
PH YSICAL RE VIEW 0 UOLUMK 24, NUMBER 8

Stokes's theorems for non-Abelinn fields

15 OCTOBER 1981

Paul M. Fsshbane
Physics Department, University of Virginia, Charlottesville, Virginia 22901

Stephen Gasiorowicz
Physics Department, University ofMinnesota, Minneapolis, Minnesota 55455

Peter Kaus
Physics Department, University ofCalifornia, Riverside, California 92521

)tReceived 18 September 1980)

We study Wilson loops in quantum chromodynamics to discuss two versions of a non-Abelian Stokes theorem, one

of which is stated as an expansion in local operators of the theory.

I. INTRODUCTION

Manifestly gauge-invariant formulations of quan-
tum chromodynamics (QCD) are of great interest.
Attempts have been made' to formulate the theory
in terms of the so-called Wilson loop operators
W(C) (Ref. 2). These are defined as

rr(C)—= TrO(C)=TrpezP gehkAk(z)). (1.1)
C

The A (z) are N x N matrix-valued fields [for
SU(N)f defined in terms of the generalized Gell-

Mann matrices g',
N2-i

a„(z)=-'. g g ~'~'„(z),
g=1

(1.2)

and P represents the color-space path ordering.
By this we mean that if the continuous, closed,
smooth curve C is parametrized by s, so that

z„=z„(s}, 0&s &1

z„(0)=z„(1),
then

dz„,(s,) dz„(s„}
O(C) = g ds, ds, *' ' ds„d' ' ' d" A„,(s,) A„(s„).

nW 0 0 0 ds1 d9

Because of the color trace operation, W(C) is in-
dependent of the starting point z„(0).

There have also been programs' that deal with
gauge-invariant local operators acting on the phys-
ical vacuum state. In studying the connection be-
tween these methods we were led to look for a
non-Abelian generalization'»' of the Stokes theor-
em. This paper deals with our approach to this
problem. After this work was completed, we be-
came aware of a rigorous proof' of the theorem.
Our treatment is more heuristic and thus some-
what simpler. In any case we concentrate on as-
pects that do not appear in the literature. We
discuss two methods: One is based on a differen-
tial approach and leads to identification of W(C)
with the trace of the exponential of an integral
over an area that spans the loop. The se'cond is
based on generalized Baker-Hausdorff techniques
and leads to a connection between the Wilson loop
operators and an expansion in terms of local op-
erators. In this expansion gauge-covariant oper-
ators acting on the non-Abelian field tensor appear
where ordinary derivatives acting on the curl of
the field appear in the usual Abelian Stokes theo-

II. DIFFERENTIAL-EQUATION APPROACH

Consider the operator O(C) defined in (1.1) for a
given smooth closed contour C. Consider some
surface g spanning the contour (Fig. 1). Let the
contour C' consist of Q deformed so as to include
an infinitesimal surface element do„,(y) in g. In
compact notation we have

and

B

O(C)= P(e ") (2.1)

fA (f, fC fB
O(C') = P(e )P(e )P(e )P(e "),

where P(e ) is the ordered integral around the in-
finitesimal area do„„(y). It is easy to show that
(see Sec. III}

(2.2)

P(ef((pBA)((p)) I +d(r (y)C (y)

where

(2.3)

rem. The local operator expansion is equivalent to
the first form of the non-Abelian Stokes theorem.
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FIG. 1. Surface Z spanning the Wilson loop contour
C, with infinitesimal surface element d+p p at point y.

I

(2.4)

If we write

G„„(y)=, ~„-, W„-[a„(y),a„(y)]
~3'v

is the non-Abelian field tensor. Thus

O(C'} = I'(e ) [1+de„„(y)G„„(y)]I'(e )O(C) .
(2.5)

lLdL
0 0

55
is

P(e ') =-U„,

and note that

&(e }= Usc Us~ = Uxn
Jc

we get

(2.6)

(2.7)

8

O(C') =O(C)+ U„dc„„(y)G„„(y)U„O(C) . (2.8)

Thus

50 = U~„Gq„(y)U3~dc„„(y)O . (2.9)

The sign corresponds to going around the infini-
tesimal area in a counterclockwise direction. The
integration of this equation requires that an order-
ing be specified, since the integrand U~G&„(y)U„„
is matrix valued. There is an ordering that ap-
pears natural, in that it reproduces the way in
which the Stokes theorem is proved for an Abelian
theory. Consider a square consisting of four in-
finitesimal squares as shown in Fig. 2. (We limit
our discussion to surfaces that can be mapped onto
squares. ) We write [see Fig. 2(a)]

&exp &„~«p UpgU$2U23U3/U$5U56U67U7p

(2.10}
in the form

[UQ3UQQU57U7Q] Up7U73[U33U33U33U33] U37U75 UQ7U75
e-

U33 34U45U53] U57U7Q UQ7[ U75U35U55U57] U7Q ~

(2.11)

The terms enclosed in the square brackets are
loops around the elementary squares, and the re-
maining U's take us from the starting point 0 to
the loop and back. The above may be written in

FIG. 2. Paths for loop integral 0 2 4 6 0 t, Eq.
(2.10)} as succession of suhpaths&GU ~. Dashed lines
give U andU+, solid lines give &. (a) A "good" path
f Eg.(2.11)). (b) A "bad" path, which would not give
the loop integral. Note that the only difference between
(a) and (b) is in the approach and return from subsquare
a.

the form

(1+dc„„G„)„(U„U„(1+der„„G„„)U U„}
"~ Q~ 34( +"ey.Gyp)cU~U3Q}

'x (Up, (1+d(r~pG~p)sU3P}

which is a sum of contributions of the type

UQ3(1 +do „,GQ„)„U„Q.

The ordering is such that a U, &
is always adjacent

to a U~& after the relation U„U» = 1 is taken into
account. In an Abelian theory a U;& will cancel a
U, , no matter where it appears in the sequence.
Thus in Fig. 2(b) we show apathwhichwill not lead
to a Stokes theorem for the non-Abelian case, al-
though it is as good as the Fig. 2(a) path for the
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Abelian case. The above procedure is easily gen-
eralized to a collection of four 2x 2 squares and
so on, so that with this ordering understood we
have

t'

G(G)=r' *p) d „(v)„UG„,(V)„U„}, (2.12)

exp A„dzu = exp dg

The difference between the two forms, aside from

and the gauge invariant

W(G)=T~P p(f d „„(y)U „G„„(y)U„}.(y. (y)

For an Abelian theory this reduces to the usual
Stokes theorem written in the form

the P orderings, lies in the replacement of the
electromagnetic field tensor

z„„(y)=,8 8

Sp Xv
(2.14)

by G„,(y), and in the presence of the U factors.
These ensure that the surface integral is indepen-
dent of the choice of surface. To see this, con-
sider an element do „,(y) on Z and deform it, keep-
ing the boundary fixed, so that the new surface
element and the old one form a closed surface
that encloses a volume 5P. Gauss's theorem
states that

de (UG„U'„)=f„dVee„,e, (rrG, U"').

(2.15)
Now

(UA))Gpa(y)UDA) Ay p(y)GpG(y)UyA+ UAY Gpa(y)UyA+ UADGpo(y)Ap(y) Vga

Ge (V)-(r(e(y), Ge, (y)l}U„e= U„,D„Ge,rr„„.Ap gy po p t pQ

Hence the right-hand side of (2.15) is equal to

dV„U„„(e„„DG„)Ue„f„dV„rr„„D=G„'„U„„,

which vanishes because of the Bianchi identity

(2.17)

The left-hand side of (2.15) suggests that UG„,U '
be viewed as a flux. It should be noted however
that this quantity depends on the choice of path in
the string operator U„„and is thus not uniquely
defined. This arises because the color field is
itself a source of color flux lines.

III. EXPANSION IN TERMS OF LOCAL OPERATORS

O„(C)—= exptAZ +E(A, )j = exptH(A)],

where

Z = L, + I 2+ L, + L4.

The factor P(X) is present because of the non-
Abelian character of the A.„. Let us write

(3.3)

(3.4)

«2
dx', A, (x„x',) . (3.2d)

«2+ &

We are suppressing the dependence on the remain-
ing coordinates and will set ~ = 1 at the end of the
calculation.

We now write

The approach that we initially used to arrive at
the form of the Stokes theorem was to use gener-
alized Baker-Hausdorff identities. Let us for de-
finiteness consider a rectangular loop in the (12)
plane (Fig. 3). We have

( x),x2+ b) (x
~

+ a,x2+ b}

O (C) = ~~~~+D ~~2 ~~a

with

(3.1)

«y+ g

dx', A. ,(x'„x,),
1

«,+a
dx', A, (x, +a, x',),

«2

«1
L, = dx', A, (x,', x, +5),

«~+ I

(3.2a)

(3.2b)

(x~,x2) (x~+ a, x~)

(3.2c) PIG. 3. H,ectangular loop in the (12) plane, with
indivMua1 legs &

g labeled.
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I (X) = g X"Z„ (3.5) —0-(C) =(L +e 'L e " '+e 4e" 'L e "~3e ~~4d
dZ " 4 3 + 2

and obtain recursion relations for the +„by differ-
entiating both sides of

+e1 4e1~3e"~2L e 1 2e " Ze 1 4)Oy(C) .
XL 4 X.L3 X. L2 X, L ~ X. F.+F(X.) (3.6)

(3.V)

with respect to A. and identifying powers of A, . On
the left side we get

Expanding in powers of ~ we get, after a little al-
gebra,

d
O—),(C) = Z +A I([L4L3]+[(L4+I,)L,] +[(I4+I,+ L,)I,])

d

+—A."([L"I ]+[(L +L )"I ] +[(I, +L +I )"I ]j +
1

(3.8)

We have introduced the notation

[A, . . . A„]=[A„[A„.. . [A„„A„].. . ]] (3.9)

and it is under stood that in tQe above expression
the order (4321} is to be preserved in every term
of the multiple commutator. Thus, for example,

t

3! Z3= -[ZZ2]+[(L4+L3 +L,)'L,]
+[(I„+I.,)'L,] +[L,'L,l,

4! I 4=-3![ZF3] —[Z I 2]+2[(L4+L,+L,)'I,]
+[(L,+L,)'L,] +[L,'L,],

(3.14b)

(3.14c)

[(L,+ L,)'L,] = [I„'I,,] + 2[L,L,L,]+[L,'L,)

= [L.,[L„L.]]+2[L., [L., L.]]
[L., [L., L.l].

The I, can be expanded in a power series in g and

b. The coefficients are local operators

Qn the right-hand side of the equation we use the
identity

I„—Q a e, A, (x2)x2) 2

n=l
(3.15a)

d ( ' dH(((k( (,
- (k() (, (k(

dA. & dA.
(3.10)

(g ) m ~

t'dII ~ dH &, dH
doi —+o'H, + —o' H, H—, —

I, dA,
,

'dA. 21 ' „'dA. „

(3.15b)

a)2bm-2e )2-1S m "1A (& & )
1

3 ! ( 1)! 1 2 1 12 2
g=l m=&

(3.11) I.,=- g —b"e," 'A, (~„x,).ss m-1

m=1

(3.15c)

(3.15d)

H(~) =~Z+ g ~"Z„, (3.12)

where in the last line we use our notation for the
multiple commutator. Inserting For an infinitesimal area we only keep terms lin-

ear in g and 5. We find

Z =ah(e,A, —82A, ) (3.16)

oq(c)= Iz+21 z, +2 (2p, + [zp])

+2' 42, +[zz,[+—,[z'2,[l+' 'Io, (cl.

(3.13)

and

I"2= -ab[A„A,],
so that

exp [H(1)]=—1+abG„

(3.17)

(3.18)
Comparing E[is. (3.8) and (3.13}we get the desired
relations for the I'„,

2!F,=[(L,+L, +L,)L,]+[(L,+I.,)I.,]+[L L,],
(3.14a)

as in Eq. (2.3).
Some straightforward, though tedious, ca1.cula-

tions lead to the result that, for the particular
loop under consideration,
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II'(C) = Tr exp[&(l)]
= Tr exp

~

ab G»+ ,a2b—D,G»+ —,ab'D2G» +
&~ 2(

a'b'D, D2G»+
&~

a'bD, 'G»
p

+ —gag Q +——gQD DQ +' 'I (3.19)

We have only calculated terms to this order. The
pattern is clear, except for an ambiguity that
arises from the noncommutativity of the covariant
derivatives. For example,

D1 D2G12 + D1D2D1G12 '

The ambiguity corresponds to that of the parame-
trization of the surface in the integration of (2.9}.
A particular choice, such as

re((:) = Tr exP g P —, rdb D, 'D, 'G„"), "
n=i m-X n' ml

(3.20}

n nt a b

0
'

0

X~+a x2+a

2 12 l~ 2
X g X2

(3.21)

The presence of covariant derivatives changes
this result. If we could find a function G„(x„x2)
defined by

G„(x„x,) = P(x„x,}G„,(x„x,)((() '(x„x,), (3.22)

corresponds to a particular surface parametriza-
tion. Below me deal further with this equation.

If these were ordinary derivatives, the exponent
mould be

such that

S,G„=y(x„x,}D,G„(x„x,)y-'(x„x,),
then (3.20) would yield

(3.23)

( &~+& X2+5
rp((;)= Tr exp~ dx', dx', p(x'„x,')G„(x'„x',)p '(x'„x',)) .

Xg X2
I

(3.24)

It is easy to see that

s1G12=(314')G120 '+4(81G12)4 '+4G12(st% '}

=4(s G.+0 '(s 4)G. -G A 's 4)4 '

(3.25)

provided that

(3.26)

We see that (t) can be identified with the string
operators U' that appear in Sec. I, and we again
obtain a form of the non-Abelian Stokes theorem.

The ambiguity expressed in Eq. (3.20) can be
seen explicitly in terms of path parametrization
by considering a Taylor expansion of Eq. (2.12).
Such an expansion involves derivatives such as

8
V G.,(x)V„„=V [D„G„,(x)] V,„.

Xp

Homever, it is true that in higher orders, the or-
der of derivatives must be specified, since the
argument is path dependent,

8 9 9 8
U~G„B(x)U„„bb U~G„8(x)U„„.

The correct Taylor expansion of a path-dependent
quantity such as Eq. (2.12) can of course be writ-
ten down if the path is specified. Such an expan-
sion will, through Eq. (3.25), lead to a unique
choice for the expansion (3.20).
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