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The fourth-order quark-quark and quark-antiquark potentials in perturbative quantum chromodynamics are
derived with special emphasis on a rigorous investigation of the spin-dependent in'teraction terms. We consider

quarks and antiquarks of equal as well as unequal masses. We also obtain the quark-antiquark annihilation potential
to the fourth order.

I. INTRODUCTION

For an understanding of strong interactions,
quantum chromodynamics seems to offer the best
hope at this time. It is believed that the quark-
quark and quark-antiquark potentials can be de-
scribed by combining a field-theoretical potential
resulting from perturbative quantum chromodyna-
mics and a phenomenological confining potential
representing nonperturbative effects." It is,
therefore, of much interest to derive the pertur-
bative quantum-chromodynamical potential as ac-
curately as possible, and higher-order correc-
tions to the well-known second-order potential
have been investigated by- several authors. These
authors, however, have mostly devoted themsel. ves
to the calculation of the leading spin-independent
interaction terms, ' ' while the nonleading spin-
dependent terms have been treated to a lesser
extent." The aim of this paper is to derive the
fourth-order quark-quark and quark-antiquark
potentials with special emphasis on a rigorous
investigation of the spin-dependent interaction
terms. Our treatment will be applied to quarks
and antiquarks of equal as well as unequal masses.
We shall also obtain the quark-antiquark annihila-
tion potential, which is of considerable physical
interest. '

The quark-quark and quark-antiquark potentials
will be extracted from the scattering operator by
following a straightforward approach, ' which was
also used by us recently for the derivation of the
leading as well as the nonleading terms in the
fourth-order gravitational' and gluonic" potentials
for scalar particles. For the evaluation of ultra-
violet-divergent integrals, we shall use dimen-
sional regularization, while infrared divergences
will be handled by introducing the parameter y

and eventually letting y —0. Renormalization will
be performed so that the fourth-order potential,
at small momenta, behaves simply as {1/k')
xln(k /p ), where p, is a renormalization scale.
But, we shall also give the result for the potential
according to the. more convential Q8 scheme in

Sec. VII to facilitate comparison with other in-
vestigations.

II. QUARK-QUARK SCATTERING

We take the I agrangian density for a system
of quark and gluon fields as

L = --'(B„a„—B„a )' —-'(B„a„')'

(g/2c@—)f"(B,-a'„- B„a.')a„'a"„

c&P~-„B„~+«~~)+~ga.'~y. T"~

-B„C' B„C'+(g/ck)f" a' B,C~C», (2.1)

where g, a, and C' are the quark, the gl.uon, andg 7

the gauge-compensating fields . The T are N &N
matrices with

[T', z'] = iy*»r», (2.2)

(x) P, ,(x')' =go„,S, ,(x- x'),

a.'(x) a„'(x) =-icm*~B„„D,(x-x),
C'(x) C'*(x') = icky "Dp(x —-x'),

and the Fourier decomposition

(2. 3)

4(x) = & '"Q[('(p)e"*+&-(p)e "*] (2.4)

with

p («2+p2)1/2 (2. 5)

where p, p„and ~ are related to the momentum
P, energy E, and mass m of the quark as

p = p/S, p, =z/ck, « =m c/h . (2.6)

Let us consider the scattering of two quarks of
masses m, and m„whose propagation four-vec-
tors are p and q in the initial state and p' and q'

and the upper indices take the values 1,2, . . . ,N' —1.
For the derivation of the scattering matrix ele-
ments, we require the contractions in the interac-
tion picture
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in the final state, and let

u =P' —P = -(q' —q) . (2. 7)

We shall use the center-of-mass system, so that

p=-q~ p =-q
~ Pp=Pp~ 0'p=0'p ~

k = p' —p = -(q' —q), A, =0 .
(2. 8)

The second-order contribution of the scattering
operator for the above process, corresponding to
the one-gluon-exchange diagram, is

S,=- V 2(2/ce)(2~)"e(p+q p- q-')

2

& +~ & {p') 'y. 4'(P6(P'T'y„4 (q)
(2.9)

{c) (e,')

with

x y*(p') g((l')v, (k) Q, ((l)Q, (p) (2. io)

which differs from the result in quantum electro-
dynamics in a trivial way, and yields in the non-
relativistic approximation in the Pauli form

&2 = —V '(i/Ch)(22)"a(P+ q —P' —q') FIG. 1. Fourth-order quark-quark or quark-antiquark
scattering. Solid lines represent quarks or antiquaxks,
while broken and dotted lines represent gluons and gauge-
cornpensating particles, respectively.

/C +K
k 8K, K2 KiK2k 4KzK2k

+ ~ [(2+K /K)tJ, +(2+~ /K)tr ] (k&&p)), (2. li)
4K' K2k

where the subscripts 1 and 2 refer to the two quarks.
The diagrams for the fourth-order quark-quark scattering are shown in Fig. l, where tadpole and leaf

diagrams with vanishing contributions have been ignored. It is also understood that the external lines in
these diagrams are to be labeled with p, P', q, and q' in all possible ways. In order to carry out the non-
relativistic approximation for the fourth-order contributions, we note that in the center-of-mass system

p = —j= —~(k —s), p' = —j' = ~(k+ s),
po po (Ki + 4k + ~s )'" q()= qo= (&2 + 4k' + -', s ')'

where

s =p' + p = -(q' + q), s k = 0 .

(2. i2)

(2. &2)

In the static approximation we would have set s =0, but to improve upon the static approximation we
shall drop only O(s') terms. Furthermore, we shall retain spin-independent terms to order ski ', but
determine the spin-dependent terms more accurately to order ski', and for this purpose we shall treat
[sl as of order ski.

A. Diagrams 1(a) and 1(b)

The contribution of the scattering operator for the diagram 1(a) is

&P (p')T y„[2(P' —l) ' y —K, ]T y,~P'(p)P (g')T'y„[i(q' l) y —tc2]T y„(I)'(g)
P q P q g (f2 + p2)[(pr 'p E)2 + ~2][(ps f)2 + & 2][(qi + f)2 + + 2]

. (2. l4)

which can be simplified by using the properties of the y matrices and the relations

(T) {p')(2p' y+~, )=0, (ip y+z, ))t)'{p)=0,

g (q')(iq' . y + tc2) =0, (iq y + ~2)~p(j) = 0 .
(2. lS)



QUARK-QUARK AND QUARK-ANTIQUARK POTENTIALS 2311

Then, by reducing 8, to the Pauli form and carrying out the nonrelativistic approximation as described
above, we can express it in the form (2. 10) with 'U, (k) replaced by

/k~ TTTT' 'g'
dl

a + a ~ l v + av vi~ lv
' ' ' '(2rr)"cff (1'+&')(1'-2l k+f'+~')[1'-1 (k+s)+2l, ][l'-1 (k+s)-2l.q.] '

where, for n=4,
a=4~, a, +k' —(k'v, v, —k v,k v2)+~i[(2+~,/z, )v, +(2+x,/~, )v, ] (kxs)+O(k'),

a,.= —(4+K /Ic2+K2/K, )s; —2(l —v, ~ v2)k& —(v, ,k v, +k v,v, , )

+ i~; ~r lr, [(2 + «,/a, )v» + (2 + ~,/~, )v»] + O(lk I'),

a, =-2i(z, —~,)+O(f'),
a, , +a, , =45, ,(1 —v, o,)+2(o, ,v, , +v, v, ,)+O(E'),

a,, +a„=O(lkl),
a~4=4 —2v~ ~ v2+O(lkl) .

The integral (2. 16) is of the form (Al), and according to (A12) it yields
g2 k~-

f1 y j. 2 2 4~2~@ y2 2

4 2 2g 8K~K2 K~ + K2 + K1 K2' '32 8' (,+,)~k[' ~a(~ +~)lkl (& + )

(2. 16)

(2.17)

(2. 16)

where

T,'T,'1r, (k) = V, (k) . (2.19)

Similarl. y, for diagram 1(b),
lr (p')T'y„[i(p' —l) .y —rr.,]T y,p'(p)g (q')T'yvb(q —l) y —&a]T'y. 4'(9

(12+~')[(p' -p —l)'+ ~'1[(p' - l)'+ ~,'][(q - l)'+ ~ '1
(2.20)

which can be expressed in the form (2. 10) with

g g p 4 Zg b+ by. ll. + bl. vl„iv~= ' ' ' '(27r)"c)r (1'+ ')(1'-2& k+&'+~')[l'-1 (k+s)+2loP. ][l'-l (k-s)+ loq. ] ' (2.21)

where, for n=4,
b = 4lc~K2 —R' —(k'v, o, —k v, k v, ) + -', i[(2 + K2/~, )v, + (2 + ~,/~, )v, ] (k&& s) + O(k'),

b; = (a,/a, —K,/K, )s; + 2(1+o, v, )lr; —(v, ,k v, + k v,v, , )

i~,„u,[(2 —~,/~-, )v, , —. (2 —z, /~, )v, ,]+O(lkl'),

b, =2i(~, +a,)+O(k'),

b, , +b, , =45,,(1 —v, (7)+2(v, ,o, , +v, ,o, ,)+O(k'),

b,, +b., =o(lkl),
b„=-4-2v, v, +O(lal).

Then, according to (A14),

(2.22)

1 / k K, +gm ~K

77 Kj K2 i KyK2 Kg
—K2 K

(2.22)
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For the diagrams l(c) and l(d), we have

s = s'"'
~=1

where

B. Diagrams 1(c) and 1(d)

(2.24)

S',"= V—'(i/c@)(2v)"5(p+ q —p' q')—, , t( (p') T y, , 'Z(p)g'(p)4 (i' )T y p'(q)
1

with

ig2 T'y [i(p —I) y —z, ]T'y
(2~)"ch- (P +~')[(p-I)' +~ ']

(2.26)

(2.26)

(2.27)

where

2
S',"= V'(i/ch-)(2w)" 5(P + q —P' —q')k, , g (P')i1', (P', P)P'(P) 4 (ci') T'y, 4'(q)

with

Ai(, Eg 'T'ye[i(p' —I) ' y —Ice]T'y„[i(p —I) ' y —Ky]T~y„
(2m)"ch (I'+ &')[(p' —I)'+ ~,'][(p —I)'+ ~,']

(2.28)

(2.28)

while other terms in (2.24) and (2.27) have similar forms.
These diagrams also appear in quantum electrodynamics, and their treatment is weH known. After re-

normalization and neglect of the O(~k~') terms in A (p', p),

S = V'(i/-ch)(2w)"5(p+ q —p' —q')(g'/k')( g'/16-w'ch) In(j'/g')

x[y-(p')(T'T'T'+ T'T'T')y $'(p) p (j')T y p'(q)+ p (p')T'y g'(p)p (q')(T T T + T T T )y i"(q)],

S = V'(i/ch)(2-w)"5(p+ q —p' —q')(g'/k ')(g '/8v'ck)

2

x $ (p')T T T ln—,y — o „k„~p'(p)7I(q')T'y, ~it'(j)+ p (p')T'y, ~Jr'(p)g (q')T'T T ln —,y + o p„~p'(q)
1 2

and then reduction to the Pauli form leads to

2 2

2 2 87T2+@ ~2 2 (2.30)

'U~ = T,'T2(T~~T,'+ T2T2) 2 ln—g2(k) + T, T2 (T,T, + T2T~&) 2-2 (k o', ~ o2 —k ~ o,k ~ o'2)

(2.31)

In the case of the diagram 1(e),

C. Diagram 1(e)

e (2. 32)

where
2

S',"= V'(i/ca)-(2w)"6(p+ q- p' —q'), , y (p')A (p', p)p'(p)Tt(i')T'y, p'(i) (2. 33)
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with

(2. 34)

—3«y u2 y~ + k 2(1 —uy + u) —utu2)y)i + «g(u2 —u2 ) 0')i„k„
«, 'u, '+ k'(u, —u, )(1 —u, )

where the 0, terms have been dropped in view of

k, ~ (q }y„&'(q)=o.

/

1[5v)((21 —k)„+5z)i(2k —l)) —5)i, i (1+k)),JT~y„[i(P' —l) ' y «zlT~y),
«'+I')[(1-k)'+~'l[(P -1)'+«'J

while the other term in (2.32) has a similar form.
After integration over E, simplification with the use of the properties of the y matrices and the relations

(2. 15) and (2. 12), and renormaiization, we obtain

1 Ml ~K 2 2+k2(~ 'g 1 —Q
A "(P' P) = -if ")'T'T)'( '/8w'ch) du du, 3y —31nlg 7T C Ql

0 0 1 2

The integrals over g and u, are similar to those in Appendix A, and upon evaluation

A '(p', p)= if*"T~z'-l -y — "," "ln, +o(f')g /IkI o „k„k2
y, 16CS (2K, ~ Kl Kl

It follows that

(2.35)

o 0 k'
$ = —V '(i/ch}(2w) "5(p+q-p' — ')(-lf '&~g4/16chk') g (p')T~T

l
y„—," "In—,[l)'(p}T[) (q')T'y„[l'(q)

)

+4(p')T'y„4'(~)%(q')T'T' 2, y. + "; "»—.0'(q),I k] ogvkv k

and, with reduction to the Pauli form,
4 1 k2 ~k

2i(«, +«,) ), k'- ), k'- &

+ g 2 2k~ T|«~ln —,o, —T,«, ln —,oa I (kxp)
mv, @2k Kl «, i

D. Diagrams 1(f), 1(g), and 1(h)

(2.36)

The treatment for diagram l(f), which also appears in quantum electrodynamics, is well known, and it

is easy to show that within the approximation under consideration

g~=0.
The contribution for diagrams l(g) and 1(h) is expressible as

2

$ +$„= p(i/ch—)(2[T}"6(p+q p' —q')—, , I[) (p') T'y„[I)'(p) II"„~(k)7[) (q') T~y„g'(q),

(2.37)

(2.38)

where
2

ri„"i(k)= f' 'f& '
)„ f—, ,)-[ ), ,

[
[il,~(21 —)') +i!~ (2)i —i), —5„()+))~]

x [5 q(21 —k)„+5~(2k —l) —5„(l+k)q]

yg( ig l
lu(k —l)P

(2~)"ch (i'+ ~ ') [(k —I)'+ &'j

After integration and renormalization,
2

(2.39)

(2.40)

and by substituting (2.40} into (2.38) and carrying out reduction to the Pauli form, it is found that

2 2

'48m2CS
(2.41)
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III. QUARK-QUARK POTENTIAL

The second-order quark-quark potential immediately follows from (2.11), and takes a form familiar in
quantum electrodynamics. However, for the fourth-order potential, in addition to the contributions de-
rived in Sec. IX, we require

'U2(p lP )U2(p P)
(22)' (P, +q,)ch —(P,"+q,")ch ' (3.1)

because the effect of the iteration of the second-order potential must be subtracted from the fourth-order
contributions.

For any p and p', (2.11) can be written as

ll (P', l) = &ll'l(-, -). , (&+ I~„(l' l)lV ' l-),+&„9-" l~lilg" &P-l)
1 2

with

(K, +K,)'
Q]~ —— ~]) —0'i V~5 )+ 0') )0'g ) y

&KyK~

(3.2)

Z

((.[( i' 2) 2 X "( i' 2) i 2, 2]
Kg Kg

and in the nonrelativistic approximation in the center-of-mass system

(3.3)

(3.4)
2 21 2K&K2 1 Kg + K2 K|K2 («2 «ll2)

Substituting (3.2) and (3.4) into (3.1), and retaining terms up to second order in p, p', and p" in the nu-
merator, we find

4 . I 1 2 2(2 )3c@ K + K [( l ll)2+ g2][( ll «)2+ y2](«2 «ll2)

»+
I
&(y[(P'-P"),(O'-P"), +(I"-P),(P"-P),]4&,I(:,

and then upoh setting

p =-~k+ ~s
~I

p —p=l, p —p =k-l,

1 2

(3 6)

integrating over 1, and dropping terms of second order in s,
4

O'U4 = TiTiT2T2
32WCS(K + K )

x du, du, - 2n«+-
i,kt

2 21 ~K + Kz + 3K&K& 1 2+ «2 2 4K' K2 +~Py (y
+ )y [2 241 2+2 (+1 ~22) ]

I kl '& KgK~

+u, S~[2'P, q(1 —u2) +(.~„+n), )(2' -u, + ~22)u2]

where h is defined by (A9). Evaluation of parameter integrals, which are of the same form as those in

Appendix A, gives
2 2g i( Ky + Kp + 3KiKp

+K

which becomes, on using (3.3),.
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]3y adding (2.18), (2.23), (2.30), (2.31), (2.36), (2.41), and (3.6), and simplifij'ing the products of T ma-
trices with the use of the SU(N) algebra, we obtain for the Fourier transform of the fourth or-der quark-
quark potential

with

i(~,o, +a,o,) kx p i (g,'o, —ic,o, ) kx p
k k

(3 V)

; r (K+K~) 1;; N2 —1

B=NT', T21n + T', T2,
k N -1

K~K2

k'
2 ( K]K2 N 4X Ky+ K 2N 4N K~- K2 K~

k'~ygrt 1 2 l ytrf 1 2
2 1 2K,K2 K~K2

(3.6)

F. = -NT', T,' ' 2 ln~,
K~K2 K~

(3.9)

and

and we observe that the spin-independent part of (3.V) agrees with the result for the scalar-scalar case. "
For quarks of equal mass z, (2.11) and (3.V) reduce to

1 1 p 1 ko, o, —k o,k o, 3 i(o~+o) kxp3
2K k 4K

(3.10)

with

T', T', +
(2N —1,-,. N —1 m K

I

antiquark scattering is possible, and the contribu-
tions of various diagrams can be obtained from
those in Sec. II by the replacements

I3= NT';T2» —,+k N2 —1
K (3.11)

I( (q')- 0'(q), 0'(q)- 0 (q'),

(4 1)

~ . k' N'+ 2
K

k' 2
D= —2NT' T' ln —+—T'T'

1 2 K2 N 1 2P

where we have made use of the fact that

1 K 1ln~= —— for K, = K, = K.
K~- K2 K~ K

IV. QUARK-ANTIQUARK DIRECT POTENTIAL

The quark-antiquark scattering can be described
by the same diagrams as those for the quark-quark
scattering provided that the external lines are
labeled appropriateiy with the propagation four-
vectors P and P' of the quark and q and q' of the
antiquark. If the quark and the antiquark belong
to different quark fields, only the direct quark-

As a result of these replacements, the scattering
contributions involve antiquark factors of the form

0'(q)y„T'y. T'. r~T'0 (q'), (4.2)

0 (q)y. y. ''y&k (q')=+(, (q')y& .y y ~p'(q)

(4.4)

q*(q)T'T' "T'~(q)=+~*.(q)T» "T~T „,(q),

(4.6)

which can be expressed by projecting out the color
factotum as"

0'(q)r, y. y~) (q')fq*(q)T*'T' T'n(q')].

(4.3)

The charge-conjugation relations for the two fac-
tors in (4.3) are
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where the upper sign in (4.4} or (4.5) corresponds
to an even number of the y's or the T's, while the
lower sign corresponds to an odd number. It fol-
lows that

@'(q)r„~*r.&' . r, ~'i (q'}

= Pc(q')r &' r.T'r. &'&'c«} .

(4. 6)

With the replacements (4. 1) in (2.9), we get for
the second-order quark-antiquark scattering

S,'= V—'(i/c@)(2w)"5(p+ q —p'- q')

2

x~2+ .tc (p'}~*'r„4 (p)('(q) 'r, lt (q'),

1
1s'r1r 's & 1r'r1s's+ +r 'r ' s's ~

3~st'~r s-21r r1s s-2 r r'~s s~

and the color matrices

(5.2)

1
lssrlr ps= 1sssirsr+ 2TsssTr gr

N2 —1
Ts,rTr ss = — ~ 1s's1r ~r & Ts'sTr

(5.3)

This will be followed by charge conjugation with
the use of

antiquarks and the color-space spinor g, and then

apply the exchange rel.ations for the Pauli matri-
ces

and then, with the application of (4. 6},

S,'= —V '(i/ch)(2m)"6(P+ q —P' —q')

x&. + .F(p'}T'r„4'(pic(q'} 'r„4c(q)0'+x'

x *(q)x(q') = —0;(q')4c(q),

X *(q)o&X(q') = 4c(q')~&4 c(q),

n "(q)n(q') = nc(q')nc(q),

n'(q) &'n(q') = -nc(q')&'nc(q) .

(5.4)

which shows that

~,(R) = v, (k), (4. t)

I.et us consider the second-order annihilation
scattering contribution, given by

1l,'(k) = u, (R),

where U, (k) is given by (3.V) or (3.10).

(4. 6)

V. QUARK-ANTIQUARK ANNIHILATION
SCATTERING

If a quark apd an antiquark belong to the same
quark field, we have to deal with the direct scat-
tering as well as the annihilation scattering, keep-
ing of course in mind thai the quark and the anti-
quark have the same mass. The direct scattering
has already been discussed in Sec. IV, while the
contributions of various diagrams for the annihi-
lation scattering can be obtained from those in
Sec. II by carrying out the replacements

0 (q')-0 (p'), lT (p')-0 (q), 0'(q)-0 (q'), (5.1)
q/~Pt Pl ~ q q ~ qt

and setting g, = g, = g.
The treatment of the annihilation scattering con-

tributions requires an elaboration of the procedure
in quantum electrodynamics. " We shaB reduce
the scattering contributions by expressing them in
terms of the Pauli spinors Q and X for quarks and

where 'U2(k) is given by (2.11) or (3.9). Similarly,
carrying out the replacements (4.1) and applying
(4.6), we find that all the fourth-order diagrams
for the quark-antiquark scattering yield the same
potential contributions as in Sec. II except that the
contributions of the box and crossed box diagrams
are interchanged. Moreover, in view of (4. I},
R),' = O'U, . Therefore,

k= -(p+q) . (5.6)

After projecting out the color factor, carrying out
reduction to the Pauli form, and taking into ac-
count the anticommutation property of the Pauli
spinors, it is possible to express (5.5} in the non-
relativistic approximation as

S,"= —V '(i/ci)(2v)"5(p+ q -p' -q')
x ( g /4K )p,*(p')X,*(q) oo,x (q')p (p)

x in.'(p')n, '(q)~,'~.'n. (q')n, (p)l,

which becomes, in view of the exchange relations
(5.2) and (5.3),

S,'&= —V '(i/cd)(2w)"6(p+q -pI -q')
x (-g'/6& )4,*(P')X*(q)(3-c, o.)X.(q')0, (p)¹-1

Then, the use of the charge-conjugation relations
(5.4) gives

Sg= V'(i K/c—)( 2)" (5pq+-p' -q')
x (g'/8~')P*, (p')P*, (cq')( +3c, .c',)P,c(q)P, (p)

N2 —1

(5.7)

S,"= V'(i-/cff)(2n)"5(p+q -pi -qi)
2

x -„.& (p')~'r. & (qt'}0'(q)1"'r„4'(p), (5.5)

where
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whence it follows that

(5.8)

perties of the y matrices and the relations

0 (p')(/p' &+ «) = 0 (/p '1'+ «))/ (P) = 0,
K'(q}(n/ ~ - «) = 0, (/q' 1' - «)y-(a') = 0..

(5.9)

A similar treatment wiB now be applied to the
fourth-order annihilation scattering contributions
corresponding to the various diagrams in Fig. 1.
We shall. again carry out approximations as ex-
plained in Sec. II, and simplify by using the pro-

A. Annihilation diagrams 1(a) and 1(b)

The annihilation scattering contribution corre-
sponding to diagram 1(a) is

S,"= -V '5(p+q -p'-q!)(g'/c%')

0 (p')T'&. [l(p'+ /) & - «]T'1'.4 (q')0'(a)T' &.[/(q+ /) 1'+ «]T'~.4'(p)
(/'+) ')[(p+ q+ /)'+ ~'l[(p'+ /)'+ «'1[(q+ l)'+ «'] (5.10)

After projecting out the color factor, and simplifying and reducing to the Pauli form, (5.10) can be ex-
pressed in the nonrel, ativistic approximation as

S,"=V '5(p+q -p' q')(g'-/c'//')

P*,(p')X '((/)(a'+ a.'/. + a.'./. /. ))/, (q') 4,(p)
(/2+X&)(/2-4/g, -4p, '+X')[l'+T. (K+s) -2/, p,][l'+i. (k —s)-2/, p,]

x [n*,(p')n', (a)T,'TP".T.'~.(i')&,(p}l

where, for n=4,

a = —4«2c, ~ c,+O(lkl), a~=4/«&, ~ c,+O(lkl),

a/, =So', ~ o', -6+O(lkl), al. =2oi. cm+o(lkl}.

(5.11)

(5.12)

Upon integration with the help of (84) and simplification of the product of T matrices, (5.11) becomes

SI'= V'(i—/ck)(2m)"5(P+ q -P' -q')(g'/1«'cl«')
IIII

2

x y;(p'))(",(q)[(( —)nm)()--'f, ~ 2,)-)n(c /V)FFJ)(', (t)')0,,(p) 6,'(p')8', (4)l& ~ -)7& 2')') (Q')') (P)
ls

Then, with the use of the exchange and charge-conjugation relations, S," can be converted into a form sim-
ilar to (5.7), and thus

(
&'-1 ¹+1,) gc~=

I& 4¹+
2N2 T,T2 1«2 /f

2[3(1-ln2)o'~ ~ om+z(&+(T'~ ~ o'~)ln(«2/X2)].

Similarly,

(5.13)

v=)"(() q -( -~ xg ye) f d) ' """*("""')" .(' (~')()'(I))' .( (e )) "))' () () )
(/' + ~')[(p + q + /)' + ~'][(q ' + /}' + '][(q /)' ']

which becomes, in the nonrelativistic approximation,

S"=-V '5(p+ q-p' —q')(g'/c'k')

e.*(p }X*.(a)(b +b;l. +b../. /. )X.(q }e.(p)
(l +y')(/ —4/, p, —4po+y )[l'-1 (k+s) —2/, p, ][l +1 (k —s) —2/Opo]

x [~f (p')q*, (q) T,'T&T&T'q (q')q, (p)], (5.15)

where, for n=4,
b'= —4«&7, .c~+O(lkl), b'=4i «,o. o' 2+0( kll),

b: =8c, .c, +8+O(lkl), b;. =ac, ~ c, +o(lkl) .

After integration with the help of (B7), (5. 15) is expressible as

(5.18)
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S„"= —V ~(i/ch)(2w)"5(p+ q -p' —q')(g'/15))'c@~2) (pf (p')X*, (q)[(1 —ln2)(1+ ~v, o2) +In()('/y')P7, o,]y2(q')Q, (p}

" n(ri', )n '(q",) «. +» &iT'i)n (i .)n'(g), ,

which leads, with the use of the exchange and charge-conjugation relations, to

TjT2j 2 2 1 ln2 1 goj +g + p 3 +vj ~ 0, ln K
2N ' ]16m cSK'

(5.17)

B. Annihilation diagrams 1{c)and 1{d)

By proceeding in the same manner as in Sec. II, the contribution for the annihilation diagram l(c) is
found to be

S,"= —V '(i/ch)(2))') "5(p+ q —p' —q')(g'/P)(-g'/167('ck) In(&'/ p,')

&& [(I (p')(T'T'T'+ T'T'T')r „g (q') 0'(q) T'r, 4'(p }+0 (p') T'r„p (q') g'(q)(T'T' T* +T'T'T') r„4'(p)],
which can be expressed, after simplification of the color factors, as

¹

—1 g

and therefore

ln —,'U,"(k}.
Sw cS p

For the annihilation diagram 1(d),

(5.18)

s"= —v '(i/cR)(27() "5(p+ q —p' —q') = [T() (p') T'r„g (q')7()'(q)&', (-q, p))I)'(p)

+ 0 (p') ll'„(p', -q') 0 (q'9'(q} T'r.P(R]
with

-ig' T'y„[i(q+ l) y+ ~]T'r„[i(p l) r ~—]T'r„—
(2~)"ch (P+~')[(q+l)'+~'][(p —l)'+~']

Simplification and evaluation yield, after renormalization,

A'„(-q, p} = A', (p', -q')

g
2 ~2.K k2 $2---+in —,- ln —,+2 r„+O(lkI)

7T2cS
)
kI' K2 P2

and, upon substitution of (5.21) into (5.19) and simplification of color factors,

1 g' /))~)( k~

X 8m-ca ( )k) K' P,
'

which shows that

(5.19)

(5.20)

(5.21)

N 8 CS ~kI K' P'

C. Annihilation diagram 1{e}

(5.22)

In the case of the annihil. ation diagram 1(e),

S"= —V'(i/c@)(27)'} "&(p+q —p' —q') =, [0 (p') T'r.4 (q') T("(q}ll,"(-q,p) 4'(P)

+ 0 (p'}A'„'(p', -q')0 (q')T('(q) T'r„0'(~) ]
with

„,L5„,(21 - a) „+5,„(2Ã- 1)„-5„„(i+@„]T'r„[i(q+1) r+ ~]T'r„
(27() "cm (P+ &')[(l -5)'+ &'][(q+ t)'+ K']

(5.22)

(5.24)
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After simplification, integration over l, and renormalization, we obtain

A„'(-q, p} = A,"(p', -q'}

= -if '~'T& T'(g /Bv'cI) du du 3 —3 ln"'
0 0 Q2

, +~u, +-,(2u, —,)'
~

(~-~)
u, ' —4(u, —u,)(l-u, ) )

where the integrals over u, and I, are similar to those in Appendix 8, and upon evaluation

A„"(-q,P) =lt„"(P',-q') =-iy~~"T~T', (1+2ln2)y. +O(~k~) .

Substitution of (5.25) and simplification of color factors enable us to put (5.23) in the form
2

S"=N, (1+2 ln2)S,",
12m'cS

and thus

2

'V,"=N12 ~ (1 21n2)U2'(k) .
12m~ c@

D. Annihilation diagrams 1(f), 1(g), and 1(h)

The treatment for diagram 1(f} is similar to that in quantum electrodynamics, and

S&' = V"'(i/—ch)(2v) "5(p+ q —p '- q') =, Tt (p ') T'y„g (q') ll'~(k) Tt'(q) T~y„tp(p),

where

ig'
I

Tr((il y- ~)T'y„[i(1+k) y- a]T~y. f
(2v) "cn (12+~') [(l+k)'+ ~2]

Evaluation and renormalization of (5.28) give

(5.25)

(5.26}

(5.27)

(5.28)

ll'J„{k)= 5'& {k'5„„-k„k„) d»(1 —u) ln~ 1+
4w ch

2
= 5'~ 4, (k 5„„—k~k„}[-g+O(k ) j,

so that (5.27) becomes

(5.28)

g I/ gllS~ — ~ 82

2

9w2ck

For the annihilation diagrams l(g) and 1(h),
2S"+S„"= - P'(i/ch)(2m) "5(P+'q —P

' - q') =, g (p') T'y„tP(q') ll„',~(k) P(q)T~y„g(P),

(5.30)

(5.31)

where, after renormalization,
2 2

(5.32)

which can be obtained from (2.40) by replacing k by k. Dropping the imaginary part in (5.32), we have
2 2

(5.33)

which, when substituted into (5.31), gives
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2 ( ~2S"+S„"=-N ~2
~

2ln2+ln —,~SR"
48m c5 ( v'j '

or
2 2

48m cS (5.34)

YI. QUARK-ANTIQUARK ANNIHILATION
POTENTIAL

The second-order quark-antiquark annihilation potential follows from &2(k) given by (5.8). However,
for the fourth-order potential, it should be kept in mind that the addition of g2"(k) to gR'(k) generates extra
terms in the iteration of the second-order potential, which must be subtracted from the fourth-order con-
tributions derived in Sec. V.

For this purpose, it is sufficient within our approximation to retain the cross terms generated by VR"(k)

and the Coulomb term in U,'(k), ,and thus

d-„~!'(p', p")&!(p",p) + &l(p', p")&!'(p",p)
(2W)

3 (p, +q, )Ch (po' —-q,")cii

where, for any p and p',

(6.1)

'UR(p p)=TETR -. -.2 ~2p -p~ +~

'02"(p', p) = 2~ +—T,'T,' ~8 2(3+o, oR) .
2N N i ~j Bg2

(6.2)

Upon substitution of (6.2) and simplification of the product of T matrices, (6.1) becomes within our ap-
proximation

4 2NR NR 1 2 16 g ( 1 R}(2 )3 dP
( «)2+gR ( ) «)2+F2)'pRP«2 ~

Then, using (3.5), combining the denominators, and performing integrations, we obtain

4 2N3 N2 1 Ri) 16 @~( 1 2} (2 )3 [TR lk2 2+(I )yR)2

N' —1 N' —3
2N N ' 'j 64ci1gi k}

(6.3)

According to (5.13), (5.17), (5.18), (5.22), (5.26), (5.30), (5.34), and (6.3), the Fourier transform of the
fourth-order quark-antiquark annihilation potential is given by

g (11N g' 1 k (N —l)(5N+3) N —2

T,'T,' — -. (3+o, o,)+T,'T,'(1 —ln2)o, aR ~. (6.4)

It is interesting that for color-singlet states, (5.8) and (6.4) reduce to

u,"(k) =0,

u4«(k) =64. . . - (3+(r1 a,)+ (1—ln2)o1 o,
g4 (N' —l}(N —4) R'Rx NR —1

64w2cgg~ N3 2 J k 1

I

(6.5)

(6.6)

VII. CONCLUSION

In view of the complicated nature of our results,
we have given the Fourier transforms of various
potentials in the preceding sections, whence the
potentials can be obtained through the relation

v(x) =(2~) ' Jdke"'u(3).

We have found that the Fourier transform of the
fourth-order quark-quark potential is given by
(3.V) for unequal masses and by (3.10} for equal
masses. We have also shown in Sec. IV that if a
quark and an antiquark belong to different quark
fields, the quark-antiquark potential is equal to the
quark-quark potential. But, if a quark and an anti-
quark belong to the same quark field, the Fourier
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transform of the fourth-order quark-antiquark
potential is

g4(k) = '04(k) + g~"(k), (7.2)
+nf ln ,—z—n~ ig, (R) . (7.S)

where 'V,'(k) ='U, (k) is given by (S.lo), while g,"(k)
is given by (6.4) or (6.6). These results represent
significant improvement over the earlier perturba-
tive calculations.

It should be mentioned that several renormaliza-
tion prescriptions are currently being used for the
choice of the finite parts of renormalization con-
stants, which leads to prescription dependence
in physical results. Of course, whatever renor-
malization prescription is used, it must be en-
sured that all renormalization constants for the
annihilation diagrams are equal to those for the
corresponding direct diagrams. In Sec. II renor-
malization was performed by choosing the finite
parts such that the fourth-order quark-quark po-
tential. takes the simplest form. For simplicity,
the contributions from light-quark loops were also
ignored. When renormalization is performed in a
more conventional manner by using the MS
scheme, '4 and the contributions of n& light quarks
are included, we find that the quark-quark poten-
tial (S.7) acquires the additional terms

The same result holds for the quark-antiquark
direct potential, while the quark-antiquark annihi-
lation potential remains unchanged for color-
singlet states because of (6.5).

ACKNOWLEDGMENT

This work was supported in part by the U. S.
Department of Energy under Contract No. DE-
AC02-76ER02302.

APPENDIX A: EVALUATION OF INTEGRALS
FOR DIRECT DIAGRAMS

%'e shall evaluate the multiple integrals en-
countered in our treatment of the direct box and
crossed box diagrams. Since the integration tech-
niques have already. been fully explained, "we shall
give only a brief account of evaluation in accor-
dance with the approximations described in Sec.
II.

Let us evaluate the integral for the direct box
dia ramg

a+ af,l„+a„„l„l,
(l + &')(f' —21 ' k+ k + & )[l —1 ' (k+ s) + 2lo po][l —1 (k+ s) —2loqo]

by retaining the spin-independent terms to order )ki
' and the spin-dependent terms to order iki'. Since

we shall retain only the relevant terms at various stages of calculation, it is important to note that, ac-
cording to (2.17), a, and a«+ a, , are of order ik~, and the spin-dependent part of a is of order ko. After
integrating over f, and dropping the O(s') terms, we get

I, =—J du, J a, Jddt, ( & +~ ~

with
N= a+ a ' ku, -oa (k- s)u, + a,. & k, k&(u, —ou, )'+ Qoa, &+ a&,.)k,.sz(u, —~o,)u, —a,~(pou, +qyc, —p,u,)'

—i[a, + (a„+a„)(k,u, ——,'k, u, +-,'s,u,)](p,u, +q~, —p~,),
D=(pou, +qouo -pou, )'+k [(u, —uo)(& —u, ) —&u, ']+& (& —uo) ~

(A2)

(AS)

(A4)

Then, integration over u, leads to

I,=Ip+I, +I~,

where

(A5)

'
2(po +qo)

(A6)

' 2(po+qo)

+
i ia, + i(a;~+ a„)(k u, —ok,u, + os.,u, )

N i 1'"'q'u"k ~'q'"') ' '+p~' '
gp Q2

(A7)
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with
j& 1 2 1 1Ii=g+a ' ku, —m~' (k- sou, + g, &k,k&. (u, —2ua) + —,(g, &+g&&)k,s&(u, —au2)u2,

&' = (u, —,)(1 —u, ) ——,'u, '+ (&'/k') (1 —u,),
(A8)

(A9)

and I, can be obtained from I, by the replacements po-qo, q, -p„g, --g„and g, ~+g4,. --(g«+g„.). Final
integrations over gg2 and I, yield

~ 4
Z7j 1»

~
~ 1 «2 j. 1I, =-(,~, [g+ m ' s ——,g, .k ——,g, &k,.k&+-, (g,.&+ g&,)k s&],.

Pp+Vpj ~

(A10)

1 —in
&~

(A11)

while I, is obtainable from I, .
From the above results for Ip, I„and I„ it is found, by using

po=Ki+k /8K'+ ' ' ', qo=K2+k /8K~+ ' ' ',
that

e 4
Zfr a j.g+ g a ' s —4 g). + k —4g(~b)k~+ 4(g)~+ g)))k(s~

iw g, —g«(& k w, —z, ~el 2g+a k k2
+

2KgK2 2 $ K~K2 Kg + K2 K~ i k

(A12)

The integral for the direct crossed box diagram

(A13)b+ b„l„+b„„ll l„
l'+X' l'-2 k+k'+X' l' —l k+. s +2lppp l s +2lppp

can be evaluated in a similar manner. However, in this case we do not get any terms corresponding to

Ip, while the terms corresponding to I, and I, yield

iw' ~b b, , —b4, k' z, +g, ~g) 2b+6 k P
I~ =.

2K~&2 " 2 tc~g2 g~ —g2 g~] k

(A14)

APPENDIX 8: EVALUATION OF INTEGRALS FOR ANNIHILATION DIAGRAMS

The treatment of integrals for the annihilation box and crossed box diagrams, which we shall now de-
scribe, is much simpler than that for the direct diagrams.

The integral for the annihilation box diagram

a '+ a„'l~+ a„'„l„lv
(P+&')(l' —4lopo —4po'+& )[l +1 ' (k+ s) —2lopo][l'+1 '(k- s) —2lo po]

gives, upon integration over l,

(B1)

(B2)

where

D'=u, ' —4(1-u, )(u, —u,)+(1—u, )&'/~'.

After substituting (5.12) into (B2), and performing parameter integrations, we obtain

I,' =(iw /v )[(1—in2)(1 —3o~
'

o2) —1n(g /A. )o, o~]+ 0( (
k ~) .

Similarly, the integral for the annihilation crossed box diagram

(B3)

(B4)
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&'+ &~I~+ &~vE~Iv
~ J (l +A. )(1 —4lopo —4po +~')[12—1 (k+s) —2l,po][l'+1 (k- s) —2/, Po]

gives

(S5)

(B6)

and then, on substituting (5.16),

I,'=(im'/a')[(1-1n2)(1 +—,'o, o,) +in(a'lX')o, o,]+0(
~
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