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A recently proposed topological theory of strong interactions is extended to electromagnetism. This extension is
constructed so that, for reactions involving only leptons and photons, the topological expansion coincides with the
usual perturbation expansion of QED. The lowest term in the topological expansion corresponds to pointlike
elementary hadrons (as well as leptons); hadronic structure appears in nonleading topological terms. A natural
explanation emerges for the quantization of electric charge and for the observed charges of leptons and hadrons.
Fractional .charges nowhere appear even though there is a notion of quark-photon coupling. No topological
explanation has yet emerged for the zero photon mass or for the value of the fine-structure constant.

L. INTRODUCTION

There has recently been proposed a theory of
strong interactions based on an S-matrix topo-
logical expansion.! Components of the expansion
are associated with two-dimensional surfaces and
are ordered according to topological complexity
or “entropy”; all components are “connected
sums” of zero-entropy components. This paper
describes an extension of topological particle
theory to electromagnetism, achieved by asso-
ciating a selected set of “minimum-entropy”” topo-
logical components with “elementary” single-pho-
ton amplitudes. Minimal electromagnetic com-
ponents cannot be obtained by connected sums
from zero entropy; but any minimal amplitude is
determined by a single universal parameter —the
elementary unit of electric charge—and all higher
electromagnetic components are to be obtained
by connected sums from minimal components.

Our theory describes the electromagnetic inter-
actions of leptons as well as hadrons and we con-
jecture that it reduces to perturbative (Feynman)
quantum electrodynamics (QED) when hadrons are
ignored. That is, the components of a Feynman-
diagram lepton-photon expansion can be placed in
correspondence with lepton-photon components of
our topological expansion. Topological theory
assigns to leptons a representation similar to that
of the “quark” constituents of hadrons, but sig-
nificant differences occur in our theory between
hadron-photon and lepton-photon interactions.

Electric-charge-related highlights of topological
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theory have been described in a previous short
paper,? an explanation there being given for the
electric charges of both leptons and hadrons. This
part of the story, being essential to the complete
electromagnetic framework, will be repeated here
but the bulk of this paper will concentrate on fur-
ther issues, some of which we sketch now to pre-
pare the reader.

A feature of topological theory is the appearance
at the zero-entropy base of a relatively small
number of “elementary” hadrons. (Most physical
hadrons have no elementary counterpart and owe
their existence to higher-order topologies. An
example is the deuteron.) At the minimal elec-
tromagnetic level these elementary hadrons, like
elementary leptons, are electromagnetically
“structureless” —the coupling of each to a photon
being characterized entirely by its electric charge
together with its spin and energy-momentum. (In
Lagrangian field theory the analog would be “point
coupling”.) The observed electromagnetic struc-
ture of physical hadrons, as for physical leptons,
arises from higher-order topology. The reader
accustomed to the idea that a baryon is built from
three quarks and a meson from a quark-antiquark
pair may be puzzled by the notion of “structure-
less” hadrons. It is necessary in this connection
to realize that fopological quarks, while carrying
electric charge and spin, do nof carry energy and
momentum. If such a concept is to achieve mean-
ing in topological theory it will be as an approxi-
mation associated with high entropy. As empha-
sized in Ref. 1 the low-entropy aspects of topo-
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logical theory are complementary to perturbative
quantum chromodynamics (QCD)—which is mean-
ingful at high transverse momentum or high ¢* for
intermediate photons. Low entropy, roughly
speaking, means low ¢%; only there is it useful

to focus attention on leading terms of the topologi-
cal expansion.

Topological quarks and elementary leptons are
associated with certain triangles on a triangulated
“quantum surface”, but not all quantum triangles
correspond to quarks or leptons. Baryon number
is carried by “core triangles” and in our theory
these core triangles must also carry electric
charge (although no spin). Photons are coupled
not only to quarks and to leptons but also to core
triangles, and the rules for core-photon coupling
constitute an essential aspect of the theory to be
described in this paper. Also essential is the
topological representation of photon spin and parity
or, equivalently, of “vector currents.” This rep-
resentation will be achieved through topological
orientations already introduced for strong inter-
actions.

A distinction between electromagnetic and
strong-interaction topology is the occurrence
within the latter of zero-entropy conéractions that
blur meaning for the number of “intermediate”
elementary hadrons. Because of contractions,
single hadrons and multihadron resonances are
often topologically indistinguishable. This char-
acteristic of strong interactions leads to quark
“confinement”, i.e., to the impossibility of as-
sociating a single triangle with a hadron or,
equivalently, of associating energy-momentum
with an individual quark triangle. Conversely,
the absence of contractions from electromagnetism
not only allows association of certain single tri-
angles with leptons but means that intermediate
leptons and photons never disappear from the
topology. Any lepton-photon Landau discontinuity
graph generated by a connected sum may imme-
diately be associated with a Feynman amplitude
graph. At the same time, because our theory de-
scribes simultaneously leptons, photons, and
hadrons, readers should not expect to be able to
translate the entire content into familiar Feynman-
~diagram language. Energy-momentum is not car-
ried by individual quarks, and intermediate had-
rons are often invisible within the topology.

II. LEPTON AND PHOTON AREAS
ON THE QUANTUM SURFACE

As in Eq. (1) of Ref. 1, and maintaining the same
notation, we postulate the topological expansion of
a connected part M, in a basis of “elementary
particles”:

Mfizz: Mg - (2.1)

K

The collection of elementary hadrons described

in Ref. 1 is now to be augmented by elementary
leptons and photons, but the topological index 7
and the order index x retain their original mean-
ing. All aspects of the topology described in Ref.
1 are maintained; no further features will be
needed. It is necessary, however, to specify

a priori the areas representing elementary leptons
and photons on the quantum surface. Here we
allow ourselves to be guided by experiment as
well as by consistency requirements. We do not
yet know how to deduce the existence of photons
and leptons purely from consistency. Put dif-
ferently, we are not proposing to explain the value
of the elementary electric-charge unit, and set-
ting this parameter equal to zero would effectively
eliminate photons and leptons from the theory.

We are also at this stage not explaining the zero
photon mass. ’

Given the success of previous theories which
assign a parallel status to quarks and to leptons,
it is natural to postulate that a lepton, like a quark,
corresponds to a single “peripheral” triangle on
a quantum surface. For economy and for defi-
niteness we propose that, standing alone, a lep-
ton triangle is indistinguishable from a quark tri-
angle. There is a clockwise or anticlockwise
orientation, and the triangle is cut by the classi-
cal belt (the boundary of a classical surface )
which passes through one vertex and the opposite
side. Each of the two edges not cut by the belt is
oriented (Fig. 24 of Ref. 1).

The difference between quarks and leptons arises
from the fact that lepton areas on the quantum
surface, when combined into multiparticle areas,
do not admit contractions. The contraction re-
quirement for hadron areas demands at least two
triangles to build a momentum-carrying particle
(Sec. VI of Ref. 1), but a single triangle can rep-
resent a lepton. The positions of Landau-graph
ends along the belt reflect the distinction. The
belt always divides into particle pieces with one
Landau arc ending within each piece. A hadron
arc ends on a belt-intersected edge separating
two triangles within the hadron area, -while a
lepton arc ends inside the triangle that represents
the lepton. Thus the end of a hadron Landau arc
is always “shared” by two adjacent quantum tri-
angles, while a lepton-arc end “belongs” to a
single triangle.

It is possible to expand the zero-entropy ordered
Hilbert space (Secs. V and VI of Ref. 1) to admit
single-lepton disk channels, which constitute triv-
ial sectors. Each single-triangle channel disk
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can combine with its antidisk to cover a sphere
representing a lepton propagator, but at zero
entropy no lepton interactions are possible. Fur-
thermore, no connected sums based on zero en-
tropy can generate lepton interactions: A con-
nected sum of 2 zq’s each covered by two tri-
angles cannot produce a %, covered by more than
two triangles. In order to have lepton interactions
‘we must first have photons.

An experimental characteristic of a photon is its
lack of the internal quantum numbers (baryon num-
ber, lepton number, and flavor) that are carried
by bounded areas of the quantum surface. We
therefore represent the elementary photon as a
complete sphere, disconnected from the remainder
of the quantum surface and without boundary. We
maintain the general patchwise orientation of T,
by dividing the photon sphere into two triangles of
opposite orientation but because there is no photon
perimeter there is no edge flavor. We assume
that each of the two triangles building a photon
sphere is cut by the belt in the manner charac-
teristic of peripheral triangles rather than core
triangles, with the photon Landau arc ending on
the belt-intersected edge (not on the trivial ver-
tex), as for a meson. Since any zero-entropy T,
is a single sphere, injection of photons into the
topology raises the entropy.

Again allowing ourselves to be guided by more
or less successful previous theories, we proceed
next to postulate a set of minimum-entropy sur-
face pairs %= (3™, £2™) to represent the
interaction of single photons with elementary had-
rons and leptons. We here state the rules for
0 EM

(@) %™ consists of two disconnected spheres,
one photon sphere and one zero-entropy hadron
or lepton sphere. (Photon and lepton spheres each
contain two triangles; a hadron sphere contains
at least four triangles.)

(b) The two belt segments on the photon sphere,
each a diameter of one triangle, have opposite
ortho-para orientation (associated with the classi-
cal-patch orientation).

(c) On the hadron or lepton spheres the cor-
responding belt orientation is uniform, as at zero
entropy, except for one triangle within which the
belt orientation is reversed. This exceptional
triangle may be either a core triangle or a periph-
eral triangle.

It should be recalled that strong-interaction
topologies always have a uniform ortho or para
orientation throughout any hadron disk, regard-
less of how high the entropy. The orientation re-
versal of a single triangle in an elementary elec-
tromagnetic interaction represents a kind of “lo-
cality”, although this is far from the space-time

locality of field-theoretic interactions. Energy-
momentum is still carried by the hadron as a
whole (or at least by pairs of triangles); it is the
spin-parity content that is “locally” affected by
the photon.

{II. MINIMAL ELECTROMAGNETISM ON X,
FOR MESONS AND LEPTONS

In the theory described in Ref. 1 any quantum
surface T, is both oriented and patchwise oriented,
and the same is true for each sheet of the classi-
cal surface ©,. We would like to maintain these
properties for electromagnetism because they
relate to P, C, T symmetry (Appendix D of Ref. 1)
as well as to the definition of Landau connected
sums (Appendix B of Ref. 1). The global orienta-
tion of £, called HR (Harari-Rosner) orientation,
is coupled to the orientations of ¥, through HR
arcs—or “quark lines” —which connect mated
pairs of peripheral triangles on T4, each quark
line being given a conventional direction from an
anticlockwise triangle toward a clockwise tri-
angle. [We adopt the convention that the global
orientation of T, is “clockwise”. To say that the
orientation of a triangle is clockwise (anticlock-
wise) really means that it agrees (disagrees) with
the global orientation.] As an introduction to the
classical surface 2 associated with minimal
electromagnetism, let us look at an analogous
purely mesonic (strong-interaction) %o, belong-
ing to a ¥ where ¥, consists of two spheres and
the belt is correspondingly disconnected. (This,
of course, is a nonzero-entropy ¥.) The classi-
cal surface with two boundary components is a
single-sheet cylinder, as will be the case for any
ZZ'EM where the photon couples to mesons or to
leptons.

Consider a four-meson (4, B, C, D) connected
part with three mesons (4, B, C) on one sphere and
a fourth meson (D) on the other. Each meson is
built from two quantum peripheral triangles
(quarks) so the total number of belt segments is

FIG. 1. (a) Two-boundary (cylindrical) classical sur-
face for a four-meson interaction. Dashed lines are
Landau arcs. Dotted lines are HR arcs. (b) The cor-
responding thickened Landau graph [tk(L)].
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eight, six forming one boundary and two forming
the other. The classical surface is shown in Fig.
1(a), together with the embedded single-vertex
Landau graph and the HR arcs whose directions
correspond to a clockwise HR (global) orienta-
tion of T, as the figure is drawn. (The figure
may of course be “turned over” so as to make
the global orientation appear anticlockwise.) As
explained in Ref. 1, a closed Landau loop is al-
ways present on a strong-interaction cylinder.
Figure 1(b) shows the corresponding thickened
Landau graph, where a pair of oppositely directed
quark lines runs along the boundaries of each
strip that embeds a Landau arc. Because only
mesons are involved, the topologies 1(a) and 1(b)
are almost equivalent. When baryons or baryon-
iums occur there continues to be a well-defined
HR orientation on each separate sheet of 3, as
well as on the thickened Landau graph, although
the relation of # (L) to = is not as simple as in
Fig. 1.

The quantum surface %™ of a reaction de-
scribing three mesons and a photon consists of
two spheres, just as in the foregoing example.

A %™ that couples a photon to three mesons
(4, B, C) then should look similar to Fig. 1(a),
with meson D replaced by the photon, except that
one does not expect the closed Landau loop in an
elementary topology. In particular, if the three
mesons A, B, C were replaced by two leptons
one would expect to be describing the basic am-
plitude of quantum electrodynamics, whose Feyn-
man graph is a cubic tree (Fig. 4, below). Since
quarks are supposedly similar to leptons, and
Landau graphs are closely related to Feynman
graphs, we anticipate {7ee Landau graphs to be
embedded on £2-™M,

But if the Landau graph is a tree the HR arcs
of Fig. 1(a) cannot lie along the boundary of .t (L).
An arc with such a capacity must connect the two
boundary components; an HR arc never couples
two disconnected components of £,. It further-
more seems unnatural to attach HR arcs to a pho-
ton boundary. The photon’s triangles are not
peripheral and are not assigned spin and flavor —
quantities attachable to quark lines. The photon
triangles are nevertheless oriented, so we pro-
pose attaching to each a directed arc lying in Z,
the direction being into T, for the anticlockwise
quantum triangle and out of T, for the clockwise
triangle, just as for a hadronic HR arc. We shall
refer to this new kind of object as an “active
charge arc”; the connection with electric charge
will be discussed below. In contrast to HR arcs,
which always connect mated quantum triangles,
an active charge arc connects two oppositely ori-
ented quantum triangles that are not mates. How-

ever, active charge arcs always occur in pairs,
and the other member of the pair will connect the
mate of the first triangle to the mate of the sec- .
ond. '

Figure 2(a) shows how all this works in an exam-
ple parallel to Fig. 1(_a). Notice that the Landau
vertex to which the photon is attached is cubic
(three incident ares). Such a feature we postulate
for any 3™ the reasons relate to gauge in-
variance and will be explained later, but one of
the external particles must always be given a
special role on 3™, It is particle B that here is
directly coupled to the photon, and within B’s
quantum area it is the triangle labeled ¢ that is
“directly activated” by the ortho-para reversal
described above in Sec. II. The mate of ¢ is neces-
sarily involved in the photon coupling, but indi-
rectly. .

Figure 2(b) shows the thickened Landau graph
that accompanies 2(a). Notice how appropriately
directed active charge arcs lie along botk bound-
aries of the photon Landau arc and along one
boundary of the Landau arcs belonging to mesons
whose triangles have been “activated”. Because
of the convenience of attaching spin and flavor to
quark lines, it is desirable for quantum-number
bookkeeping to find a place on the thickened Landau
graph for the “missing” ¢f, active quark line. A
natural convention is shown in Fig. 2(c), showing
two “parallel” arcs (the same direction)—an active
charge arc and an HR arc—attached to each mem-
ber of the mated ¢f active triangle pair. The no-
tion of photon coupling to one quark line is now
manifest. [Figure 2(c) includes two “spectator”
quark lines.]

Although the information conveyed by #:(1), when
the active quark line is embedded, is the same as

FIG. 2. (a) Minimum-entropy classical surface (%™ )
for interaction of a photon with three mesons. The di-
rectly active quantum triangle belongs to meson B and
is labeled t. Wiggly lines are charge arcs. (b) The cor-
responding t2(L). (c) The th(L) including the HR arc
attached to the directly active quantum triangle.
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that of 3, the topology is different. The two-
dimensional surface of Figs. 2(b) or 2(c) is “pla-
nar” —with a single boundary component, while
that of Fig. 2(a) is “cylindrical” —with two bound-
ary components. The closed nature of the photon
quantum surface is not manifested by (L), al-
though it may be inferred from the feature within
Fig. 2(c) that the active quark line crosses the
photon Landau arc. A crossing of Landau and HR
arcs never occurs on x..

It is perhaps surprisixig but nevertheless true
that the entire content of »2-*M [e.g., Fig. 2(a)]
is implied by s%™. Identification of the active
triangle on the hadron sphere completely deter-
mines the surface pair % . We shall explain
in Sec. VII the spin-parity structure of an ele-
mentary electromagnetic interaction, as implied
by the ortho-para orientation reversal of the active
triangle.

The reader may wonder why we have not chosen
to describe 3™ for two-hadron, one-photon am-
plitudes. Are these not simpler to discuss; why
the extra hadron? The reason is the need to pick
out one triangle on T,. Adding an extra hadron
allows the two-vertex Landau graph to indicate the
choice. Once ortho-para structure is included in
=2 BM the identity of the special triangle will be
manifested though the classical surface, even in
the two-hadron situation. An alternative device
is to recognize that the Landau graph for »° ™
always has fwo vertices, one of these being trivial
when only two hadrons are involved. We may then,
for example, represent photon coupling to one
quark within B of an A, B meson quantum sphere
by Fig. 3. The trivial vertex looks unnatural here,
but once ortho-para structure is included, trivial
Landau vertices will acquire clear sign.ificance;

Before extending the foregoing principles to
baryons and baryoniums, it will be necessary to
broaden the role of charge arcs—to include in the
topology “passive” charge arcs that couple mated
triangles on £,. It is possible, however, im-
mediately to consider the coupling of photons to
leptons. Here the counterpart of Fig. 3(a) is Fig.
4(a). The HR arc should now be described as a
“lepton line” rather than a quark line. The lep-
tonic sphere is covered by only two triangles and
the lepton Landau arcs end in the triangle interi-

<>

(a)

(b)

FIG. 3. (a) Z2FM for a pair of mesons with two Landau
vertices, one trivial. (b) The corresponding ta(L).

(a)

FIG. 4. (a) Z2FM for a charged lepton pair. (b) The
corresponding ¢z (L).

ors. In the thickened Landau graph, Fig. 4(b),
lepton arcs are bounded by one lepton line (HR
arc) and one charge arc.

In comparing Fig. 4(b) to Fig. 3(b) an orientation
difference between the lepton line and the active-
quark line is observed. Maintaining the rule that
an active charge arc is directed from an anti-
clockwise triangle foward a clockwise, it is neces-
sary to say that the lepton line is oppositely di-
rected. After developing in the following section
a theory of electric charge, this difference will
be interpretable by saying “charged leptons have
an electric charge opposite in sign to that of
charged quarks.” The origin of the orientation
difference is traceable to the fact that quarks
are “confined” while leptons are not or, equiva-
lently, to the fact that leptons carry energy-mo-
mentum while quarks do not. The Landau arc
lies between the lepton line and the charge arc,
requiring these to have opposite orientation, while
an active quark line and the parallel charge arc
lie on the same side of a hadron Landau arc.

IV. TOPOLOGICAL REPRESENTATION
OF ELECTRIC CHARGE

We have been led to introduce “active charge
arcs” so as to fill a role for thickened Landau
graphs, with respect to photons and particles
coupled to photons, that for mesonic strong in-
teractions is played by HR arcs. Now even for
strong interactions (no photons) if a #4(L) is to be
achieved for baryons and baryoniums, one needs
in addition to HR arcs also arcs connecting mated
core triangles, arcs whose direction runs from
the anticlockwise triangle to the clockwise (Ref.
1, Sec. VIII). Such an arc is not a carrier of fla-
vor and spin, like a quark or lepton line, be-
cause core triangles lack such attachments. Core-
connecting arcs are thus similar in nature to ac-
tive charge arcs except that mated triangles are
connected. It is then natural to postulate that
every quantum triangle has an attached “charge
arc” lying in £,. If this arc connects mates, it
will be characterized as “passive”, otherwise as
“active”. In strong interactions all charge arcs
are passive. Electromagnetic interactions always-
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involve some nonzero number of active charge
arcs; those triangles with passive attached charge
arcs may appropriately be described as “specta-
tors” with respect to electromagnetism.

What about the directions of charge arcs? So
far we have discussed only the case where the
direction is from anticlockwise triangle to clock-
wise; if the charge arc is to lie along the boundary
of a thickened Landau graph and to carry the HR
orientation, then its direction is uniquely deter-
mined. But a passive charge arc attached to a
peripheral hadronic triangle is not needed for the
representation of HR orientation on #(L). Here
the quark line performs that task. We therefore
allow both directions for charge arcs, except when
the charvge avc is needed to vepresent HR ovienta-
tion. Charge arcs connecting core triangles always
are constrained in direction, as are any active
charge arcs that connect nonmated triangles. (The
relaxation of this latter condition permits non-
orientable ¥, and constitutes a promising basis
for a theory of weak interactions.)

A new conserved quantity is implied by the in-
troduction into the topology of directed charge
arcs. Let Ny be defined as the number of clock-
wise triangles whose charge-arc directions are
“out of” T, minus the anticlockwise number whose
charge-arc directions are “in”; then Ng sums
to zero over any ¥,. Because photons can only
couple to triangles whose charge-arc direction
is anticlockwise to clockwise, Ng counts “elec-
trically charged” triangles minus antitriangles.

If the charge-arc direction is reversed, the pho-
ton cannot couple. Peripheral triangles occur in
two varieties, “charged” and ‘“neutral”, while core
triangles are always charged.

The direction of a quark line is parallel to the
charge arc if the quark is electrically charged,
while the reverse is true for a lepton line. If we
associate a directed quark or lepton line in the
conventional (Feynman) way with a “particle” mov-
ing “forward” in time, then an electrically charged
quark carries Ng =+1 while an electrically charged
lepton carries Ng, = — 1. An electrically neutral
quark carries Ny, =0, we cannot represent elec-
trically neutral leptons so long as lepton lines are
required to carry the (global) HR orientation; this
is a physically acceptable situation since, from
the standpoint of strong and electromagnetic in-
teractions alone, neutrinos do not exist. Until
topological theory is extended to weak interac-
tions there is no need to represent neutrinos.

Although this paper is restricted to electromag-
netism, known facts about weak interactions sug-
gest two speculations about further extension of
topological theory: (1) Even if global orientability
of £, is not maintained, and charge arcs are al-

lowed to connect two triangles of the same orienta-
tion, it will still be possible to maintain Ny as a
conserved quantity if the triangle mating pattern
persists. If charge arcs are paired—the two arcs
that end on a mated triangle pair always having
their other ends on a mated pair—then the charge-
arc pair effectively “transports” a definite quan-
tity of Ny,. If both charge arcs point in the same
direction, a quantity N =+1 flows in that direc-
tion. Two oppositely directed charge arcs carry
zero Ng,. (For the theory described in this paper,
the latter situation always obtains.) This specula-
tion about future theory reinforces the natural
postulate that electric charge is proportional to
Ng—one (+1) elementary unit of electric charge
being carried by each clockwise triangle with an
“out”-directed charge arc and -1 unit being car-
ried by each anticlockwise triangle with an “in”-
directed charge arc. The other two possibilities
carry charge zero. One may then look forward to
charge conservation even after global T, orienta-
bility is relaxed.

(2) The spin-parity structure of %™ de-
scribed in Secs. VI and VII, is naturally expressed
through left-handed and right-handed currents
corresponding to ortho- para and para- ortho
transitions, whose definition depends on HR arcs.
It is then likely that if a weak-interaction topo-
logical theory emerges with only left-handed cur-
rents, the spin-parity behavior of leptons and
quarks (rather than antileptons and quarks) will
be similar. We thus expect that if electrically
charged quarks are assigned positive charge, then
the electron and the negatively charged muon and
tau lepton will turn out to be topological leptons
(rather than antileptons.)

It is shown in Ref. 1 that (outgoing) baryon num-
ber B is the number of anticlockwise core tri-
angles minus the clockwise number, so beyond
the electric charge carried by quarks there is
for hadrons an additional charge equal to -B.
Thus the total charge of any hadron is

Q=N, -B, 4.1)

if Neg, is the number of charged quarks minus
antiquarks. The total quark number N, is always
equal to 3B, while the number of neutral quarks

is NquNq—Nach, S0
B=4(N, *+N,,) (4.2)
and
Q=N,, —3(, *N,)
=2N N, . (4.3)

We see from formula (4.3) how the semblance of
fractional quark charges is produced by the core
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FIG. 5. (a) The main sheet of QM for interaction of
a photon with two baryons and a meson. The directly
active quantum triangle is a main-sheet quark belonging
to baryon B. (b) The corresponding t4(L). (c) The
th (L) with the core charge arc replaced by a pair of HR
arcs (diquark).

triangles. .

Let us list rules that have thus far emerged for
minimal electromagnetism.

(A) For each zero-entropy component of the
topological expansion with N-charged triangles
on the quantum surface, there are N components
to £°BM _each coupling the photon to one of the
charged triangles.

(B) Every triangle has an attached directed
charge arc. A hadron triangle is charged if the
charge direction agrees with HR orientation and
-neutral if these directions disagree. The reverse
is true for lepton triangles.

(C) Peripheral triangles may be charged or
neutral. Core triangles and photon triangles are
always charged.

(D) Electric charge (outgoing) in elementary
units is the sum of clockwise minus anticlockwise
charged triangles. Charged quarks have charge
+1 while charged leptons have charge —-1. Had-
rons have charge Ngy — B Electric charge is
conserved.

V. MINIMAL ELECTROMAGNETISM ON Z.
FOR BARYONS AND BARYONIUMS

0,EM

There remains the task of describing ™" when

the photon couples to baryons (four triangles) or
baryoniums (six triangles). Consider first the
coupling to a “main-sheet” baryon quark. The

classical surface is divided into sheets, connected

TOPOLOGICAL THEORY OF ELECTROMAGNETISM 2293

‘FIG. 6. The two sheets of =3*™ containing the Landau
graph when the photon couples to a baryon quark not on
the main sheet (i.e., within the diquark).

through “junction lines”, but at zero entropy the
entire Landau graph resides on a single main
sheet. One of the three quarks within a baryon is
located on this main sheet, and in Fig. 5(a) we
show the structure of the main sheet of 2™ when
the photon couples to this quark in a photon, bary-
on-A, baryon-B, meson-C amplitude. The pattern
is similar to that of photon coupling to a meson
quark except for the passive core-charge arc,
which as discussed in Ref. 1 may be interpreted
as a “diquark”. Figure 5(b) shows the thickened
Landau graph, which may be compared to Fig.
2(c). If desired, as explained in Ref. 1, it is pos-
sible to replace the passive core-charge arc on
th(L) by the two quark lines corresponding to the
diquark. This device is shown in Fig. 5(c).

When the photon couples to one of the two quarks
within the diquark (which do not lie on the main
sheet of =) it is necessary to detour the baryon
Landau arc via two “glitches,” as shown in Fig.

6, onto the sheet where the electromagnetically
active quark resides. In this case the correspond-
ing tn(L) cannot easily represent all the informa-
tionon £,. We nevertheless remark that, on
th(L), photons interacting with any of the three
quarks couple to the same side of the baryon as

do mesons.

It may at first sight seem strange that an “ele-
mentary”’ photon interaction requires glitches,
but when we consider the photon spin and parity
it will be found that £2-* always is divided into
two ortho-para patches—another feature that does
not look elementary. Electromagnetism unavoid-
ably requires some topological complexity. For

(a)

FIG. 7. (a) The main sheet of Zg’EM when the photon
couples to a baryon core triangle. (b) The corresponding
th(L).
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(a) (b)

FIG. 8. (a) The main sheet of zngM when the photon
couples to a baryonium core triangle. (b) The cor-
responding th(L). Here the diquark belonging to the
active core triangle is represented by the core charge
arc.

strong interactions, glitching and ortho-para
patching are among the simplest and quantitatively
most important forms of topological complexifica-
tion, and their appearance at the lowest level of
electromagnetism is not an indication of incon-
sistency. Perhaps it is a hint that in some future
theory electromagnetism will not be postulated

on an a priovi basis.

No glitches are required for when the pho-
ton couples to a core triangle, as shown by Fig.
7(a). The thickened Landau graph of Fig. 7(b) re-
veals the core-coupled photon attached to the op-
posite side of the baryon with respect to mesons.
This is the side of the baryon to which baryoniums
may be attached in a #4(1).

The rules for minimal photon coupling to (six-
triangle) baryoniums are analogous to the fore-
going rules for baryons. If coupling is to either
core triangle, no glitches are needed, as shown
by the three-baryonium, one photon ™ main
sheet exhibited in Fig. 8(a). The corresponding
th(L) is shown in Fig. 8(b). In contrast, photon
coupling to any of the two quarks or two antiquarks
requires a pair of baryonium glitches, as shown
in Fig. 9. It is noteworthy that baryonium glitches
never occur in any strong-interaction topologies.

0,EM

VL. ORTHO-PARA PATCHING OF %M

Topological representation of spin and parity in
strong interactions involves “ortho-para’” patch-
ing of .. Each 3. is divided into patches of al-
ternating orientation. A patch whose orientation
agrees (disagrees) with HR orientation is described

FIG. 9. The two sheets of 2™ containing the Landau
graph when the photon couples to a baryonium quark.

as “ortho” (“para”). Adjacent patches are sepa-
rated by “transition arcs” whose orientation is
induced by the patch orientations; belt segments
have a corresponding induced ortho-para orienta-
tion. A zero-entropy T, consists of single-patch
sheets which are either all ortho or all para. [It
has subsequently been found that, even at zero
entropy, each quark can be ortho or para indepen-
dently. See G. F. Chew, J. Finkelstein, and

M. Levinson, Phys. Rev. Lett. 47, 767 (1981).]

Among the leading strong-interaction correc-
tions to zero entropy are connected sums that glue
together ortho and para classical surfaces—with
introduction of a transition arc that cuts certain
HR arcs. The Stapp spin rules®*—expressed
through HR arcs as described in Appendix B—as-
sociate with ortho -~ para or para- ortho transi-
tion a definite quark or lepton spin dependence
that has the structure of a right-handed or left-
handed vector “current”. It is then natural to
guess that, in any zg'EM where a photon couples
to a peripheral triangle, the associated HR arc is
cut by a transition arc “tied” to the photon. At
the same time photon “factorization” —the inde-
pendence of photon identity from the system to
which it couples—demands a general rule for
tieing transition arcs to photons. We now propose
such a rule, which in Appendix B and Sec. VII is
verified to yield the standard (Dirac) vector cou-
pling to leptons.

Any $%EM may be seen as an ortho or para zero-
entropy Z)g into one sheet of which a photon bound-
ary is inserted. The photon boundary consists of
two belt segments each coupled by an active charge
arc to a triangle on the lepton or hadron quantum
surface; one of these triangles, which we shall
call the “directly active” triangle, is to have its
ortho-para orientation reversed. We thus postu-
late that attached to the corresponding photon
boundary segment there is a patch-—whose orien-
tation opposes that of the rest of the sheet—which
also attaches to the directly active triangle. The
four-sided patch perimeter consists of two belt
segments, one belonging to the photon and the
other to the directly active triangle, plus two
transition arcs connecting the ends of the photon
segment to the ends of the hadron or lepton seg-
ment; the charge arc connecting these segments
lies within the patch.

A feature of strong-interaction topology is that
each patch contains at least one Landau vertex.
We perpetuate this rule by drawing the transition
arcs so as to enclose the photon vertex together
with the photon Landau arc. We may then refer to
a minimum-entropy photon as “ortho” or “para”
depending on the patch containing its Landau arc,
just as we do for zero-entropy particles. Figure
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(6) (7a)

(8a)

FIG. 10. Transition arcs (dotted lines) attached to
Eg'EM presented in the indicated earlier figures for
photon coupling to hadrons. Charge and HR arcs are
here omitted.

10 shows the patch structure for each of the had-
ron examples of £3'*™ previously discussed. We
have here, for clarity, omitted HR arcs and charge
arcs, but it may be verified that when the directly
active triangle is peripheral, the attached HR arc
is cut by a transition arc (see Appendix B). Notice
in the patched version of Fig. 3(a) that the trivial
Landau vertex is the only vertex inside its patch.
Patch structure endows trivial vertices with sig-
nificance.

The rules for patching =2 when the photon
couples to a lepton pair are the same as the fore-
going. Again a trivial vertex is needed, as shown
in Fig. 11. We shall see that for quantum electro-
dynamics (QCD)—the sum of lepton-photon topo-
logies with neglect of hadrons—the trivial vertex
is inert and might be ignored; also for many com-
putations the net effect of ortho-para patching is
simply to generate vector coupling. These fea-
tures nevertheless are needed for consistent enu-
meration of different topological components in a
complete theory. By keeping them we maintain
the uniform principle that each component of =M
couples a photon to one particular triangle on the
lepton or hadron quantum surfaces. Also uniform
is the statement that every >%* has two Landau
vertices. The only topologies in the topological
expansion with a single Landau vertex are zero-
entropy =°.

VILI. CLASSICAL ELECTRIC CHARGE

Associated with each topology %™ there is an
amplitude —more precisely an M function—that
depends analytically on particle energies and mo-
menta. All higher electromagnetic topologies are
to be constructed by successive Landau connected
sums starting from the set of =% and £°% each
sum corresponds to a discontinuity formula, which
allows calculation of the amplitude belonging to
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(4a)
FIG. 11. Transition arcs when a photon is attached to
a lepton propagator.

the higher topology. But we need a prescription
for the amplitudes belonging to %™, The pre-
scription to be proposed below specifies each ele-
mentary amplitude in terms of a dimensionless
parameter ¢, which will be seen to determine the
“classical” electric charge of each particle—i.e.,
the force exerted on the particle by a classical
electric field of unit strength. Each %™ ampli-
tude will be directly proportional to e, so if this
parameter were set equal to zero all electro-
magnetic effects would disappear. Experiments
yield a small value for ¢, a fact harmonious with
assignment to each £°E™ of nonzero entropy (two
quantum surface components, two classical
patches, two Landau vertices), but we do not yet
understand how to calculate ¢. In this respect
out present theory of electromagnetism is in-
complete.

What is the precise definition of the classical
electric charge of a zero-entropy elementary par-
ticle B—corresponding to some N-triangle quan-
tum disk? The electric charge @, of any particle
B determines the value taken by a (B,y, v, Bim) am-
plitude in the limit as photon energy-momentum
approaches zero. With the convention that a mo-
mentum four-vector p; describes an outgoing par-
ticle when the energy is positive and an ingoing
particle when the energy is negative, so that in
the latter case the physical energy-momentum is
_pi} the amphtude for (Bout(pz))'}/(q)y Bin(pl))’ with
p1+p.+q=0, in the g~ 0 limit is equal to

Qelp—-p)-A, (7.1)
where A is the (unit) photon polarization four-
vector, satisfying q-A =0. Now at the minimal
topological level this amplitude is a sum over N
distinct £°FM amplitudes, each corresponding to
a different “directly active” triangle on the (B,,,
B;,) quantum sphere. Guided by formula (7.1) we
shall require that if the directly active triangle
has quantum electric charge N, (0, + 1) then the
=M amplitude for (B(p,),y(¢)Blg,)) has the g- 0
value

eNéhpi'A, (72)
where p, is the (conventional) momentum of the
particle to which triangle i belongs. It follows
from (7.1) and (7.2) that
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N/2 .
Qa=eﬁ_; Néns (7.3)

where the sum runs over the triangles in the out-
going particle disk. The corresponding sum over
ingoing triangles is equal to —Q,. For an arbi-
trary process, with or without photons, the gener-
al conservation of N, evidently implies the general
conservation of classical electric charge.

In Appendix B the Stapp rules® for topological

spin dependence are extended to electromagnet-
ism, with results for =°PM(B(p,),y(q)B(p,)) that
we now state in a form as close as possible to
Feynman rules with four-component Dirac spinors.
Each of the N elementary amplitudes is a product
of N/2 factors, one for each mated triangle pair
on the leptonic or hadronic quantum surfaces.
One factor belongs to the active pair, all the oth-
ers to spectator pairs. (Each active pair appears
in two different elementary amplitudes.) Specta-
tor factors are the same as at zero entropy.

Suppose that we label a mated triangle pair
(i',1) with the HR-arc direction running from i to
i’ for peripheral triangles (anticlockwise to clock-
wise for quarks, the reverse for leptons). A spec-
tator core-triangle pair simply gives a factor 1
while a spectator peripheral-triangle pair gives a
factor

761 £ys)ul), (7.4)

with #(;)u() =1, when ; is incoming and ;' outgoing.
The 1+, applies to ortho and 1 -y, to para. Ap-
pendix B may be consulted for details about the
notation x(;). Because 7ysu-0 as g 0 all spec-
tator factors thus approach 1 in the g - 0 limit.

What about an active core-triangle pair? Guided
by gauge invariance and analyticity requirements,
we postulate that the factor here is simply equal
to (7.2) even for ¢ different from zero. The sum
of the fwo amplitudes belonging to the two mem-
bers of a mated core pair then has a factor

eNi(p; —p)-A, (7.5)

where N, belongs to the core triangle attached to
the particle with (conventional) momentum p}.
Because g = - p;, — p; while p,,® = p,* = (mp)?, where
my is the zero-entropy hadron mass, it follows
that (7.5) satisfies the gauge condition of vanish-
ing when A is replaced by g¢.

Finally we come to an active peripheral -tri-
angle mated pair. If the HR direction runs fo-
ward the directly active triangle from its mate
(see Appendix B) then the factor is

emING ) 13y Lo (Leygut) (7.6)

when 7 is incoming and ¢’ outgoing. If the directly

active triangle is the one from which the HR arc
is directed, then the factor is

—emNE T £y R ey )ul@ . (1)

Each of these factors is equal to (7.2) in the g~ 0
limit, and if the two factors are added we find

2myeNL TG Yy - Au(i), (7.8)

the familiar Dirac form that correctly vanishes
if A is replaced by ¢q. In all electromagnetic com-
putations the factors (7.5) or (7.8) may be im-
mediately inserted as the contribution from an
active triangle pair. )

VIII. QUANTUM ELECTRODYNAMICS
(PHOTONS AND LEPTONS)

A natural question concerns the connection be-
tween photon-lepton quantum electrodynamics
(QED) and the nonhadronic components of the topo-
logical expansion. Although proof is lacking, we
shall now argue that precise correspondence prob-
ably exists between Feynman amplitudes—each
associated with a distinct Feynman graph—and
topological lepton-photon amplitudes.

A persuasive case has long ago been made*-®
that the Feynman QED expansion in the Feynman
gauge can be generated from S-matrix unitarity-
analyticity considerations provided one assumes
that each S-matrix connected part is expandable
in powers of ¢:

oo

>

"M, (8.1)
¢ n=Np+Ni=2

where N; and N, are, respectively, the total num-
bers of particles in initial and final channels. The
discontinuities of M involve products M%7 p{n"
where »n’ +n” =n, with n’ and n”+0 so that ' <n
and n” <n. Successive terms in the expansion can
then be calculated through dispersion relations
from lower-order terms, the whole structure
flowing from the two-lepton, one-photon lowest-
order amplitude proportional to e. It has further-
more been shown in a collection of examples, and
with no counterexamples, that M{? as calculated
from S-matrix unitarity-analyticity is identical
with M}';) as calculated from Feynman graphs;
renormalization is straightforward through dis-
persion relations. The obstacle to a general
equivalence proof is inadequate understanding of
the structure of the complex-momentum Riemann
surface when the number of variables becomes
large.

Now the leading lepton-photon components in
the topological expansion have been seen in Sec.
VII to be identical with the basic Feynman vertex.
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This fact justifies our using the same symbol ¢

in formulas (8.1) and (7.8). Since higher-order
topological components are to be generated by
S-matrix unitarity-analyticity, it is then imme-
diately plausible that the topological sequence can
be placed in correspondence with the expansion
(8.1). This expectation becomes stronger when one
realizes that thickened Landau photon-lepton
graphs, minus trivial vertices or other ortho-para
structure, stand in one-to-one correspondence
with Feynman graphs. The only contractions al-
lowable in electron-photon topologies generated
by connected sum from £°EM are replacement
along a lepton propagator of two adjacent trivial
vertices of the same orientation (ortho or para)

by a single trivial vertex of that orientation. So

if a lepton propagator is understood as summing
over all numbers of ortho-para trivial vertices
along a lepton Landau arc (equivalent to omitting
trivial vertices from the topology), there is pre-
cise correspondence between Feynman graphs

and lepton-photon topologies within our topological
expansion.

An interesting feature of this correspondence
relates to the distinction between ordinary Feyn-
man graphs and ordered Feynman graphs—where
the three arcs incident on each vertex stand in a
definite cyclic sequence. Thickened Landau graphs
have ordered vertices, while an ordinary Feynman
graph gives no significance to vertex order. Fig-
ure 4(b) shows, however, that only one lepton-
photon vertex order is allowed in a thickened Lan-
dau graph. When drawn on a plane, photons are
always emitted from the “same side” of a lepton.
With such a rule any ordinary Feynman graph
translates into a unique ordered Feynman graph.

Another interesting question connected to trivial
Landau vertices relates to parity doubling. At
zero entropy each lepton and also the photon ap-
pears in two forms, ortho and para, just as do
hadrons?!; the linear combinations 0+P and 0 - P
have opposite intrinsic parity. As shown by Stapp,®
superposition of components in the topological
expansion then eliminates O — P states, both ex-
ternally and internally. It nevertheless seems
impossible to formulate topological theory di-
rectly in terms of 0 +P, even though Lagrangian’
theory (QED) succeeds in so doing. On the other
hand, topological theory explains why only one
intrinsic parity, and not both, finally is physically
manifested, a feature arbitrarily inserted into
QED. It of course looks promising for a future
theory of weak interactions to have already at zero
entropy an ortho-para topological base.

Returning to the expansion (8.1), which is really
in powers of o =¢® for any given amplitude A,,
we remark that each power of ¢ belongs to an un-

contractible photon-vertex pair. No photon vertex
can ever be removed by contraction, so the num-
ber of photon vertices is effectively an entropy
index. This association of the fine-structure con-
stant with entropy growth suggests that the small
value of ¢ ultimately will be related to amplitude
suppression through phase interference since for
strong interactions the smallness of high entropy
components is so understood.® Qur present the-
ory, however, accepts an arbitrary value for o,
just as does QED.

Assuming that individual Feynman-graph am-
plitudes are in fact equal to topological ampli-
tudes (summed over trivial Landau vertices and
over ortho-para), one cannot avoid the idea that
Feynman off-mass-shell rules might generally
be invoked for evaluating higher components of
the topological expansion. Each zero-entropy am-
plitude corresponds to a single Landau vertex and
cannot itself be perturbatively evaluated, but per-
haps the special singularity structure attached to
zero entropy permits a unique off-mass-shell sig-
nificance for ordered vertices with any number
of incident arcs. In the following section we dis-
cuss how such a possibility relates to $°- when
hadrons are involved..

IX. MORE GENERAL HADRON TOPOLOGIES

We have prescribed explicit gauge-invariant
amplitudes for »°'" couplings of a photon to two
elementary hadrons or to two leptons. Section
VIII has discussed how more general topologies
not involving hadrons, either externally or in-
ternally, correspond to uncontracted (apart from
adjacent trivial vertices) connected sums built
from $° and %™ put if any hadrons occur, at-
tention must be paid to the possibility of (non-
trivial) contractions.

A simple example is the Fig. 12 connected sum,
expressed here through thickened Landau graphs,
of a zero-entropy (one vertex) three-meson 3°
with a three-meson, one-photon (two-vertex) &
The orientation of the transition arc corresponds

0,EM

FIG. 12. A connected sum leading to the =OEM of Fig,
3. The solid line is a transition arc, wiggly lines are
charge arcs, dotted lines are HR arcs, and dashed lines
are Landau arcs. The symbols O and P designate ortho
and para patches, inside each of which there is a Landau
vertex.
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FIG. 13. A connected sum leading to the T0:EM of Fig.
2 after contraction of the adjacent para vertices to a
single vertex.

to an ortho-photon coupling to mesons that are

all para, as indicated by the O, P labels on the
vertices. The contraction rules of Ref. 1 specify
that the closed loop generated by this connected
sum should be erased, leading to the two-vertex
=™ of Fig. 3. Thus the trivial meson vertex of
Fig. 3 is to be understood as representing an in-
definite number and assortment of intermediate
hadrons whose topology is contractible in the man-
ner exemplified by Fig. 12. Any purely hadronic
vertex has such a character. In contrast a vertex
to which a photon attaches is always “simple” —
never combinable by contraction with other ver-
tices and always interpretable as interaction of
an “elementary” photon with a pair of “elemen-
tary” particles.

Maintenance of gauge invariance will require
mixing different topological complexities, once
one goes beyond two-particle, one-photon 3° M
topologies. We have seen how gauge invariance
for two-particle, one-photon (either ortho-photon
or para-photon) %™ amplitudes requires com-
bining both photon couplings (either both ortho
or both para) to two mated triangles on =%. Now
suppose we build the °" three-meson, one-
photon topology of Fig. 2 from the connected sum
of a zero-entropy three-meson $° with a two-
meson, one-photon $°F as in Fig. 13, where the
photon is ortho. (For simplicity imagine that the
passive quarks here are electrically neutral.)
The associated amplitude is not gauge invariant,
and gauge invariance fails to be achieved merely
by adding the 3% amplitude where the ortho
photon attaches to particle C rather than to par-
ticle B. These two amplitudes contain different
meson poles, one in the variable S,,=(p, + pp)*
and one in the variable S,; = (p, +p.)?, and the
residue of each pole must contain a gauge-in-
variant photon coupling in order to achieve overall
gauge invariance.* But the residue of the S, pole
factors according to Fig. 13 so the photon coupling
here—to particle B but nof to particle D—fails
to be gauge invariant. To achieve gauge invariance
a pole whose residue is of the form of Fig. 14(a),
where the ortho photon couples to D, must be
added. Such a pole will indeed occur within the
topological expansion, but not from a %™ com-

IR

(b) Y

FIG. 14. (a) A connected sum that admits no contrac-
tions. (b) The three-patch structure of this connected
sum.

ponent, because the connected sum depicted in .
Fig. 14(a) does not contract to two Landau vertices.
Instead one finds the three-vertex topology of
Fig. 14(b). To achieve a gauge-invariant coupling
of an ortho photon to three or more hadrons, one
must include such components of the topological
expansion—which are more complex than £°: M,

It has long been recognized that individual com-
plexity levels of the topological expansion may
violate certain symmetries of the full expansion
without destroying the expansion’s usefulness.
(An example is G-parity invariance, which is not
satisfied by the discontinuities of planar ampli-
tudes.?) One might worry with respect to gauge
invariance, however, that through its absence for
individual topologies the expansion components
could depend on the choice of gauge. Our S-matrix
theory, however, effectively has selected a special
gauge by its association with topology of definite
spin and momentum dependence. If it turns out
that Feynman-graph (off-mass-shell) computation
methods are possible, we conjecture from the
results of Refs. 5-8 that the special gauge is the
so-called Feynman gauge; the standard Feynman
rules and the spin rules of Appendix B are closely
connected.

We assume, in accord with the corresponding
assumption in Ref. 1, that standard S-matrix uni-
tarity-causality requirements not only specify the
higher-order electromagnetic topologies but give
explicit formulas (dispersion relations) for com-
putation of the associated amplitudes. The devel-
opment of a practical approach for evaluating
higher-order components we shall not attempt in
this paper. A concrete example of a plausible
formula, however, may be worthwhile to illus-
trate what may be expected. An amplitude of the
type of Fig. 14(b) or Fig. 2 plausibly may be ex-
pressed through a single pole in the variable S,
at the point S, = (m3)?. The spin structure would
be topologically determined by the rules of Ap-
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pendix B and factored from the dependence on

Suc and S, 5, leaving the pole residue in this sim-
ple case a constant. By factorization the constant
is a product of the electric charge of the active
quark and the zero-entropy three-meson coupling.
It remains to be seen whether such a pole formula
correctly yields the amplitude in question and, if
it does, whether this kind of formula can be gen-
eralized. ’

X. SUMMARY. AND CONCLUSIONS

This paper has extended to the electromagnetic
interactions the topological theory of strong in-
teractions proposed in Ref. 1. The lowest term
in the topological expansion for electromagnetic
amplitudes, which we call the “minimum-en-
tropy” term, consists of a sum of pieces, where
each piece can be described as a zero-entropy
amplitude into which a photon has been inserted
to interact with a particular quantum triangle
(quark, lepton, or core) of a particular external
particle.

The simplest of the minimum-entropy terms are
the cubic vertex functions, i.e., the amplitude for
the interaction of a single propagating particle
with a photon; the rest of the- minimum-entropy
terms, and then the rest of the expansion, can be
obtained from these simplest terms. Explicit
formulas for these three-vertex terms are given
above in Sec. VII. It can be seen that terms where
the photon interacts with a quark or with a lepton
have the structure of an interaction with a point-
like spin-% object, while terms where the photon
interacts with the core have the structure of an
interaction with a pointlike spin-0 object. How-
ever, although this theory may be visualized in
terms of hadronic “constituents”, there is at the
minimum-entropy level no notion of energy or
momentum being carried by the constituents, and
so it turns out that hadrons themselves behave as
pointlike objects, so long as higher-than-mini-
mum-entropy terms are not included.

Once the minimum-entropy terms are given,
the higher-order correction terms will be gener-
ated by connected sums, just as in the purely
strong-interaction theory of Ref. 1. Restricting
ourselves to leptons and photons, where the only
interactions are the electromagnetic ones (we
are of course ignoring weak and gravitational
interactions at this point), we conjecture that the
topological expansion merely reproduces the
standard perturbation expansion of QED. Hadrons
of course do have strong interactions, and these
will enter also in the higher terms of the topo-
logical expansion. Thds our theory could be char-
acterized as follows: start with pointlike cou-

plings for both leptons and hadrons, and then in-
clude, in the same expansion, both perturbative
(QED) corrections and nonperturbative strong in-
teractions.

Every triangle on the quantum surface is the
end point of a charge arc; the photon can only
couple when the direction of the charge arc agrees
with, rather then opposes, the global (HR) orienta-
tion of the classical surface. This leads to the ap-
pearance in our theory of neutral, as well as unit-
charged, quarks. However, the charges of all
hadrons turn out to be the same as in conventional
models (with fractionally charged quarks). The
fact that the baryon “core” also carries charge
makes integral charge for quarks compatible with
the known charges of hadrons.

To compute electromagnetic properties of had-
rons beyond that of their charge involves going
beyond the minimum-entropy terms, and this is
not done in this paper. For the most part, this
problem is for the future; however, in a separate
paper we shall report on a calculation of baryon
magnetic moments. This calculation includes
non-minimum-entropy corrections, and seems to
agree with experimental results somewhat better
than does a naive (fractionally charged) quark-
model calculation.

We speculate that the charge arcs may play an
important role in a future weak-interaction topo-
logical theory. In the present theory, the charge
arcs have two functions: first, they ensure charge
conservation, and second, they maintain classical-
surface orientability and so help ensure separate
P, C, and T invariance. Obviously in a theory of
weak interactions the first function must be re-
tained and the second not. In Appendix A we dis-
cuss a possible generalization of our charge arcs
into elements of nontrivial fiber bundles; perhaps
this generalization will ultimately be relevant to
a topological theory of weak interactions.

APPENDIX A: REAL LINE BUNDLES

In the main body of this paper, the following
statements have been made:

(i) Since each triangle of the quantum surface
forms part of the boundary of the classical sur-
face, then to each triangle we may associate a
direction, which is either info or out of the classi-
cal surface.

(ii) We seek to associate this direction with
electric charge, but then, since mated quantum
triangles must carry corresponding charges, a
triangle whose “chavge divection” is in (out) must
be mated with a triangle whose charge direction
is out (in).

The aim of this appendix is to show how such
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requirements occur naturally in the theory of fiber
bundles, in particular of real-line bundles. [The
mathematical reader will notice that these will
actually be “line bundles with local (fiber) orienta-
tion.”] The fiber bundles that we discuss here
generalize the notion of charge direction in two
ways: first, we allow bundles which are “twisted”
so that the notion of “in or out” cannot be globally
defined; and second, we consider two ways of
gluing together such objects (which are analogous
to connecting electrical resistors either in series
or in parallel), only one of which corresponds to
the gluing of the charge directions implied by con-
nected sums of surface pairs.

We have associated with each triangle on the
quantum surface one of two charge directions;
suppose we look at the boundaries between tri-
angles, and label a boundary (+) if the two tri-
angles it separates have the same direction, and
(-) if they have opposite directions. Then instead
of studying the charge directions themselves, we
might instead study the possible patterns of (+)
and (-) on the boundaries. This leads us to our
first generalization: we can now consider other
patterns of (+) and (-) on the boundaries which
do not correspond to any consistent assignment
of (in) and (out) on the entire quantum surface;
these will turn out to represent what we call “non-
trivial” line bundles. As an analogy, consider
instead of the quantum surface a circle, with vari-
ous segments on the circle assigned a direction
(in) or (out): then if we associate (+) or (=) with
the points separating the segments as before, we
will surely have an even number of (-) points. A
pattern with an odd number of (-) points will rep-
resent a nontrivial bundle.

We now recall some standard facts about real-

line bundles; the reader is referred to the book
by Steenrod!® for more information. A real-line
bundle is a pair of spaces (E, ) and a surjective
map 7: E- Y, satisfying certain requirements;
E is called the total space, ¥ the base space, and
7 the projection. For the case we consider ¥ will
be the quantum surface and E a three-dimensional
manifold.

The projection 7 has the property that for each
triangle 0 C =, 7o) is the “trivial” Cartesian
product o XR (R will denote the real line). In more
precise terms, for each 7-!(¢g) there is a local
“coordinate system”

7 Ho)=~0XR,
bo

which is a homeomorphism carrying our w into the
natural projection ¢ XR-o0.

We call 7-%(x) the fiber at x (x€x). Of course,
the way in which the various o xR’s are glued to-

gether can be fwisted. This twist is described as
follows: let us say that two adjacent triangles

0;, 0; have the common edge A. For each point

x € A, the transformation y, Oy, ~* induces a
homeomorphism of the real line into itself, which
we denote by g,,(x). This g,,(x) will be thought of
as an element of the group O(1), depending con-
tinuously.on x. Hence g,; depends only on A. It
will be denoted by g(4) and it is equal to +1 or
—-1. Here +1 stands for ¢~ ¢ and -1 for ¢ - —¢.
Thus if there is a direction (in) or (out), then
g(4)=+1 (or -1) if A separates triangles of the
same (or opposite) directions. However, we can
also study more general patterns of g(A). We will
impose the following “co-cycle condition” on the
glA)’s: if Pis a vertex of & and if 4,,...,4, are
the various edges starting from P, then the prod-
uct

gla) gla)---g(4,)=+1.

Several features of this definition should be noted:
(1) One can completely reconstruct the bundle
EZ ¥ out of the collection of “coordinate transfor-
mations” g(A) (defined for all edges A and satisfy-
ing the co-cycle condition), and any such abstract
collection defines a bundle. One simply uses the

g(A)’s as a recipe for gluing things together.

(2) Letuscall anabstract collection ofg(4)’s a
“directory”. Wewill consider “gauge transforma-
tions” of the following type: take atriangle o, with
edges A,,A,,A,, and make the transformation

(g(Ax)’g(Az)’g(As))" ( —g(AI) ’ —g(Ag) , "g(Aa))

(note that this does nof violate the co-cycle con-

dition). Then two directories define “equivalent”
bundles (which means that we can identify the two
E’s in a way compatible with the projection r)

if and only if they are related by gauge transfor-
mation.

(3) We can identify ¥ with a part of E. Namely
attach to each x € S the middle (or zero) point of
the corresponding fiber.

Now a new image emerges: Our surface T is
embedded in a larger three-dimensional object
E, made out of lines crossing ¥. The coordinate
chart orients their lines Jocally, independently
for each triangle o (however, there may not be a
consistent global orientation).

The function g(4) tells us whether the local

A A
o o o, 9

g(A)=+1 g(A)=-1
FIG. 15. The cases where the orientations (represented
by arrows) of the triangles ¢; and o; agree [g(A)=+1] or
disagree [g(4)=-1].
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transverse orientations of ¢; and of o, agree or
disagree (Fig. 15). An elementary gauge trans-
formation just means reversing our local trans-
verse orientation.

By definition the bundle EL ¥ is trivial (or ori-
entable) if by gauge transformations all g(4)’s can
be made +1, or equivalently, if we can define a
coherent global transverse orientation. A word
of caution here: this is nof the same thing as the
orientability of the three-dimensional object E.

It means just that one can unambiguously define a -
notion of in or out throughout our bundle, “trans-
versally to 7, just in the same way as the fact
that > is orientable, means that one can unam-
biguously define the notion of clockwise or counter-
clockwise triangle on T itself.

Remarks. So what is classically called a fiber
bundle, is what we would call an “equivalence
class” of bundles, up to gauge transformation.
The “structure group” of our bundles is O(1)=zZ/2
(sometimes also known as the Ising group). But
other bundles, with continuous structure groups
appear in various gauge theories. For example
in QED we use U(1) (representing the phase of
the wave function of the electron) or in non-Abelian
gauge theories SU(2) or SU(3) (rotations in the
space of various internal parameters, such as iso-
spinor color). From this standpoint it is natural that
our discrete theory, which is very close to zero
entropy, should only use the very simple and dis-
crete “flip-flop” group (Z/2, like “spin up and
spin down”).

Locally, each triangle ¢ has four possibilities,
since it can be oriented either clockwise or coun-
terclockwise, and have a (local) transverse di-
rection (in) or (out). There are also four global
possibilities; ¥ can be orientable or not, and the
bundle can be orientable or not.

The only case we are actually investigating in
detail in this paper is the case where both T and
the bundle are orientable. (We speculate that the
other possibilities may be important in a theory
of weak interactions.) So in this case there are
global notions of clockwise-anticlockwise, and
in-out, and each triangle ¢ can receive two inde-
pendant orientations (see Fig. 16).

If ¥ is orientable but the bundle is not, then
there is only one global orientation we can talk
about: clockwise-anticlockwise. :

If > is nonorientable but the bundle is orientable,

FIG. 16. The four possible orientations of quantum
triangles. Here arrows represent quantum-surface
orientations, and “in” or “out” represent bundle orien- -
tations.

then again there is only one global orientation one
can talk about: in-out.

In both of the last two cases the three-dimen-
sional E is nonorientable. But assume now that
both ¥ and the bundle are nonorientable, in such
a way that those closed circuits of ¥ along which
the orientation of ¥ gets reversed coincide with
the closed circuits of ¥ along which the bundle
orientation gets reversed. Then E is orientable.
One can think of this orientation as being defined
by °

(clockwise) x (in) = (anticlockwise) x (out)
= - (clockwise) x (out)
=~ (anticlockwise) x (in) .

We now turn to the question of gluing together
of line bundles. Suppose we have two bundles 7,:
E,-Z,and m,: E,- Z,, and assume that we make
the connected sum 3, § ¥, by identifying the tri-
angles ¢, (with edges A,, A,,A,) and ¢, (with cor-
responding edges B,, B,, B;) and erasing the in-
teriors. :

The point we want to explain is that there are
two distinct procedures for defining a connected
sum of bundles which we will call “parallel”-con-
nected sum and “series”-connected sum. In
heuristic terms the difference is depicted in Figs.
17(a) and 17(b). The question is how we “glue”
together the fibers 7, *(x), 7, *(y) for correspond-
ing points ¥ €0,, y<€o0,. Let us say that the co-
ordinate transformations of the bundles are de-
noted by g,(j=1, 2).

For parallel-connected sum the coordinate trans-
formations g’ are

(1) g’(A)=g,(4) for an edge A of T, different
from A;,A,,A,. :

(2) g'(B)=g,(B) for an edge B of T, different
from By, B,, B;.

(3) g'(A;)=g,(A4,)g:(B;) for the edges A, = B,
({=1,2,3). For a series-connected sum, the co-
ordinate transformations g” satisfy conditions
(1) and (2) above, but instead of (3) one has

(4) g”(A;) = —gl(A;)gz(B,-)-

If the quantum surface ¥ is endowed with a par-
allel or a series line bundle, the two contraction
rules (corresponding to forward scattering) are
depicted in Fig. 18. For a “parallel” contraction,
there is a conserved quantity which is depicted

ELIPRY -
L (x)] ]‘n’z" w oW e
@ (b

FIG. 17. The two kinds of connected sums: (a) repre-
sents the parallel, and (b) the series, sums.
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@ P

(a) (b)

FIG. 18. The contraction rules: (a) contracts to
nothing in the parallel case, while (b) contracts to
nothing in the series case. :

in Fig. 19. In contrast, for a “series” contrac-
tion, the following quantity is conserved: num-
ber of “in” —number of “out”.

The connected sums discussed in the body of
this paper correspond to the series case. The
conservation law for series bundles is very much
like “conservation of flavors”. It is natural, in
our context, to think of such a law as coming from
the fact that two mated triangles are joined by a
charge fiber line, containing the two charge fibers,
the in and out directions providing us with a unique
orientation of this charge fiber line. This is ex-
actly what is done in the main body of our paper.

APPENDIX B: PHOTON SPIN AND PARITY:
VECTOR CURRENTS

Photons may be coupled either to spin-; periph-
eral triangles (quarks or leptons) or to spin-0
core triangles. Coupling to spin-} is usually ex-
pressed in QED through four-component Dirac
spinors, so we begin by restating with 4x4 Dirac
matrices the Stapp rule for zero-entropy spin
dependence.® A natural prescription will then
emerge for the dependence of 3° ™ connected
parts on photon polarization.

To illustrate the Stapp zero-entropy rule we use
as an example the same three-meson (4, B, C)
amplitude employed in Appendix D of Ref. 1. For
ortho zero-entropy topology, as in Fig. 20, the
Stapp S-matrix spin dependence translates into
the form (B1):.

[TXA)A +y ) TXBITP(B)(1 +y-)U®(C)]
X0 (O +y U], (B1)

where U is a conventional » or v spinor depending
on whether the attached particle energy is positive
or negative (outgoing or ingoing). The para spin
dependence is similar with (1 +y,) replaced by

(1 —y5). The notation here is tied as closely as
possible to Feynman rules, but topological quarks
do not carry momentum, so what do we mean,

for example, by the symbol #*(B)? The index o

Number of A number of /y\mmba of A number of &

FIG. 19. A conserved quantity for the parallel contrac-
tion.

A 8

FIG. 20. A three-meson zero-entropy TJ.

labels a mated quark pair, as shown in Fig. 20,
and the Dirac spinor %%(B) describes the spin of
that member of this quark pair that resides within
the disk of meson B. For example, in the Pauli-
Dirac representation, the spinor describing a
quark spin state with s, =+ 4% in the rest system
of particle B would be

u%(B)= ’ pa=(m3:0’050)- (B2)

O O O =

We here assume B to be ingoing, so from Fig. 20
a(B) is an ingoing quark. In some other frame of
reference where p, =(Eg,Bs), Lorentz transforma-
tion of the spinor gives

1
1+9%\/2 0
*(B)= (——J) B3
“ 2 g Vp 1 B3)
1 +UOB 0 ’
where
vp= 3, V)= pp/mp (B4)

and G denotes the Pauli 2x 2 spin matrices. The
prescription (B3) makes it look as if the quark
carries the momentum p,, but that is an inap-
propriate interpretation. It is only the velocity
of the frame of reference that matters. Once this
distinction is grasped, the usual field theory con-
vention may safely be employed in using formulas
such as (B1). [A disadvantage of formulas such
as (B1) is their awkwardness with respect to
crossing. Formula (B3) is only appropriate when
B is an ingoing particle so that o(B) is an ingoing
quark. If B is outgoing then o(B) becomes an
outgoing antiquark and the form of (B3) is dif-
ferent. It is well known, however, that the nice
M-function crossing properties (see Appendix D
of Ref. 1) hold for the 4x4 matrices that are sand-
wiched between U and U spinors. ]

The transitivity (self-reproducing character)
of (B1) and of the corresponding para spin depend-
ence in zero-entropy unitarity products follows
from the form of the projection operator

b @
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Right - handed Left - handed
(a) (b)
FIG. 21. Patch-boundary orientations on . that cor-
respond to right-handed and left-handed “currents”
when the dotted transition arc is cut by an HR are.

that results from summing'over all intermediate
spin values when a plug is made of particle B.

(It is necessary here to remember an essential
feature of the zero-entropy meson spectrum: the.
quartet spin pattern. A spin sum runs over the
three states of S=1 plus the one $=0 state. A
similar observation applies to baryons and bary-
oniums.) If the plug is ortho to ortho, then for
the Dirac matrices acting on quark o we have

(1 +y5)(1—%1£>(1 +‘y5) =1 +'y5, (BG)

and, if para to para,

1+
(1‘75)#&(1-75)21_75; (B7)
both results independent of the intermediate ve-
locity vy and of the original form. In contrast,
if the plug is ortho to para we have

1+y-v
(1 "75)_‘12”“‘5'(1 +ys) =y -vp(l +y,), (B8)
a result that remembers the intermediate velocity.
The Dirac matrix (B8) is that associated with a
right-handed current ’

'Yu(l +vs) (B9)

coupled to a vector that is parallel to vg, while the
para to ortho transition corresponds to a left-
handed current. We remark here that the topo-
logical distinction between left-handed and right-
handed transitions can be economically expressed

through belt (parity) orientations as shown in Fig.

21. No matter what direction is assigned to the
HR arc, if one follows the HR direction the transi-
tion is ortho— para in case (a) and para- ortho

in case (b).

We are now ready to state the dependence of a
»%® connected part on photon polarization and
quark spin. Consider the example of two mesons
(A4, B) coupled to a photon. There are two pairs
of mated quarks which we label («,8). Suppose
that before photon insertion the topology is ortho
and that the photon couples to the quark-pair o,
as shown in Fig. 22, where we have omitted the
Landau graph. The spin dependence of the quark-
pair g remains that of Stapp, but quark o makes
an ortho - para or a para- ortho transition, de-
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FIG. 22. A left-handed Eg’EM coupling a photon to a
meson pair.

pending on whether the photon parity patch touches
particle A or particle B. Suppose, as indicated

in Fig. 22, that B is touched, changing its active
quark from ortho to para. (If B is ingoing, its
quark in Fig. 22 is para and its antiquark is ortho.)
Then the photon causes quark ¢ to change from
para to ortho, a left-handed transition, so the
following spin dependence is natural:

[TAB)(L +v5)URA) ] [THA)A +95) (1 =y )UXB)|,
2
(B10)

where the index y characterizes the photon po-
larization. The Dirac matrix in the second bracket
is equal to the standard left-handed form 'yu(l -vs),
but the form (B10) more clearly exhibits the tran-
sitivity property. For example, if a particle-A
plug were made between the surface of Fig. 22

and an ortho zero-entropy surface then the topo-
logical character would remain unchanged (a para
photon patch within an ortho zero-entropy surface,
the photon patch touching an ingoing quark). For-
mula (B6) together with (B10) shows that the left-
handed character of the spin dependence is cor-
rectly preserved.

Were the photon patch attached to the outgoing
quark of particle A rather than to the ingoing quark
of particle B, the electromagnetic current would
be right handed. In the topological expansion there
always occurs the sum of two such alternatives—
the sum corresponding to a pure vector electro-
magnetic current coupled to a quark pair, because
the terms proportional to y,ys cancel each other.

In addition to this right- and left-handed super-
position of photon couplings, needed for gauge
invariance, there is a further topological doubling
associated with parity-patch orientation reversal
for the entire T,. As discussed in Ref. 1, this
latter doubling is responsible for parity invariance
and eliminates particles of the “wrong” intrinsic
parity.

FIG. 23. =%FM for photon coupling to the core triangle
of an ortho baryon.
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What is the dependence on photon polarization
when the photon couples to a (zero-spin) core
triangle? In Fig. 23 we show the main sheet of
z¢ for a two-baryon % amplitude where the
active charge arc now belongs to a pair of core
triangles. Assume baryon B ingoing and baryon
A outgoing. Here there is no ortho-para quark
transition—the photon is not coupled to quark
spin. When baryon B is active, as in Fig. 23,
transitivity is achieved if the dependence on photon
polarization is of the form (PB),,. Adding the con-
tribution from the photon-patch attachment to par-
ticle A, remembering that the core-triangle charge
is reversed in sign, we have

(pB—PA)u (B11)

the expected form for the coupling of a photon to
zero spin. At the same time the three-baryon
quark spins, (one on the main sheet of 3, and two
on adjoining sheets) are propagating independently
of the photon according to the ortho form (1 +vy),
as in formula (B1).

Although we have here given the two-hadron
% EM gpin-polarization coupling rules through
special examples—quarks within mesons and core
triangles within baryons—the extension is straight-
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forward to quarks within baryons and baryoniums
and to core triangles within baryoniums. The
further extension to £°® with more than two
hadrons may be accomplished through a connected
sum of some $° (zero entropy) with a two-hadron
ROEM

We have not bothered to mention here the mini-
mal photon spin-parity coupling to two leptons
because it is identical with that to quarks. Itis
impossible within any $°F™ to couple a photon to
more than two leptons.
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