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The complete order-g' deep-inelastic (DI) and Drell-Yan (DY) parton cross sections are evaluated in a general

(n +0) axial gauge. Our study tests the compatibility of the principal-value prescription with basic field-theory
principles (unitarity, analyticity, and gauge invariance), and it confirms the validity of the known on/off-shell mass
and infrared regularization techniques, provided the double-cut rule is followed. By focusing on the nonlogarithm
terms, we go beyond all earlier such studies and indeed analyze the most sensitive contributions. Our results give
explicit insight into the gauge dependence of the mass and infrared singularities and exhibit their cancellation
mechanisms. A suitable choice of n ' permits the determination of the nonlogarithm asymptotic-freedom corrections
in the DY process. We explain how the arising technical difficulties are resolved.

I. INTRODUCTION

Gauge field theories bear the freedom of gauge
choice. In a non-Abelian gauge field theory like
quantum chromodynamics (@CD), the choice of a
covariant gauge leads to Faddeev-Popov ghosts
which, however, decouple from the physical 8
matrix. In order to prevent the ghost problem,
a gauge can be chosen where the gauge field has
only physical polarizations. Since the discovery
of @CD as a theory of strong interactions, much
interest has been devoted to the axial gauge
(n ~ A=O), which is an example of a ghost-free
gauge. The gauge field (gluon) propagator is then
given by

„„(„) -i „n"k" n"k" ~ 2
k"k"

k +if n ~ k (n ~ k)

(1.1)
k +z~

The axial gauge is most fruitful in establishing
formal proofs, for instance, of mass factoriza-
tion in deep-inelastic (DI) processes. In the cal-
culation of Green's functions and jor cross sec-
tions, however, extra complexities arise due to
the spurious singularities (n ~ k) in the second and
third terms of Eq. (1.1). In a gauge-invariant
set of graphs the spurious singularities are ex-
pected to cancel. In explicit calculations, con-
siderable simplifications are achieved if the light-
like (n =0) gauge is chosen. The last term in
Eq. (1.1) disappears and the integrals containing
the (n ~ k) term reveal the structure of those
familiar from the covariant gauges. While eval-
uating the Feynman integral, the k =0 singularity
is prevented by a regularization prescription'
with all regularized terms being canceled in the
sum of a gauge-invariant set of Feynman dia-
grams. Pursuing the calculation n 0 leads to
considerable mathematical complexities —already

in lowest order. Ea,rlier analyses have limited
themselves to the leading logarithmic terms of
the DI structure functions and Green's func-
tions. ' There is no investigation which has
pushed the analysis to the highly sensitive (and
indeed decisive) nonlogarithm contributions. We
emphasize their importance since they are in-
timately related to the asymptotic-freedom (AF)
correction terms of the DI structure functions
and the Drell-Yan (DY} cross section.

The subsequent investigation pays particular
attention to a set of problems which are briefly
mentioned here. The first Problem concerns the
(n ~ k)~ singularities which are usually defined in

.a distribution sense. Several different definitions
are equally possible, leading to nonunique Green s
functions. In this study we limit ourselves to the
principal-value prescription which is defined by

1 . 1 1 (-)', ~lim- ~ a . a
(n k)' a-0 2 (n ~ k+i(}' (-n k+iz)

(1.2)
Although successfully tested in a few low-order
calculations (limited to logarithms only, its va, l-
idity for all orders in perturbation theory is un-
decided. The second problem is connected with
the appearance of new mass and infrared singular-
ities due to the second and third terms in Eq. (1.1)
which also give rise to the (axial) gauge singular-
ity at n =0. The utility of the familiar mass (M)
and infrared (IR) regularization techniques, ' in
particular the on/off-shell methods, must there-
fore be doubted and need to be rechecked. Our
third Problem concerns analyticity and unitarity.
Although unitarity was generally proved to be sat-
isfied by the axial gauge, ' its explicit verification
on individual Feynman diagrams using the Cut-
kosky rules and dispersion techniques is by no
means trivial. The gauge parameter n, as well
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as the changed M/IR structure of the individual
Feynman diagrams, lead to unfamiliar singular-
ities which have to be treated with care. , With a
fourth question we ask: do the DI/DY coefficient
functions actually remain gauge independent?
This problem recently came up in a discussion on
the conventional off-shell mass regularization
and, in particular, its applicability to determine
the nonleading AF corrections to the DY process.
The correct evaluation of the nonlogarithm terms
in the DI/DY (axial gauge) parton cross sections
is here of prime importance, whereby in both
processes the same n value must be maintained.
This problem has so far not been satisfactorily
studied.

This paper presents a systematic evaluation of
all O(g ) DI and DY cut graphs (Feynman diagrams
with unitarity cut -cross section) contributing to
the processes y~q-gq (DI) and qq- y*g (DY). A

nonlightlike (n o0) axial gauge is used, and the
nonlogarithm contributions to the parton cross
sections are given special attention. Our study
is an extension of earlier work in this direc-
tion. -" We aim at a complete comparison be-
tween axial and Feynman gauges, the latter being
representative of all covariant gauges.

This paper is divided into six sections: Sec. II
is primarily concerned with the technical side of
our study, ' it specifies e, exposes how renormal-
ization is carried out, and discusses the used
mass assignments. In Sec. III our results for
the DI parton structure function 52(z, q ) are pre-
sented, and analogously Sec. IV is concerned with
the DY parton cross section W(z, q ). Our con-
clusion and summary are in Sec. VI. The Appen-
dices give calculational details and our results
are shown in Tables I-IX.

II. CALCULATION PROCEDURE

Before going into the details of our calculations,
we discuss in this section the crucial assumptions
in our calculations and explain the techniques
employed.

Our first discussion point concerns the vector
n". It can be freely chosen, but once a choice is
made it must be consistently followed. Calcula-
tions with unspecified n are awkward. In this
paper we have chosen n spacelike (n &0). Con-
siderable simplifications occur if n is identified
with an asymptotic kinematical variable, which in
the Bjorken limit becomes larger than the regu-
lator masses. In our analysis of the DI graphs
we identify n = -q, whereas in the DY process
we set a=pe —p2. If the gluon momentum is ig-
nored, n' has one and the same value. Such an
approximation, however, cannot be applied to the

hard-gluon (z = I) contributions where the above
DI/DY choices for n" clearly differ. Our subse-
quent calculations reveal, however, that in the
sum of the hard-gluon contributions all n depen-
dence drops out as can be verified by considering

"~~ in DI scattering [Eq. (3.26) 1 and W" "~"in
the DY process [Eg. (4.8)j. Therefore, n in DI
scattering is allowed to be different from n in the
DY process as far as the hard-gluon part is con-
cerned. Since in the soft/virtual-gluon contrib-
utions all dependence on the (final state) gluon
momentum drops out, the DI n' reduces to n
—Pf P2 (remember q =P2 + k —

pq in DI scattering)
and agrees with the DY choice. Furthermore, the
virtual- and soft-gluon contributions to the DI
structure function and the DY cross section de-
pend exclusively on the variables q, n, n ~ P~,
n ~ p2. Choosing q = -9, their numerical values
remain unchanged while going from the spacelike
to the timelike region (for n = -Q we have n ~ p,
= -Q /2, n ~ p2 =+@ /2). Note finally that all ex-
pressions are invariant under n -n -[see Eq.
(I.I)].

The second discussion point concerns the an-
alytic q continuation from spacelike to timelike
values. Such a step is needed in evaluating the
DY graphs with virtual gluons. Premature iden-
tification n = -q in DI scattering no longer allows
for an analytic continuation of the vertex function
from spacelike to timelike q values. Since n
may not change in this step, the vertex functions
are evaluated for arbitrary n. After analytic q
continuation, n is identified as indicated earlier.

The mass and infrared regularization proced-
ures are our third discussion point. The (axial
gauge) cut graphs contributing to the DI/DY pro-
cesses are mass and/or infrared singular. They
are regularized by on/off-shell mass assignments
as defined and investigated, in the framework of
the Feynman gauge, in Ref. 7. In our subsequent
analysis we use the (undisputed) on-shell mass
assignment and similarly determine the cross sec-
tion for the (disputed) "conventional" off-shell
mass assignment assuming both massive and
massless quarks. In earlier analyses, the latter
choice led to inconsistencies which could be re-
solved by the double-cut rule. '" Our investiga-
tion therefore focuses partially on the results of
a massive off-shell assignment which is in agree-
ment with the above rule. We refer to it as the
"correct off-shell" mass assignment. The
reason for calculating the conventional off-shell
assignment with massive as well as massless
quarks is threefold: the importance of the quark
rest mass becomes transparent. The (conven-
tional) massless assignment permits the study of
characteristic features which are also present
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in the correct off-shell assignment. The latter,
however, suffers from the disadvantage of tech-
nically involved calculations and, in addition,
leads to anomalous cuts. Finally, we gain more
confidence in our findings. We define the mass
assignments.

On-shell: All external momenta are on-shell
p, =m . The gluon is given an infinitesimal rest
mass A. . In Figs. 1 and 2 we otherwise set m5

2 2 2 2 2=X, me
——q, m; =m.

Conventional massive off-shell: All quarks have
a nonvanishing rest mass (m x0). A chosen initial
line (external) has in all cut graphs the same
off-shell value p; =m —p with p. &0. Final-
state mass regularization in DI scattering is
constrained by unitarity (Cutkosky rules).
. Conventional massless off-shell: We take over
the preceding definition and introduce the changes:
all quark rest masses vanish (m =0) and P, '= —p, ,
with p.; &0.

Correct off shell: T-he mass assignment is
constrained by the double-cut rule with the masses
in Figs. 1 and 2 fixed as m f —rr 2

—m8 —m/2'
2 2 ~ 2 2 2 2 2 2=m —p, (with p, &0), m5 ——0, m6 ——q, m; =m

otherwise.
Note that the above mass assignments are sym-

metric with respect to the two quark lines. The
correct off-shell mass assignment involves an-
omalous cuts with complex expressions in the
intermediate steps. Since in the physical ob-
servables they all must cancel, we restrict our-
selves to the real parts only. In Tables I-IX we
therefore suppress all complex pieces which or-
iginate from the anomalous cuts. However, the
vertex correction needs special care. While

carrying out q analytic continuation, the anomal-
ous cuts must not be ignored and the imaginary
parts can be disposed of only after this step has
been completed. The conventional off-shell as-
signment takes all external lines in the initial
state off-shell so that this problem is avoided.
The M/IR singularities arising from the spurious
(n ~ k) terms in Eq. (1.1) are also regularized by
the above mass assignments. For on-shell, the
(n ~ k) pole needs special care since (n ~ k) changes
sign in the k integration range and therefore van-
ishes. We elaborate on this point later on near
Eq. (A23). In the off-shell case, all terms pro-
portional to (p; —m; )~ in the numerator must be
carefully evaluated since they often give rise to
corresponding denominator terms and cancellation
takes place. This remark particularly applies
to the virtual-gluon (Appendix A) and the soft-
gluon contributions (Appendix C).

In this fourth discussion point we indicate how

renormalization proceeds in the axial gauge. The
ultraviolet (UV) singularities are removed by n

dimensional regularization and mass-shell sub-
traction. Determination of the wave-function re-
normalization constants in the axial gauge is
slightly more complicated than in a covariant
gauge. Following Ref. 12, the (axial gauge) self-
energy can be decomposed as

Z(p, n) = Y'g+ Y g+(p-m)X
+tt', (p' -m')X, + Z"(p, n) . (2.1)

The self-mass is obtained by putting P = m in Eq.
(2.1),

~rn= Y, + y2
m

(2.2)

and the quark wave-function renormalization con-
stant is given by

1 —z, '=x(+2(t n)x2,

85
Xg ———

sP g-m

BZ
X2 ——

(2.3)

III. DEEP-INELASTIC SCATTERING

In this section we present our results on the DI
structure function $2(e, q ). By entering into the
calculational details we aim at a discussion of the
axial-gauge difficulties and their solution. Our
presentation successively considers the individual
terms and analyzes their dependence on the earlier
defined mass assignments.

A. Graphs and notation

The order-g DI cut graphs are shown in Fig. 1.
Using the notation of Ref. 7(a), the parton struc-
ture functions are composed of

g(z q )=(P *+&j 1+ 5 2)

+ (~R-hL&a + 0s-Iaf t)

I',. and X,- depend on p ~ n, n, and the mass para-
meters. The electromagnetic vertex correction
in the axial gauge reads

F'(», t2, n) =r"~+~'OAF +62~F"

The I", E', and E" are functions of q, p,. ~ n, and

n . All UV divergence is confined to the first
term E in Eq. (2.4). In the actual calculation,
I' is contracted as (P2+ m2) I'(tI~ + mq). There-
fore, in the Bjorken limit only the'first term sur-
vives since all others lead to expressions propor-
tional to p; . Note that for the off-shell assign-
ment only the pole terms satisfy the Ward iden-
tity Z~ ——Z2,

' the on-shell assignment follows it
exactly.
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The superscript Vx refers to the unrenormalized
electromagnetic vertex correction, whereas S~

indicates the initial (S,) and the final (S2) state
self-energies. & is the hard-gluon structure
function (z w1); it results from the real-gluon con-
tribution 5 by taking the Bjorken limit. The soft-
gluon contribution (» =1) defined by

'"d
v" ""(q', c)= 5(1 —z) 2 r (s, q', m, ')

q

(3.2)

contains the mass (and infrared) singularities
which are prevented by the mass assignments. sp
is the threshold value and & stands for a momen-
tum cutoff. For convenience we drop in the tables
the terms proportional to ln'E,' they are easily
obtained bg reintegrating the hard-gluon part
f 0

'de%" (z, q ). Since in the axial gauge each
contribution in Eq. (3.1) is built up by the three
terms (n. k) (a=0, 1, 2), they are all split up as

5 *=25(1—z)E" (3.6)

We carry out the analogous analysis of the self-
energy using P'=1 —Z, '. For on-shell mass as-
signment and unspecified n one finds

which is a characteristic feature of the axial
gauge. The left singularities in the complete
electromagnetic vertex correction are therefore
of IR origin (see discussion in Sec. III 3C). Upon
identification of n =-q, the (Ink )' terms in Eqs.
(3.4) and (3.5) cancel; those of Eq. (3.6) persist
(see Table I, column 3). All w terms in Eqs.
(3.4) and (3.5) disappear in the sum. The analog-
ous off-shell results, evaluated for n=-q, are
listed in Table I (where jq» pq ). The same
features emerge. As in the on-shell case, all
miss singularities and 7t terms disappear in I' ".
The persisting IR logarithm is traced back to
E"*(2). The complete contribution of the electro-
magnetic vertex correction to the DI structure
function reads

S =~(0) +~(I)+~(2)

corresponding to the three values of g.

(3.3) M2
Z'(0) = —'

~ $ —ln —,+21n —-4 (.3.9)

B. The individual contributions Z'(1) =—' -2$ —41n—+2ln —ln'm 4(p n), 4(p n)'
3' nM -nm

Q
E "(0)=—' -(+in 2

—ln 2 +21n—
2 ln3' -q -q A. -q

m' r'—4ln 2+—
3

2 2 2

E "(1)=—
Z +$-2+21n 2

—ln —2

m 4(p, n)
3& ~ M' -n'M'

(3.4)

We consider the electromagnetic vertex correc-
tion of Figs. 1(aq) and 1(a). For on-shell mass
assignment and general n the asymptotic forms
are found:

—2 ln —ln +—+4
m' 4(p n)'
g2 n2 2

Q,Z'(2) =—' -2$ —21n-
37T M

The complete sum leaves

Z'=1 —8 ' =—' -3$ —sin —+21n
.Q m' 4(p n)'
3m M

,„.4(p n)'

(3.10)

(3.11)

~ i 1„24(Pi. n)'
2

"
n2yn2

m2 4(p )2 p2+ln~ ln -n2m2 6. '

Q
E»"(2) =—2 $ + 2 ln —2

where )=2/(n —4) —y+In4n. We point to the
complete M cancellation in their sum

(3.5)

(3 .6)

—2 ln —ln +2 ln —+-m' 4(p n)' m' m'

n gyes
'

A.

(3.12)

From this result we learn that, in the axial gauge,
Z, becomes p dependent —a result which is distinct
from the covariant gauge. Comparing the above
results, Eqs. '(3.9)-(3.11), with those for the ver-
tex correction, Eqs. (3.4)-(3.6), we observe the
relation

E»r ' s
3~ 3 1

M
1

4(P& 'n)

3m -q -n X

4(p2 ~ n)' 2 -q'—ln 2 2
—ln-n A.

~ i 1
24(P n)'+ i I 24(P2n 2 2

—n 2 2
—4

2 n g 2

(3.'I)

q[Z~(a) + Z2(a)] = —E""(a) (a = 1, 2) . (3.13)

The expression E »= E""+~[Z,'+Z,']—t'herefore is
gauge invariant and consequently n independent.
All ln and 7t terms which disappear in I' " while
going from the Feynman to the axial gauge now
surface in Z' [see Eq. (3.10)]. Both terms are
traced back to the integral I, [see Eq. (A8)] which
will be analyzed later, The analogous off-shell
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S' =6(1 —z)Z'. (3.14)

(and also on-shell) results evaluated for n =-q,
are shown in Table II. The relation (3.13) now no
longer holds true and a gauge-dependent renor-
malized vertex I ~ is found. All ln and z terms
originate from Z'(I) (as for on-shell), and both
also appear with opposite signs in E" (xI) (see
Table I). Comparing the l.n2 coefi'icient in Z' for
different mass assignments, we notice the appear-
ance of a factor 2 while going from on-shell to
off-shell. This phenomenon is also observed in
E~*(0) and E" (x1) (Sudakov form factor). The con-
tribution of the self-energy S,. to the DI structure
function takes the form

The hard-gluon contributions from the outer rain-
bow, Fig. 1(b,), the inner rainbow, Fig. 1(c,), and
the interference graphs, Figs. 1(a,) and (a,), are
evaluated by maintaining a completely general
mass assignment which permits immediate spe-
cialization to the mass choices defined in Sec. III.
Each line in these figures is given a number. For
the mass assignments employed in this paper we
can make a simplification in the momentum and
mass notations; for this purpose the translation
key will be indicated. Apart from n'(0, n~ is kept
arbitrary, which results in lengthy expressions.
The structure of the outer rainbow graph in Fig.
1(b,) (pa-p„m, =pna-m„, m, —X) becomes trans-
parent from

harp(0) s (1 ) I 'q 3 ) P1 / x Pl ™x
1

(1) = ' In~, , + ln, ', , ' —n(P, —q)A '+2(P, ' —m, ') ., 1

(3.16)

(3.16)

s~ n2BD'—2(2 f 2

3m( 1 —z
(3.17)

The interference graphs in Fig. 1(a,) (p, -p„m, -m„m, -&) and in Fig. 1(a,) (p, -p„m, -m„, m, -X)
are analyzed in the same way leaving

P 2 2+2z
I

3m 1 —z z Mi & —z (3.18)

x p(z —p) Sz(p,x)~ , & x (p, + p)
C ,

I(1 z) (1 z) 1-z p, q(l -z) (3.19)

(yR-hard(2) — s 2p22/D&+
2Q, 4
3' 1 —z

(3.20)

For the inner rainbow graph Fig. 1(c) diagram c,
we get

(s.21)

defined by (B2), (B5), and (B6), are mass inde-
pendent in the Bjorken limit and therefore remain
mass regularization invariant. We have used a
simplifying notation with

pyR-h d (1)
2+ 1 22 (Py+ 0) CDx
sv 1 -z p, q(1-z)

&n q ~ Pi(l+z) ~m+ ' A1-z 1-z

I,'=z-'(i -z)-'[-z (1 -z)P, '

+ (1 -z) m„'+zw'],

N, '=(I -z)-'(~„' ~2 zP,2).
(3.24)

(3.26)

(yR-haxd (2) s 222fIDI
2& 2

3m 1-z

(3.22)

(3.23)

The A ', B ', and C ' in the preceding equations,

A11 hard-gluon parts remain, for the mass assign-
ments of this paper, unaffected by X. For X=O we
find M,' =z(1-z) 'N, 2 which in E(ls. (3.16) and

(3.19) leads to simplifications. The sum of all
hard-gluon contributions reads
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2
N

1+z
2~ 2

3 1
+3g ——

2 1-z
4m„(p, ')'~' p, ' m,'- Z'

2 2 Z 1
(1 IN MZ

(3.26)

We observe that the complete hard-gluon structure
function [Eq. (3.26)] is rg independent and g can be
given any value, e.g. , n = ~. Further note that all
initial-state mass singularities which appear in
DI scattering can be attributed to the outer rain-
bow graph, Fig. 1(b) diagram b„and it becomes
transparent if Eqs. (3.15) and (3.16) are added.
The above expression, if calculated in the Feyn-
xnan gauge, is unchanged apart from the typical
off-shell term proportion to (P, —m~ ). This term
can be traced back to,the (1/n k) part of the outer
rainbow graph [Eq. (3.16)]. Using massive quarks,
the off-shell term drops out in the Bjorken limit
leading to a gauge-independent result for F~ ~~.
For massless off-shell assignment, however, it
persists and contributes the extra term -2z/(1 -z)
to the structure function. In this case F " be-
comes gauge dependent. This gauge dependence
is also observed if a covariant gauge different
from the Feynman gauge is chosen. '

The soft-gluon contributions follow from dia-
'gram-by-diagram evaluation of the defining inte-
gral in Eq. (3.2). Our results are listed in Table
III, Fig. 1(b,), Table 1V, Figs. 1(a ) and 1(a4), and

Table V, Fig. 1(c,). In Table IV we have taken p, '
» p,2'. As in the virtual-gluon corrections, the
soft-gluon contributions are split into three parts
corresponding to the (s'k) (a=0, 1, 2) terms of
the gluon propagator. Analyzing the individual
graphs, we observe the following characteristics:

~f'(a) of the interference graphs, Figs. 1(as)
and 1(a4), Table IV, shows the samefeatures as the
corresponding vertex corrections 6' ~(a), Figs.
1(a ) and 1(a2), Table I. In particular, the M sing-
ularities vanish and g' cancellation between the
a =0 and a =1 components takes place. For n-=-q,
the leftover IR singularities originate from
Pz f'(2). Furthermore, the M/IR singularities of
the outer rainbow graph, Fig. 1(b,), Table III,
manifest themselves in 6:" "(a) in the same way
as observed in the corresponding external self-
energy contribution 6' '(a), Figs. 1(b~) and 1(b2),
Table II. Notice the z' term in 6'" "(1); it ap-
pears with an opposite sign in F~~(a). The same
characteristics emerge from the inner rainbow
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TABLK IV. Soft-gluon contribution of Figs. 1(a3) and 1(a4).

On-shell (m =p)

Correct off- shell
Conventional off-shell

(m ~p)
Conventional off-shell

(m =p)

gR- soft(p)

PR-soft(1)

gg-soft(2)

m2 m2' m2 m2 2~2
ln &

—21n~ ln & +21n
3

m2 m2 m2 m2 2~2—ln 2+2 1r. 2 I.n 2
—21n 2+-q 3

-2 lr —q

X2-2 lr.

2m' m2 m2 m2
2 ln 2

—41n 2 ln 2+2 ln-q p, -q

2 m m2 m2 m2—21n 2+41n 2 ln 2
—21r. 2+~2

p, -q
p2

-41n 2 -2-q
JM2-4 ln 2

—2

2

p 2 p 2 p 2

ln '
& ln 2 + 2

2
l

p 2 p 2 p 2

Ln '~lr. ~+lr '&

p 2

-41n '

2

-41n '

graph, Fig. 1(c,), Table V, and the final state
self-energy contribution F 2(a), Fig. 1(c,) and

1(c,), Table IL

C. DI structure functions in the axial gauge

In Table VI we have assembled the complete DI
structure function in, the axial and also in the
Feynman gauge. For on-shell and massive off-
shell assignments, both gauges lead to the same
result. Choosing massless off-shell, however,
reveals gauge dependence which is traced back to
the outer rainbow graph, Fig. 1(b,), and the ex-
ternal self-energies, Figs. 1(b,) and 1(b,). The m'

terms, however, remain unaffected. Consider the
M/IR cancellation between the individual cut graphs
in Fig. 1. Due to the fact that in the axial gauge
the gluon keeps its physical polarizations, M sing-
ularities only occur if in a Feynman graph two

equal propagators appear. From this we infer that
the M singularities can only be attributed to the
Compton graphs corresponding to Figs. 1(b,)-1(b,).
Invoking unitarity, we-therefore conclude that all
M and IR singularities are canceled in the follow-
ing combinations: 6'" " (a,)+6:" '(as)+P *(a,),

+7" "(c~)+%~2(c,+c,). One further observes that
the above combinations are independent of the par-
ticular M/IR regularizations since we have re-
spected the unitarity relation between Compton and
cut graphs for all M assignments (including the
"conventional" ). The unitarity argument does not

apply for the DY process. We will find later that
the combination involving interference and vertex
graphs is M/IR regularization independent only if
a correct mass assignment is chosen. From the
above we conclude that all M singularities, and
with it all M regularization dependence, can be
attributed to the sum P" (b~) +6'" '(bs)+ F '((b, )
+ (b,)). Inorder to achieve proper IR cancellation
in the above combination of structure functions (in

particular for massless off-shell), Z, must be
evaluated at the external (internal) mass pole.
This requirement follows from the fact that

""(b,) [6'" ""(c,)] was calculated with a specific
external (internal mass). ' (This also applies to
the Feynman gauge, but here the mistake only
shows up in the constant terms. ) If Z, is not eval-
uated in the way indicated above, the next-to-lead-
ing IR logs will not compensate, leaving uncanceled
IR singularities in the DI structure function (the
above rule was not followed in Ref s. 5 and 6).

IV. DRELI YAN PROCESS

In this section we analogously analyze the DY
parton cross section. The order -g' DY cut
graphs, shown in Fig. 2, lead to the contributions

(Ws hard WR-loft -) (4.1)

A. The individual contributions

The electromagnetic vertex corrections, Figs.
2(a,) and 2(a,), are obtained from those in DI scat-
tering via analytic continuation from spacelike to
timelike q' values; one sets Pg py p2, p2 with n
fixed. Subsequently, one may identify n'=
Our results are listed in Table VII (with the imag-
inary parts being dropped). For on-shell mass
assignment [see Eqs. (3.4)-(3.6)], only W *(0) gets
an extra w' term [W *(1) is q' independent]. For
conventional off-shell, the analytic continuation,
leads to an extra 2v2 term in W *(0) (Sudakov
form). For correct off-shell, however, the net

Each of them is composed of the three terms in the
axial propagator with a =0, 1,2. Our notation fol-
lows closely that of DI scattering. Apart from pre-
senting our results, we focus in this section on
those aspects which are different and/or less
transparent in DI scattering.
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effect is zero. The latter result is due to the pres-
ence of anomalous cuts in Figs. 1(a ) and 2(a,).
While performing the analytic continuation, these
cuts must be taken into account. The off-shell
regularization, contrary to on-shell, also leads
to extra m terms in W""(1). They originate from
the typical off-shell terms (p, ' -m, ')». The c'
term is provided by the integral I defined in Eq.
(A7). The same feature is observed for massive
off-shell in W *(2). Here, the v' is given by the
integral J defined in Eq. (A17). The self-energies
appearing in Figs. 2(b, ), 2(b,), 2(c,), and 2(c,) can
be taken over from those obtained in DI scattering
(Table II). There is no analytic continuation in-
volved.

%e focus on the graphs describing real gluon
production shown in Figs. 2(a ), 2(ad), 2(b,), and
2(c,) and evaluate their hard-gluon parts As. we
did earlier in DI scattering, we keep the most gen-
eral mass assignment possible. The translation
key is again indicated in brackets in order to facil-
itate an easy correspondence between the notation
of the specific double-cut graph and the general
one which applies to all figures. The outer rain-

bow 8» Fig. 2(ba)» (p(r p»» pro p~» tÃq= pB(» tpta» @la- &) and Fig. 2(c,) (p„-P„P„-P„m„=m„-m„,
rn, - X), both lead to the same result,

2(y
Ws h d(0)= ' (1—

3g 72M]

4m (p ')"' p
' m '-X'

Mq

(4.2)

WS-hard(1) 2 a
3n' 1-7

4(n P )'v'M'
1 —T n'Q'(1 —v)N('

+n (p, +p )ADv

'
T 1

+ (», —,)(» '- *I,
i

(4.3)

C
g R

I l

WB-hard(2) a
3m 1 —T,

(4.4)

Each of the interference graphs shown in Fig.
2 (a,) Q,-p„p, -P„m, = m, -m„m, -X} and in
Fig. 2(a, ) Q, -p„p, -P„m, =ma-m, m, -X) lead
to the same structure
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WR-hard(2) s
31r 1 —7

(4.7)

I, and N& are defined in Eqs. (3.24) and (3.25)
and for the mass-singularity-free 4 we refer
to Eq. (B9). The properties pointed out while dis-
cussing the analogous results for DI scattering
apply for the above results, Eqs. (4.2)-(4.V), in
the same way. We point in particular to the off-
shell term of Eq. (4.3) which only contributes for
massless off-shell and which is n independent.
The complete DY hard-gluon part

1
(1 — )'N' M*

Ii i

(4.a)

is also n independent. This insight justifies our
procedure to choose in DI scattering n different
from its value in the DY process. Note that for
massive quarks, 8' is gauge-independent. As
in DI scattering, all initial-state M singularities
originate from the ladder graphs, Figs. 2(b,) and

2(c,), whereas the interference graphs, Figs. 2(a,)
and 2(a~), are M finite.

With the preceding results, we are able to deter-
mine the soft-gluon integrals which are defined as
in Eq. (3.2). Our results for the outer rainbows
shown in Figs. 2(b,) and 2(c,}are listed in Table
VIII. The M/IR singularities manifest themselves
in much the same way as in the analogous DI
graphs, Fig. 1(b~), Table III. The results of the
interference graphs in Figs. 2(a~) and 2(a4) are
assembled in Table IX. The M/IR characteristics
of the components WR "(a=0, 1,2} are the same
as in the analogous DI graphs, Figs. 1(a,) and

1(a4), Table IV. In particular, cancellation of the
M/IR singularities takes place if W ' (0) and
W "(1)are added. In the complete sum of
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On-shell (m &0)

TABLE VIII. Soft-gluon contribution of Figs. 2(b2) and 2(c2).

Correct and
conventional off-shell

(m &0)
Conventional off-shell

(m=o)

X2W"" (0) 21n-Y

m2 m2 m2 2~2
(1) 1

m 21 1
2w

Q2 X2 'Q2

W~ ""(2) 2ln —,X'

w g soft m m m m X 27(
ln

Q2
—2 in~& lr.q2 +21nQ2 +4ln~-

m 3

p2
4 ln~

m

2m' m' m'
21n --2 —4ln—2 ln 2 -m

Q v Q

p24~+4
m m m m

2 ln2~-4 ln—2 lr. 2 +4 ln~
P

2

+8 l~ -x2+4

p)2 p j2 ~2
ln 2 +21n~-—

A
2 in 2 +2

Q
2

ln' —,+41 ~+2-—A
Q Q 6-

', only a single IR logarithm is left which
can be traced back to Ws "'(2). For on-shell and
for conventional off-shell, the m' terms of
W ""(0)and W '(1) compensate with rational
numbers only (and no m' terms) left over For.
correct off-shell W" '(1) and W" '(2) contribute
m2 terms which, however, will remain. They orig-
inate from I [see Eq. (C4)] and from J [see Eq.
(CV)]. These integrals are associated with the off-
shell terms (p, '-m, ')' which, in the asymptotic
limit, do not vanish. The absence of any m' terms
for conventional off-shell is a direct consequence
of the different mass choices. We elaborate on
this point later on.

B. Drell-Yan cross section in the axial gauge

The complete expression for the DY cross sec-
tion is given in Table VI. Comparing the Feynman-
gauge result with the axial-gauge result, we ob-
serve, for the hard-gluon part (s+ 1), the same
features as in DI scattering. This does not apply,
however, for the &(I -s) contribution to W. While

going from the Feynman to the axial gauge we no-
tice, for conventional off-shell, a change in the w'

terms. If the correct massive off-shell and the
conventional massive off-shell are compared, a
difference in the &(I -s) term becomes transpa-
rent. It appears in both gauges. The correct mas-
sive off-shell leads to the same result as found
for on-shell.

The cancellation of the M/IR singularities pro-
ceeds in the same way as discussed in DI scatter-
ing (Sec. IIIC). We form the combination of cut
diagrams which belong to the same bubble graph
in Fig. 2, and observe that, similar to DI scatter-
ing, the sum of vertex corrections, Figs. 2(a, ) and
2(a, ), and interference graphs, Figs. 2(a ) and
2(a~) is finite in the axial gauge. However,
thesum Ws "~((a,)+(a,))+ W" '"'((a,)+(a,))
+ W~*((a,) + (a )) is M/IR regularization independent

only if a consistent mass assignment is chosen (see
remark in Sec. IIIC). In the axial gauge, all M
singularities can be attributed to Figs. 2(b, )-2(b,),
2(c,)-2(c,). The combination W" "'~(b2) + Ws '"'
+ W" '"'(b, ) + W &((b,) + (b,)) is therefore M regular-

Conventional off-shell
(m =0)

TABLE IX. Soft-gluon contributions of Figs. 2(as) and 2(a4). The numbers in square brackets replace the ~ terms in
the formulas if the "conventional" off-shell (m &0) mass assignment is chosen.

Correct off shell
[conventional off shell]

(m~0)

X2~~-soft(2)
Q2

W~- soft i2-2 lr.
Q

g-soft 2m m m 2r2 2 2 2

W (0) ln q2 2 lr. y2 lr q2

m2 m2 m2 27r2&' ""(~)

m' m' m'
2 ln —41n—1n—[-m2]

Q2 p2 Q2

m' m' m'—2ln
Q2

+4ln~ lr. q2 +2m f+~ ]
p

P 'F-4»~ ——(-21
q 2

p 3''-4», + (-2]
Q 2

2
p(2 p 2 g2

lr. q2 lnq2 —
6

2
P(2 P22 ~2

-ln 2 ln 2+—
Q Q 6-

2
-2 ln"',

p 2

-21n '2
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ization dependent. The same applies for the sum of
contributions coming from Figs. 2 (c,)-2(c,).

We here expand on the cancellation of the IB
singularities. That their complete cancellation
sensitively depends on a consistent M/IR regular-
ization scheme was already discussed in Ref. 7.

We demonstrate the subtle points by a (simplified
but illustrative) example. Using the eikonal ap-
proximation of Ref. 11, IR compensation between
the virtual and real (soft) gluon contributions is
exposed. In the vertex correction Fig. 2(a ) in-
tegrals of the form

P xP'

(»)' [k'+ i~][(k —p, )' —m, '+ k][(k+p2)' —m, '+i6] (4.9}

6+ (k2) Pl xP2e P

(2v)' [-2k P, +m, ' —m, '+is][2k ~ P, + m, ' —m, '+is] (4. 10)

appear (see Appendix A). P ~' stands for the spin part of the gluon propagator in any gauge and, in particu-
lar, in the axial gauge [Eq. (1.1)]. The corresponding soft-gluon contribution, Fig. 2(a,), reads

5+ (k2)
. PlxP2e P

(2v)' [—2k p, + m,'' —m4" +is][-2k p, +m,"—m,"+is] ' (4. 11)

Note the masses m;, m,' are a priori kept general.
IB cancellation between V and S wil. l only take
place if

m 2 —m 2=ml2-ml2
j. 3 1 4

m '-m '=m"-m"
2 4 2 3

(4. 12)

V. DRELL-YAN CORRECTION TERM

The above analysis of the order-g' parton cross
sections and, in particular, the emphasis on their
nonlogarithm contributions, is motivated by mass
factorization. The M/IR regularization-free de-
termination of the nonleading contributions in the
RG approach is sought. In the lowest order the

The on-shell mass assignment satisfies Eq. (4.12)
trivially. The conventional off-shell mass assign-

m, ' =m, ' = m,"= m4" =m') does not satisfy this condi- '

tion and the sum (V+ S) is therefore IR regularization
and gauge dependent. In the correct off-shell
mass assignment (defined by m, ' =m,"=m' —p,,',
m =m' =m' —y. m '=m" =m '=m"=m )2 2 2 9 3 3 4 4

however, uniform IR cancellation takes place
leaving (V+ S) IR regularization and gauge inde-
pendent. Examples of Vand S type integrals of
the typical off-shell term (p —m;2)~ are shown in

Appendices A and C. We focus our interest on the
integrals I, (AV), and J, (A17), which we al-
ready consider in connection with the DY vertex
correction. For correct off-shell, their g2 terms
are cancelled by the corresponding soft integral
I, (C4), and J', (C7), since I=I and J=J. For
conventional off-shell. , these latter relations still
hold true as long as q'&0. For q2&0, however,
the equalities turn to inequalities and the g com-
pensation no longer takes place.

l

DY correction term is given by

~„=W(s, q') -S,(e, q') -Sge, q') .
The hard-gluon part of b«(z el) is M/IR regular-
ization independent and it agrees with the Feyn-
man-gauge calculation. However, the 5(1 —s)
part, as already seen in this latter gauge, ' depends
quite sensitively on the chosen mass assignment.
Provided a consistent mass assignment (on-shell' "
correct off-.shell, ' n dimensional' '4) is chosen,
one finds in the axial gauge (as well as in any
other covariant gauge) the result

(5.1)

1+ (5 part
2O., 4g2

(5.2)

However, conventional off-shell (with massive or
massless quarks) provides a gauge-dependent re-
sult. In the covariant gauges one finds &,~= (2n, /3v)(I + Vw'/3) (Refs. 8, 10, 15) (massive or
massless), whereas in the axial gauge the second
factor is changed to (-1+Ilv'/6) (massive quarks)
or (I+4m'/3} (massless quarks). The agreement
between this last result and Eq. (5.2) must be con-
sidered as accidental since &,z depends, for con
ventional off shell, on the -mass assignment and is
gauge dependent.

One encounters the same problem if the total
cross section for e+e y+ qqg is calculated.
The conventional off-shell assignment violates un-
itarity between the vacuum polarization and the
corresponding cut graphs, ' "providing us with a
result which is different from the one obtained by
a consistent mass assignment which respects uni-
tarity. This M/IR regularization technique there-
fore provides us with nonunique and gauge-depen-
dent cross section which is unacceptable.

We comment here on an earlier study' which ad-



2260 B. HUMPERT AND W. L. VAN NEERVEN

dresses itself to the mass regularization problem.
The authors suggest that the use of the Zwanziger
formalism' still allows us to proceed with the con-
ventional off-shell mass assigriment. Their argu-
ments are limited to the DY cross section and they
defend the view that a continuous limit from on-
shell to conventional off-shell is possible. A11
order-g' DY parton cross sections reveal m fac-
tors whose origin stems on one hand from the an-
alytic continuation of the form factor and on the
other hand from other Feynman graph contribu-
tions. The discussion in Ref. 9 is limited to the
first type. Our study reveals, however, that there
are additional m 's whose coefficients are mass-
assignment dependent. Since in the earlier stud-
ies they were ignored, we do not think that any
firm conclusions are possible concerning their
technique.

VI. SUMMARY AND CONCLUSIONS

APPENDIX A

d k

(2w) (n k)D„D;
(A1)

with

D; = (p; —k)' —m, D, = k' —y',

In this section we present some useful integrals
which appear while calculating the virtual (vertex
and self-energy) gluon contributions. Since the
integrals containing the first term in the gluon
propagator (Feynman gauge) are already given in
the literature (see, e.g. , Ref. 7b), we limit our-
selves to those expressions in which the (n ~ k) '
term appears:

Using the priricipal-value definition for the spur-
ious singularities in the axial gauge, we have cal-
culated, in order g, the DI structure function for
y*q- gq and the DY cross section qq- y*g. The
highly sensitive nonlogarithm contributions, ig-
nored in the previous work, were given special
attention. If consistent M/IR regularization me-
thods are applied, the axial-gauge results agree .

with the analogous analysis in a covariant gauge,
and for all massive regularization schemes there
is one and the same answer. In particular, the
correct off-shell mass assignment leads to a
gauge-independent (axial, covariant, etc. , gauges)
DY correction term and its form agrees with the
analogous evaluations where undisputed IR/M tech-
niques (on-shell, n dimensional, etc.) were used.
Our calculations do not confirm the p2 term which
originates from the analytic continuation of the
electromagnetic vertex function in the case of the
conventional off-shell mass assignment as found in

Ref. 9. Notice, however, that in the latter ref-
erence, this term was obtained for n' & 0 whereas
we used n' & 0. The conventional mass regulari-
zation applied in a covariant gauge provides us
with a unique answer irrespective of whether mas-
sive or massless quarks are used. In the axial
gauge, however, there is no longer agreement.
We thus conclude that conventional off-shell leads
to M/IR regularization and gauge-dependent an
steers. Apart from clearing these (seemingly
technical) points, our study gives insight into the
complexity of the calculations in a general axial
gauge. Analyses on this level have so far not been
completed and the ways to overcome these tech-
nical problems have not been shown. With the
present paper we also aim to fill this gap.

1 )d k (n p~) n' n'

G J (2v) D;D» 2(n k)D; 2(n k)D»

'(npP —mP)
2(n k)D;D»

1 d "k (n p~) (n p~)
6 (2s) 2(n k)D; 2(nk)D»

pf ™fpf.2 .2 .2
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The integrals with a (n k)' in the denominator can be determined via k differentiation. One finds
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where P and N are defined near Eq. (A7},
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with G defined near Eq. (A3).
We have tested unitarity on the (axial gauge)

self-energy. The usual Feynman integral is first
evaluated with the results listed in Eq. (3.12).
Subsequently, we write a dispersion relation and
fix the discontinuity via the Cutkosky rules. If
unitarity holds, the two results must agree. Vfe
illustrate some on-shell subtleties on the integral
I, [see (A8}]. Its discontinuity, evaluated via the
Cutkosky rule's, reads

(A23)

It follows from solving the equation which results
if the denominator in the logarithm argument
vanishes. Without the prescription of Eq. (1.2),

Note (1/n k) in Eq. (A21) is always understood as
a principal value as defined in Eq. (1.2). The
(n k) term changes sign while passing in the in-
tegration range (m+ X)'& s(~ the point

( (p .n}2)1/2
s =m'+~'+2m~~ 1—n'm' )
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(n k) would give rise to a cut, since in the loga-
rithm of E(l. {A21) the absolute sign would be ab-
sent. The dispersion integral

dispersion integral can be evaluated without addi-
tional difficulties.

1 " ImI,
ds

7t' (222+)t)2 S —Pl
(A24)

APPENDIX B

is evaluated by using the discontinuity of E(l. (A21)
and by separating the integration range into the
two parts [(m+X)', s~] and [s~, ~]. The result of
this simple calculation agrees with the Feynman
integral in E(l. (A8}. For off-shell mass assign-
ment there is no such pseudothreshold s and the

In this section we present the phase-space in-
tegrals which appear in the hard-gluon part of the
DI and DY processes. In DI scattering y*q -gq
the phase-space integrals are generally denoted
by

I"'&'= d P2d k5 P2 —m2 5 k —X 5 Pg+q-P2- k (n. k) [(p, -k) -m, ]' ' (B1)

%e shall present here only the results which in-
volve the (n. k)' denominators. In shorthand no-
tation they are given by
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The phase-space integrals appearing in the DY
process are generally denoted by

I
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—q —k}
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Their explicit evaluation reveals
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~s-soft ~s oonv(~) + L (~-e ) (c1)

I

shell mass assignment and which contain the

(n ~ k)' denominator. For convenience purposes we
choose here a calculation technique which differs
from the one given in E(l. (3.2). We take advantage
of the connection [see Ref. 7(b} and E(l. (3.15)]

J- 2,0)( 2g 1
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so that considerable simpl. ifications occur since
L(&u, e)-0. We thus may limit ourselves to the
evaluation of

where Ws """(&u) is simply the convective part of
the diagrams describing real. gluon production. If
the numerator has no terms which contain the gluon
momentum, we are allowed to put

APPENDIX C

In this appendix we present only those two soft-
gluon integrals which lead to m' terms in the off-

"d'u 1
2k (n ~ k)' [(p, —k}' —m, '][(p, —k)' —m, ']

(I=1,2), (C3)
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where v is given in (C2). Straightforward calcula-
tion reveals

logarithm only. After the constraint (C2) has been
imposed, one finds

(C4)

where

d'k
2k (n ~ k)' [(k —P,)' —m, '] (C 6)

is the soft analog of I, in Eq. (A13) providing a

lr 7r
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with I given in Eq. (A7). The 1=2 integral reads

7r2 1I=J=-—
2 p2@ 2 (C 8)

R ' = —Z= —J(p, -p„p - -p, ) (C7)Q2))222
with J' defined in (A17). I, (C4), and Z, (C7), are
the analytic continuations to timelike q of the in-
dicated virtual-gluon integrals I,J contributing to
E"". While adding the soft and virtual contributiona
to the DY cross section, I cancels I and similarly
J cancels J. For massive off-shell one finds, for
example,
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