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Static Yang-Mills fields in the presence of external sources
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Using the Wu-Yang ansatz, we obtain static non-Abelian solutions in the presence of an assembly of point sources
or a localized and extended source. The interaction energy of the system is finite and it indicates a possibility of
confinement for two point sources.

I. INTRODUCTION

The success of the Yang-Mills (YM) gauge field
theories' in electroweak interaction and strong
interaction physics has led to the prevalent opinion
that the gauge field is the key concept in elucidating
the nature of fundamental forces. Thus it is worth-
while to explore every aspect of gauge fields. The
classical solutions' ' of the sourceless YM field
have been under intensive. investigations in the
past few years after the discovery of the 't Hooft-
Polyakov monopole and the Belavin-Polyakov-
Schwartz-Tyupkin (BPST} instanton. More recently
there has been much interest' ' in constructing
classical solutions of the YM field equations in the
presence of external sources (treated as c num-
bers), with the hope that correct expressions can
be obtained for the interquark potentials. How-
ever, most of the non-Abelian solutions derived
are restricted to cases in which the external sources
are extended. Since extended source distributions
may be qualitatively different from point sources'
and with the view that elementary particles such
as quarks behave most probably as point sources,
it is of interest to study non-Abelian YM field
configurations in the presence of point sources.
Solutions with point sources have been discussed
in Refs. 4 and 5 but they are of the Abelian Coulomb
type. In Ref. 7, a non-Abelian solution with one
external point source has been presented and it is
time dependent.

In the present paper we construct static solutions
in which the space component j,'. of the external
source current j' is due to the Wu-Yang mono-
pole, ' "whereas the external charge density j,'
(for convenience, we refer to this as the non-Abel-
ian electric source) is prescribed by an assembly
of point sources or a localized and extended charge
distribution. Our solutions for point sources are
non-Abelian and are not gauge equivalent to the
solutions found in Refs. 5 and 7. Apart from the
self-energy, which must be divergent for point
sources, the interaction energy of our solutions
is finite. The external sources are also finite in
magnitude.

II. GENERAL SOLUTIONS

For simplicity we restrict ourselves to the gauge
group SU(2) although we expect no difficulty in
generalizing the results to SU(N). In the presence
of the external source current j', the YM field
equations are

~P v+ ~g Qb +catv —jva ~ abc a~ (la)

(1b)

where g is the gauge field coupling constant and

our metric is gi) gpp 1. To construct static
solutions, we interlock the isospin and spatial
indices of the potential A, ,

'

A;(x)=V(x)n, A,. =~... ,n. A()x,

n, =x, jr, H =xp. '.
Here V(x) and A(x) are functions of the spatial
coordinates x,. only. Substituting the Wu- Yang
ansatz (2) into E(I; (1), we have, after some
straightf orward calculations,

(2)

j'=~ n -O'A+~ gA+ — —+gA' —V'
~a ail l I, & & j

3 2
lA ——n n. B'Aail & & l j

1
n B.B.A ——n. ~ Ajal l j i ~ i j

+ 3gAe, , ,n, n, sp

jo =n —s'V+ 2V gA+ —
~

+2 gA+ —n. &.Va a xj y i i

(3b)

1 2Aji=& . n -8'4+) gA+ — —+gA' —V'
a (4a)

1'II2"
j'=n O'V+2V gA+ —-~a a L r) (4b)

By assuming that the function f(t}= [gA' —V +(2A/

If the functions A and V are sphericall. y symmetric,
E(ls. (3) become
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j,=-n, 8 V, (5b)

where V is still an arbitrary function of x'. We
note that each of the nonlinear Eqs. (3a} and (Bb)
involves the functions A and V and by putting a
magnetic monopole at the origin, we have de-
coupled A and V to arrive at Eqs. (5a) and (5b)
which are both linear.

Given any function V(x), we can evaluate the
electric charge density q,(x) =j',(x) through Eq.
(5b). For the charge distribution q, (x) thus found
and with

r)] vanishes exponentially, one can in principle
solve for A(r) from Eq. (4a) by setting j' = 0. One
then obtains V(x) from f(x) and hence the charge
distribution j,. This type of solution has probably
been covered in Hefs. 6 and 9. Equations (3) can
be simplified tremendously if we set gA=-1/x.
Thus

j,' = g.,„n,a'A = (4m/g) e,„n.,5"'(x),

magnetic point source,

H=
i

d x g I(B,.VB~V+
4 4j

(8)

(j 0jo)1/2 82 V

j —
(jaja) & /2 — 6 &3 ) (x)

4m'

g

(Ba)

(9b)

The integral of each of the above expressions is
finite. The total conserved isospin current is

J"=8 E " j" g& A E'""
a o a a abc

Neglecting the self-energy divergence, the total
energy of the system can be finite if the function
V(x) is chosen suitably so that the charge distribu-
tion is smooth and vanishes rapidly at infinity.

The external isospin current for solution (6)
can be characterized gauge invariantly as

A,'(x) =n'V(x), A;. = e,~n, ( Ilgr), . —

~ay g ~ai- 0
u

(6)

and the total isospin charge of the system is given
by

we are led to a large family of solutions for the
YM equation in the presence of a magnetic mono-
pole together with any arbitrary external non-
Abelian electric charge distribution. It can be
easily verified that the external current source
j' as given by Eqs. (5} is covariantly conserved,
i.e. , (D"j„)'= 0 .

The total energy of the YM fields interacting
with the external source is obtained from the time
part of the energy-momentum tensor,

H= ' d'x F'

where the non-Abelian electric and magnetic fields
are defined by

I =, d'x d,.E',

1d'x n'O'V+ (n—p,. —5, ,)—B,.V (10)

For spherically symmetric function V(x), which
gives rise to spherically symmetric external
source distribution, I, is always zero.

III. EXPLICIT EXAMPLES

We now proceed to discuss a few explicit expres-
sions for the function V(x):

(I) V(x) is a regular function of r and has a
finite support, for example V(x) = exp( ur), whe-re
a is a positive parameter. In other words we
have a spherically symmetric source distribution
which is localized and extended. In this situation,
the electric field is radial,

ga —ya pa- && ~ajk
i oiy i ij&

and E'=E;E; For the so.lut. i.on (6), the field
strengths are

and

(7a)

Ea ~n n.e Nr
i i

Clearly it is screened and vanishes with the ex-
ternal source j,. The energy due to the non-Abel-
ian electric field is finite and is given by

B,' =-nn, ./(gH) .. ( Ib)

The explicit expression of the electric field is
determined by the function V(x) whereas the mag-
netic field is due to the Wu- Yang monopole at
the origin. Irrespective of the form assumed by
the electric field, the total energy of the solution
(6) is divergent because of the self-energy of the

The total conserved isospin is zero. This solution
is not gauge equivalent to the screening solution
of Sikivie and Weiss' and is not included in the
spherically sym'metric solutions found in Ref. 6
because the gauge-invariant quantity B;.Bi is not
zero here whereas it vanishes in Refs. 5 and 6.

(II) V(x) =1/x. The electric field is
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Ea —nan /ra
i

Here we have a situation in which a single external
point source at the origin gives rise to non-Abelian
electric and magnetic fields of the monopole type.
In a sense this single point source could be re-
garded as a dyon. Of course at this stage we do
not have any charge quantization. As expected,
the total energy is divergent. The total isospin
charge I, vanishes, which means the external
charge j, is completely screened. The present
non-Abelian single-point-source solution is not
gauge equivalent to the YM field configuration for
one external point source found in Ref. 7 since
the gauge-invariant quantities such as B+,' are
differ ent.

(III) V(x)=1/r, +1/r„r, = Ix —ail rm= I" aml

where a, and a, are two constant vectors denoting
the locations of the electric point sources. This
corresponds to two electric monopoles situated
at positions a, and a, and a magnetic monopole
at the origin. As Eq. (5b) is linear we could in
fact consider V(x) as a linear superposition of
any finite number of electric poles at different
points, but for convenience, we restrict ourselves
to two electric monopoles. The interaction energy
between the two electric monopoles can be easily
computed and we have

a...=. d'x(+) —', ,'fj gg

~ 4» —6 "&(r,) +—5 "&(r,)
1, 1

Vg

(14)

where b =
I
a, —a2

I
and n„n, are, respectively,

unit vectors along the directions r, and r~. The
force between the two electric point sources can be
repulsive or attractive depending on the sign
chosen in the expression for V(x). . The interaction
energy given in Eq. (14) is of the Coulomb form
and does not indicate the confinement of the two
electric point sources. In passing we note that the
non-Abelian charge density is

j', =4»n, [6"'(r,) ~ 6"'(r,)]
and

q = (j ',j',)'"=4m[6"'(r, ) + 6"'(r,)].
(IV) We now consider the external electric

charge distribution to be composed of a single
point source at the origin and an extended charge
distribution, that is, we put

1g'=nan —+Be 0|

and the interaction energy is

(16)

a„,= 4» +—+ exp(- o&
I
a,

I ) + 'exp (- n
I
a., I )

+(I+I) (18)

where 5 is the separation between the two electric
point sources and I/u is a parameter which de-
fines the spatial extension of the background charge
distribution. The external isospin charge density
for expression (17) is

j,=4»n, [5"'(r,) a 5 "&(r,)]
2l-nn, e "n ——

]
%'e now consider the two external point sources
to be in opposite orientations in the isospin space,
in other words, we choose the negative sign in
Eq. (17). If the parameter o. is small enough, the
interaction energy (18) can be approximated as

ff„,=4» --- n(la,
l

—Ia, l)+2 (19)

Note that b la. —a.
l

- lai I

—
I
a.

l
Thus at short

distances, the interaction is dominated by the first
term, the Coulomb force, whereas at large se-
paration of the two point sources, the second term
is more important. It is then possible to have
confinement of two non-Abelian point sources.
Note that when the separation b between the two
point sources increases, the extension of the back-
ground charge distribution must increase corres-
pondingly so that the parameter 0. is small enough
to ensure the validity of the approximation (19).
The H,„, can be treated as the interquark potential
and from the discussion above, confinement of
two point sources can be achieved only if there
exists a background charge distribution.

This cannot lead to the confinement of a non-Abel-
ian electric point source since the interacting
force is zero.

For two electric point sources interacting with
a localized and extended charge distribution,

1
V(x) =—a—+e ™t',

1 2

the int'eraction energy can again be evaluated,

y- +e-ar=1
r

The electric field strength is

(15)
IV. COMMENTS

Finally we make some brief remarks.
(A) For the solutions discussed by us, the mag-
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netic monopole does not interact with the external
electric sources, interaction arises only between
the electric sources. The choice of the function
A(x) in expression (2) a,spy(x) =-1/r has simpli-
fied the YM equations in the presence of external
sources, but resulted in the decoupling of the mag-
netic monopole from the non-Abelian electric
soUl ces.

(8) The Wu-Yang ansatz' has also been used
in Ref. 9 to solve Eq. (1) numerically. In Ref. 9
the function V(x) and the charge density j', are
restricted to have a radial symmetry, while the
function A(x) used there is more general than our
choice here.

(C) It may be of interest to study the case in
which V(x) has a cylindrical symmetry.

(D) All the external. sources discussed here have
finite magnitude.

(E) To attain the confinement of two point source:
as discussed in the example (IV), it is not essen-
tial that the term in V(x) responsible for the back-
ground localized charge distribution be of the
form exp(-o. x). It could be any regular exponen-
tial function of x, e.g. , exp(-o.r'). However, it is
necessary that the parameter n be sufficiently
small. The confining force will come into play
only if the separation of the two sources as well

as the size of the background charge distribution
are large.

(F) The expression (6) is not the only one which
can decouple the YM Eqs. (1) into two independent
equations. The following ansatz will also perform
the same job:

A 9 - ~ ci3~ V(x) Ac —
JOSEY

x x 1
(20)

where p'=x, '+x,'. Instead of Eqs. (15a) and (15b),
one now arrives at

j;.= —6~—& „is,.(6(x,)6(x,)),2m
(2la)

J'

gC —
g g

~ X 3
0 A)3

p
(21b)

(22)

As before the function V(x) will determine the
charge density j;(x) and the non-Abelian electric
field

(23)

In this case the magnetic field is due to an infinite-
ly long solenoid of infinitesimal cross section,
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