent of those of Ref. 6.

At level (b) we have developed a strong-strong
numerical simulation which can be used to make
quantitative comparison with observations at the
Cornell Electron Storage Ring (CESR). Many par-
ticles (&100) in each of the two beams are tracked
for many turns (o 3000) in six-dimensional phase
space around the linear lattice of a storage ring

which, like CESR, has two crossing points and
one rf cavity. Once per turn the horizontal and
vertical betatron angles are damped at the rf
cavity by a factor exp(-2/»). The damping time
& is typically 10' turns. Energy oscillations are
damped at twice this rate. Natural beam sizes are
maintained by the competing process of quantum
excitation simulated once per turn by a step in six
dimensions which is random in direction and arnp-
litude.

Starting from Gaussian distributions with fields
such as (2), the distributions and their associated
fieldg are allowed to evolve towards self-consis-
tency during time increments of 0.3~ during which
one beam is held rigid while the other relaxes.
Distributions are recorded during each increment,
in, typically, 300 (turns) X100 (particles) &&2

(crossing points) instances. From these, smooth
horizontal and vertical fields are calculated. Here
the x and y dependence is assumed to remairi fac-
torized as in (2}. For the next iteration the roles
of rigid and relaxing bunches are reversed. After
about 3& equilibrium has been adequately estab-
lished. It is possible for a particle to be "lost" if
it strikes a mask (typically set at + 1(b„and+ 10c„),
and the lifetime is declared bad if it is less than
(typically) 10 seconds. Otherwise the luminosity
is calculated from the equilibrium bunch distribu-
tions which are usually identical, within statistics,
at small &~ values but which may be quite differ-
ent at high values, consistent with observations in
existing storage rings. '

Vfe now turn to the results, first establishing in
Fig. 1 that the parametric-pumping model and the
simulation yield qualitatively equivalent results.
Both calculations were performed at every point on
a uniform grid in the tune plane. The granularity
of this grid can be inferred from the crosses -which
mark points of bad lifetime as defined previously,
with ]» =0.08.' At all other points with the same
value for &~ the luminosity was calculated from
ihe simulation and then the contours of constant
relative luminosity were calculated. Regions of
very low luminosity are shown shaded. They cor-
respond closely to regions of bad lifetime.
Straight lines in the tune plane with integer coef-
ficients represent possible resonances. The lines
drawn in Fig. 1 represent those main resonances
usually causing instability thresholds as calculated
analytically. As ]» in (2) increases from zero the
perturbed vertical tune v„increases until it is
near one of these lines and then the motion usually
becomes unstable. If f» is increased from 0.08, in
the simulation, new valleys of bad lifetime appear
for example along the diagonal running from the
lower right corner to the upper left corner.

The valleys of bad lifetime and low luminosity
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FIG. 2. Dependence of luminosity on current. Com-
parison between experiment and theory at CESR. Lim-
its imposed by bad beam lifetime are shown. For these
data the tune parameters were 9.415 for v„oand
9.345 for v„o.
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FIG. 1. The tune plane as studied analytically f the

straight lines indicate instability threshol, ds of (1)]
and numerically (the contours are curves of constant
relative luminosity, very roughly in units of 1030 cm 2

sec for typical parameters). The crosses indicate
bad lifetime and the shaded regions have very low lum-
inosity. Points labeled&, &, C, and & identify lattice
points for an investigation described in the text.
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are strikingly parallel to the analytically calcu-
lated resonance lines. They are shifted to slightly
lower values of v„asexpected due to the linear
tune shift.

In Fig. 1 various effects have been neglected
for easier comparison between the two calcula-
tions, the main ones being that g„was taken as
zero and energy dispersion was assumed to be
zero. Including them does not change the qualita-
tive picture, though with energy dispersion new
valleys of bad lifetime appear which are consistent
with being due to "synchrobetatron" resonances.
The results are also insensitive to the presence or
absence of noise in the horizontal motion provided
the horizontal profile is kept unchanged.

In Fig. 2 a comparison between the simulation,
with horizontal and longitudinal effects treated
realistically, and observation at CESR is shown.

There is good agreement on the dependence of L
on I and approximate agreement on the value I,„,

„

beyond which the lifetime is bad. In this plot the
parameters have been adjusted to fit the data in the
lower-I region where L ~I ~ This is largely a
matter of convenience as the expected simple re-
lation between measured beam profiles and I and
L is approximately satisfied at small I. The only
other arbitrariness in Fig. 2 relates to the loca-
tion of I ., for which the lifetime is 10 seconds
(much less than is acceptable in practice} with
masks at a 10o (much smaller than is achievable
in practice). Actual apertures, especially verti-
cal, are not well known. When the. vertical mask
was raised to + 120 and the lifetime to 100 seconds,I,, was found to be almost unchanged.

Another corroboration of the theory can be ob-
tained, semiquantitatively, by comparison with
experience of the Stanford facility SPEAR at the
four lattice points labeled', 8, C, and D in Fig.
1. They found' that the maximum luminosity in-
creased steadily by a factor of about 5 in proceed-
ing fromm to D, but they could not cross the line

v„=2v
Xp Pp

with two beams in spite of the fact that the pres-
ence of this line was undetectable with single
beams. These observations are quite consistent
with Fig. 1.

Finally, it is of interest to find optimal running
parameters according to the theory. It is plau-
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sible, and tends to be borne out by the simulation
that energy dispersion is harmful. Also from Fig.
1 the region around v„,=0.4, v, & 0.1 appears to
be the most promising, but we have not expended
enough computer time to prove this. On the other

hand, many unambiguously bad regions have been
identified which should be avoided in practice.
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