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Noether analysis for the hidden symmetry responsible for an infinite set of nonlocal currents
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In general two-dimensional principal chiral models we exhibit a parametric infinitesimal transformation which is
defined for all field configurations and leaves the action invariant. This "hidden" symmetry (i.e., the invariance of
action) leads, through a Noether-type analysis, to a parametric conservation law. Expanding in the parameter, we
find a systematic procedure to write down the infinitesimal transformations responsible for higher nonlocal currents
and thus complete the derivation of the infinite set of nonlocal currents as Noether currents.

I. INTRODUCTION

In the last few years, an infinite set of nonlocal
conservation laws has been found in classical two-
dimensional chiral models. ' ' The existence of
these nonlocal charges is a signal for the presence
of a highly nontrivial hidden symmetry in these
models.

From earlier derivations of these nonlocal cur-
rents which made use of either the equations of
motion' or the solution-generating "dual symme-
try"'»" or the "linearized" (i.e. , inverse-scatter-
ing) equations, ""ethe hidden symmetry was
shown to exist in the solution subset of all field
configurations. Naturally there arises the follow-
ing question: Does such a symmetry exist in the
entire space of field configurations which leads,
via Noether's theorem, to the infinite set of non-
local currents?

Dolan and Roos' have given a partial answer to
the question. They wrote down explicitly two non-
local infinitesimal transformations, from which
the first two nonlocal currents were derived as
Noether currents. However, they were not able
to simply generalize their results for arbitrary
higher nonlocal currents.

In this paper we give a complete answer to this
question for principal chiral models. In the spirit
of using a parametric conservation law to sum-
marize the infinite set of nonlocal currents, ' ' we
use a parametric infinitesimal transformation to
summarize the infinite set of infinitesimal trans-
formations responsible for the nonlocal currents.
To find an appropriate form for the parametric
transformation, we first present in Sec. II a new'

derivation for the conservation laws starting from
a parametric symmetry transformation in the
solution set. Then by generalizing it to arbitrary
fieM configurations, we obtain the desired trans-
formation which is displayed in Sec. III. In the
same section, we also give a proof for the invar-
iance of the action, thus showing that the para-
metric infinitesimal transformation is indeed a
symmetry of the whole space of field configura-

tions. In the subsequent sections (Secs. IV and V),
using different methods, we show how to obtain
nontrivial nonlocal conservation laws from the
hidden symmetry. In particular, we find a sys-
tematic expansion for obtaining the infinitesimal
transformations responsible for arbitrary higher
nonlocal currents, so that we can claim that we
have completed the derivation of the infinite set of
nonlocal currents as Noether currents.

Finally, conclusions are summarized in Sec. VI,
and a discussion about the interpretation of our
transformation and possible generalizations of our
results are also presented.

Our calculations are perforMed in Minkowski
space-time. The metric used is Qpp=

pop &i 0 1 p p 1 .All formulas in this
paper may be extended to Euclidean space without

difficulty.

II. A NEW ON-SHELL DERIVATION

&(x) = I'8tr(&„g(x)s"g '(x)),
where g(x) e G, a matrix Lie group. Defining

(2.1)

A, (x) =g 's„g, (2.2)

the equations of motion obtained from Eq. (2.1)are

eA =0.
As a pure gauge potential, A„(x)satisfies

s„A„—s„A„+[A„,A„]=0.

(2.3)

(2.4)

It is easy to see that under the global transfor-
mation

To exhibit more explicitly the connection between
nonlocal conserved charges and a hidden symmetry
which exists at least on-shell, we present here
a new derivation of nonlocal currents starting from
an on-shell symmetry transformation, which will
give us some hints to generalize the symmetry
off -shell.

For the principal chiral models, the Lagrangian
density is

2238



QOETHER ANALYSIS FOR THE HIDDKÃ SYMMETRY. ..
I

2239

6Z = —', tr (-A „8"(g '6g)}= 0 . (2.6)

This invariance gives rise to the conservation of.
lf the constant generator T in Eq. (2.5) is re-

placed by a space-time-dependent T(x), the La-
grangian density is generally not invariant, as
seen from Eq. (2.6).

However, if we assume T(x) to be the following
particular matrix function of space-time

T(x) = U(x; l)T U(x; l) ', (2 7)

with U(x;l) e G satisfying the so-called "inverse-
scattering equations" (l being a complex param-
eter)'

8OU= p (lAO -A, )U,
l

8,U=1 P (/A, -A,)v,l (2 8)

then we can show that for those fieM configurations
which satisfy Eqs. (2.3) and (2.4), the Lagrangian
density (2.1) is changed by a total divergence under
the infinitesimal transformation

(2.5)

where T= a'T, (with infinitesimal constants c(') be-
longs to the Lie algebra of the group G, the La-
grangian density (2.1) is invariant:

8 "J„(x;l) = 0, (2.14)

where the parametric conserved current J is

J'„(x;l) = U(x; l) 'A „U(x;l )

——a„„v(x;1)'8 "U(x;l), (2.15)

which summarizes the usual infinite number of
nonlocal conserved currents. Performing a Taylor
expansion in l around l =0, we obtain the desired
infinite set of nonlocal charges given in Ref. 1,
the first two being

y OO

q, =
'

dxA, (x, t),
w OC)

(2.16)

q, = dx dx' A, (x, t)A, (x', t)
a 00 00

dxA, (x, t).
00

from this on-shell symmetry is straightforward.
Using the equations of motion Eq. (2.3), we easily
obtain another expression for 6R:

5$= ——'8" tr(A g '5g}=-'8" tr(v 'A. „UT}.(2.13)

Now from Eqs. (2.12) and (2.13) we get the con-
servation law

6g= -gT(x) -=-gU(x)TU(x) '. (2-9)
III. THE OFF-SHELL HIDDEN SYMMETRY

In fact, in this case we have

6Z = ——,'tr(A „8"(g '5g)}

=-,'tr(A„8 (VTV ')}-
,'tr(tV-~A V V-'8 V]T}. (2.10)

From Eq. (2.8) we can express U'A„v in terms
of U '8„U,

U-A, U =—z„„U-'8"U —U-'8 „U. (2.11)

Upon substituting Eq. (2.11) into Eq. (2.10), 52 can
be expressed as a total divergence

The above derivation is not in the spirit of
Noether's theore~, because in a derivation of the
conservation law in the manner of Noether one
needs an off-shell symmetry, i.e. , a symmetry
of the whole space of field configurations. %e
will show in this section that we can indeed im-
prove our derivation to exhibit the existence of
an off-shell symmetry which is responsible for the
infinite set of nonlocal charges.

To generalize the transformation (2.9) off-shell,
it is sufficient to require that U(x) should satisfy
one of the inverse-scattering equations (2.8), e.g. ,

52=-,8 tr —z„„U'e„UT .1 (2.12) 8,U= 2 (lA, -Ao)U.l
(3.1)

This means that the action is invariant under the
transformation (2.9).

It should be pointed out that since the integra-
bility conditions of Eq. (2.8) are just Eq. (2.4) and
the equations of motion Eq. (2.3), the transforma-
tion (2.9) is defined only for those field configura-
tions g(x), which satisfy Eqs. (2.3) and (2.4), and
only for them is 5S given by Eq. (2.12). Because
of this, we call this symmetry, Eq. (2.9), an on-
shell symmetry.

The derivation of nonlocal conserved currents

Thus, we are led to consider the following non-
local infinitesimal transformation defined for all
field configurations:

6g= -gU(x;l)TU(x; l) ' (3 2)

with the space-time function U(x) given as follows:

2
U(e;)) peep(, =d)[24,(), ()-A,(),e)]).

(3 3)

To show that (3.2) is really an off-shell symme-
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try, we need to prove that for arbitrary g(x), the
change in 2 under (3.2) can still be expressed as
a total divergence without using the equations of
motion. Hence in this derivation, use of only Eqs.
(S.l) and (2.4) is allowed. We start with Eq. (2.10),
i.e. ,

M = Btr{[U 'A, U, U '8UUJT

T,„=-',trI —,'g„~]A„-A, A„,
the vanishing of its variation requires

&T00 = &Tii

= -8 tr(AUD, T(x)+A,D, T(x)) = 0,
&Tox =~Txo

(3.10)

—[v 'A, v,-v '8,v]-Tjf.

From Eq. (3.1) we have

v '8,U=, (lv 'A, v —v 'A, v).

(3.4)

(3.5)

= ——,'tr(A, D, T(x)+ A, D, T(x)] =0.

For on-shell g(x), using Eq. (2.8), we have

8„T(x)= 8„—[U(x)TU(x) ]= le „DT(x),

Making use of this equation, we can rewrite M
as follows:

l2
M] jt l U-lB U U-lB U T

D„T(x)=,A„-1 i, e„„A",T(x)
1 l

B»

from which it is easy to check Eqs. (3.9) and (3.10).

+l [U 'A, U U 'BU]T+l, [U 'A, U U 'A, U]T j
r U'B U, U'B,UT+l U A, U, U BoUT

+l[U'A, U, U 'A, U]T l[U 'B, ll, U A U]T j
(3.6)

Observe that, by using Eq. (2.4), we have

[V-'A, ,V, V 'A. ,V] = V '(-8,A, -8,A, )V . (3.7)

Then the sum of the last three terms in Eq. (3.6)
can be recast into the form -/e""8„(U'A„U)T.
Finally we get the desired form for 5S,

6S=-.'8" tr
~

e V'8"V(1 -l'

IV. NONLOCAL CURRENTS
AS NOETHER CURRENTS

Now we turn to seeing how the off-shell hidden
symmetry transformation (3.2) with (3.3) gives
rise to the infinite set of nonlocal currents as
Noether currents.

The simplest way to derive nonlocal conserved
currents seems to be the following. For on-shell
g(x), Eq. (2.13) still holds. By equating Eq. (2.13)
still holds. By equating Eq. (2.13) and Eq. (3.8)
we are led to the "conservation law"

BJ =-B" U A U+l& „UAU

-l&„„UA "U T (S.8)

j.- l UBU=0 (4.1)

which shows that the action is invariant under the
off-shell infinitesimal transformation (3.2), with
U given by Eq. (3.3).

In addition to the off-shell invariance of the
action, the transformation (3.2) with (3.3) leads
to the following two on-shell invariances:

(1) The equations of motion are invariant under
5g.

(2) The variation of the energy-momentum density
due to 6g vanishes on-shell.

The proof follows from the fact that the function
U defined by Eq. (3.3) satisfies both inverse-
scattering equations (2.8), not just Eq. (3.1), for
on-shell field configurations g(x). In fact, writing
6g= -gT(x), the invariance of the equations of
motion (2.3) requires U(x;l) = I++ l"g "'(x), (4.2)

However, from Eq. (3.1) we see that J, is identi-
cally zero even off-shell; similarly J, is equal to
zero on-shell by Eq. (3.8). Thus the "conserved
current" J„turns out to be a trivial current.

Nonetheless, this does not mean that we can ob-
tain only a trivial current from the off-shell hidden
symmetry (3.2) with (3.3). Actually, as shown
below in this section, we can obtain the usual
infinite set of nonlocal conserved currents by
dropping some terms, which are total divergences
and identically equal to zero, from the expression
(3.8) for 5S.

To this end, we expand the function U(x;l), de-
fined by Eq. (3.3) in powers of the parameter l,

8 "T(x)=—8 8 "T(x)+[A, 8 "'T(x)]=0,

while for the energy-momentum density

(3.9) in which, for convenience of comparison with the
known results in the literature, we put



NOETHER ANALYSIS FOR THE HIDDEN SYMMETRY. . . 2241

~(1& x(1&

q(2& x(2) + 1(x(1&)2

g(3) (3) + 1( (1) (2) (2) (1)
)+ 2(x

(4.3)
s,x'"=-& +-'fx'" &.j,

(4.6)

0'" =x'"+ 2[(x'")'+x'"(x'")' --'(x'")']
+ i( (1) (3) (3) (1)i

From UU ' = 1 we obtain the expansion of U ' in l
as follows:

I'1(x I) ' =1 -g l"(t&( "'(x),
n =1

where

q( -1) (1)

g(-2) (2& 1( (l&)2

0( 3) (3) 1/ (1) (2) . (2) (1))—2(X

q( 4) (4) 1[( (2))2 (2)( (1))2 1( (l))4]

1( (1) (3) (3) (1)i

(4.4)

(4.5)

Substituting Eq. (4.2) with (4.3) into Eq. (3.1) and
comparing the coefficients of the terms in /" on
both sides, the following equations satisfied by

x '(x) are obtained recursively order by order:

6'" 2= —,
' tr(A ()"&('" ) (4.9)

can be expressed as a total divergence order by
order without using the equations of motion:

+l[[&., x'"],x'"]+lx'"&.x'"+&., "
It is easy to obtain X

"
(x) by integrating the right-

hand sides of the above equations. Using these
x

" (x)'s, we define the following infinite set of
infinitesimal transformations obtained by expanding
the parametric transformation (3.2):

6'")g =-gX(") (n=l, 2, 3, . . . ) (4.7)
x(1& [ (1) +]
&'" = fx'", 1"]+llx'", [x'",7']], (4.6)

&'" = [x'",7']+2[x'"I'x'",x'"]+2[x"[x'",7']j

+3[x'" [x'",1"]].

By a direct but very tedious calculation, the var-
iation of 8 for 5'"'g

6 "&=-.s„trf(-.e""[s.X,X j -e"&.)~)
6'"& = 3s tr((e""Is.X'",X'"]+&~""[[s.X'",X'"],X'"]-e""f&., X'"j)7],
6'"& = 3S

„

tr&e'"([().X'",X'"]+2[X'",S.X'"]+2[X'",S.X'"]+l [f6.X'",X' "],X'"]

+ l[[().X'",X'"],X'"]+3[s.(X'")', (X'")']+[X'",&.j -2[X'",fX'",&,]])1']

Using the equations of motion (2.3), from (4.9) 5 "8 can be directly written as
6'")Z =-,'S)' tr(A„X'")j.

Equating Eqs. (4.11) and (4.10a)-(4.10c), respectively, we obtain the conserved currents

S vt(3) 0 t

where

J(1 = [/ x &] 4. e /" —e [s"x 1&
x ]

&'" = [&„,x'"]+2[[&„,x'"],x'"]-e„„[s„x'",x'"]
—g~..[[s"x'",x'"],x'"]+e„.f&",x' "],

g(3) [~ (3)] 1[ (1)~ (1) (1)]+l[[g (1)] (2)] 1[[~ (2)] (1)]

([sV (1) (3)]+ 1 [x(2)' sV (2)] 1[ (1) ()V (1)]

+ l [[s"x'",x'"],x'"I+ lf[s "x'",x'"],x'"]
+-.'[s'(x'"), (x'")']+ [ '" ~"]--'[ '" [ '" ~ "]])

(4.10a)

(4.10b)

(4.10c)

(4.11)

(4.12)

(4.13a)

(4.13b)

(4.13c)

(4.14)

These currents are obviously not trivial even on-
shell. It can be easily checked that the corres-
ponding nonlocal charges

+ 40

q(") =
()(2

I

obtained from Eq. (4.13) are just the usual ones in
literature [see also Eq. (2.16)]. In Eq. (4.13) the
currents 4„'"'are defined for off-shell field con-
figurations, and they reduce to the standard form
when the field g(x) are restricted on-shell.
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For n=1, 2, the above formulas Eqs. (4.6)—(4.13,
are identical to corresponding ones, appearing in
Ref. 9 [Eqs. (2.2)-(2.9)], except for some differ-
ences in sign arising from the difference in the
signature of space-time. However, by a syste-
matic expansion, we can obtain the infinitesimal
transformations and higher nonlocal currents for
n&2; for example, we have already worked out
explicitly the case n= 3 in detail, in which both the
expression for X ", Eq. (4.8), and the equation
for y'", Eq. (4.6), are too complicated to be
guessed.

It is interesting to compare Eq. (4.10) with
Eq. (3.8). We find that Eqs. (4.10a)—(4.10c)
are obtained if we expand the right-hand side
of Eq. (3.8) in powers of / and drop terms which
are identically zero such as, c""8„8„X"',

+S„g'"S&X ), and so on. So in effect, the non-
trivial currents J„"'or Eqs. (4.13a)-(4.13c) can
also be obtained from the trivial current J„[see
Eq. (4.1)] by expanding the latter in powers of /

and then dropping terms whose divergence is
identically zero.

We point out that we have the freedom to rede-
fine the function y'"'(x)(n~ 2) in terms of which
5 "'g and 5 "'2 are expressed. We choose Eq.
(4.3) to define y "(x) only for convenience in
comparing with literature and to write all terms
in O'" 2 in the form of a series of commutators.
Actually, the simplest way is to define g'" (x)
= g

" (x) [see Eq. (4.2)]. The above procedure
can be applied to the redefined g "; Eqs. (4.5)-
(4.13) will change their appearance, but the phy-
sics is the same. Especially, the off-shell cur-
rent J'„"may change by divergenceless terms,
while the nth nonlocal charges Q

" does not change&n&

on-shell.

x'

),(«)= d«' —U '«, U — —,(« '(/A, —A, )U) (5.1)

which satisfies

U—'s, U —,U '(l-l
By a direct and somewhat lengthy calculation, in
which only Eqs. (3.1) and (5.2) are used, we can
recast the off-shell 6Z in Eq. (3.4) into the form

M = 8 tr -E.""8„U8„U+ ~, U ~ BuA„U

6Z = 88„tr(U '4"UT) (5.4)

(5.5)

, S„tr(e""U'A„UT) (5.6)

, (r '(«('+t«""«(„)(( T) (5.3).
It is easily seen that the last two terms vanish
while on-shell so that M then become s a total
divergence. Then equating Eqs. (5.3) and (2.13)
gives also the conservation law (2.14), so in some
generalized sense, the parametric current (2.15)
can also be viewed as a Noether current derived
from the hidden symmetry transformation (3.2)
with (3.3).

Incidentally, we observe that the total-divergence
form for the on-shell 6Z is not unique so that we
can have several different forms for the para-
metric conserved current. For instance, on-shell
we have

48„tr(U—'6"UT) . (5.7)

V. PARAMETRIC NONLOCAL CURRENT
AS NOETHER CURRENT

They are equivalent to each other through the in-
verse-scattering equation (2.8), i.e. ,

The merit of the derivation in the last section
lies in the fact that it allows one to express the
change in Z as a total divergence order by order,
even for off-shell configurations. However, by
means of this method one cannot obtain a para-
metric conserved current which summarizes an
infinite set of nonlocal currents.

In order to derive a parametric current from
the hidden symmetry (3.2) with (3.3), we observe
.that to get a conservation law from the symmetry
it is sufficient to recast the 6Z in Eq. (3.4) into
a form which is a total divergence of a vector
different from U 'A„Uonly when on-shell. To
this end, let us introduce the function

(5.8)

8 "(U '6 U+ —'U 'A U) = 0 (5.9)

By choosing different pairs from these equations
we may get different forms of parametric con-
servation laws. For example, the J„in Eq. (2.15)
is obtained by choosing Eqs. (5.4) and (5.5);
equating Eq. (5.4) and Eq. (5.6) gives the current
as given in Ref. 5; and the conservation law as
given in Ref. 3 can be recovered by combining
Eqs. (5.5) and (5.7). . Other combinations may be
used to give some formally new (but essentially
old) parametric conservation laws, e.g. ,
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(5.10)

(5.11)

VI. CONCLUSIONS AND DISCUSSION

We have shown that in two-dimensional principal
chiral models there exists a (off-shell) hidden
symmetry which shifts the Lagrangian density by
a total divergence and is responsible for the exis-
tence of an infinite sequence of nonlocal conserved
charges. The infinitesimal transformation for
the (off-shell) hidden symmetry is exhibited by
Eq. (3.2) with (3.3). Since the matrix function U

given by Eq. (3.3) depends one„nonlocally, this
infintesimal transformation (3.2) transforms the
field g(x) nonlinearly and nonlocally. Moreover,
because the function U contains a complex param-
eter /, the infinitesimal transformation is also
dependent on l,, so that it leads to a parametric
Noether current. Expanding the latter in / gives
an infinite set of usual nonlocal currents. The
derivation of the first two nonlocal currents as
Noether currents in Ref. 9 becomes part of our
discussion, appearing as the special case cor-
responding to the first two terms in the expansion
of our parametric infinitesimal transformation.
Our formalism also provides a systematic way to
obtain the infinitesimal transformations for all
higher nonlocal currents.

The infinitesimal transformation (3.2) with (3.3)
proposed here has an interesting physical interpre-
tation. We know that 6g = -gT represents a global
isospin rotation. So our transformation 5g
= -gU(x) TU(x) ' represents a local isospin rotation,
which looks like one and the same i.sospin rotation
if seen at various space-time points from the local
isospin frames obtained by doing a gauge rotation
V(x) = U(x) '. Equation (3.3) implies that these local
isospin frames are parallel to each other" along
the equal-time lines with respect to the gauge po-
tentialA„= -l(lA +e„Q")/(1-P). For on-shell
configurations, 4„is also curvature-free"' so the
local isospin frames at all space-time points are
parallel to each other with respect to A„.How-
ever, we have not succeeded in understanding why

just this potential appears in the symmetry trans-
formation. Further implications and the geome-
trical interpretation of the transformation (3.2) de-
serve more attention.

We emphasize that the gauge rotation U(x) ' in
the transformation is not an arbitrary one. It is
a particular function of space-time, nonlocally
dependent on the field g(x) by Eq. (3.1). While
on-shell it satisfies the inverse-scattering equa-
tions (2.8), in which the functions U(x;l) can also
be viewed as the dual transformation operators. "
In this way, our off-shell parametric "hidden"
symmetry can be viewed as the off-shell general-
ization of the usual on-shell, dual symmetry. It
would be very interesting to. generalize the off-
shell dual symmetry to four-dimensional non-
Abelian gauge theories.

It is easy to generalize the method and results
of this paper to the discussion of hidden symmetry
in more general cases such as supersymmetric
chiral models"" and nonlinear o models on sym-
metric spaces. "' The details for these general-
izations will be published elsewhere. The discus-
sion concerning the group structure of the symme-
try and related problems are in progress.

Note added. After this paper was submitted, we
became aware of a paper by T. Curtright and
C. Zachos [Phys. Rev. D (to be published)j that
parallels some of the discussion of the present
paper for the O(N) Gross-Neveu model using a
different approach.

ACKNOWLEDGMENTS

The authors are grateful to Professor C. N.
Yang, Professor H. T. Nieh, and the Institute
for 'Theoretical Physics, SUNY at Stony Brook
for the warm hospitality extended to them. They
thank Dr. L.-L. Chau Wang for useful discussions
and for reading the manuscript. B. Y. Hou would
like to thank the Yale Physics Department for their
hospitality where part of the work was done and to
thank Professor H. C. Tze for helpful discussions.
He also wishes to thank Dr. L. Dolan for mailing
her papers to him before publication. This work.
is supported in part by the National Science Foun-
dation Grant No. PHY-79-06376A01.

*On leave from Northwest University, Xi-an, China.
~On leave from Lanzhou University, Lanzhou, China.
IPermanent address: Institute of Theoretical Physics,

Academia Sinica, Beijing, China. Address after
September, 1981: Institute for Advanced Study,
Princeton, New Jersey 08540.

~M. Luscher and K. Pohlmeyer, Nucl. Phys. 8137, 46
(1978).

2E. Brezin, C. Itzykson, J. Zinn-Justin, and J. B.
Zuber, Phys. Lett. 82B, 442 (1979).

SH. J. de Vega, Phys. ' Lett. 87B, 233 (1979).
4H. Eichenherr and M. Forger, Nucl. Phys. B155, 381



2244 HOU BO- YU, GE MO-LIN, AND WU YONG-SHI

(1979).
~A. T. Ggielski, Phys. Rev. D 21, 406 (1980).
T. L. Curtright and C. K. Zachos, Phys. Rev. D 21,
411 (1980).

VC. Zachos, Phys. Rev. D 21, 3462 (1980).
Chou Kuang-ohao and Song Zing-chang, Report No.
BUTP 80-003 (unpublished).

9For a review on this and related subjects see I .-L.
Chau Wang, in Proceedings of the 1980 Guangzhou
Conference on Theoretical Particle Physics (Science,
Beijing, China, 1980); and talk at the International

School of Subnuclear Physics, Erice, Italy, 1980 (un-
published).

~ L. Dolan and A. Boos, Phys. Rev. D 22, 2018 (1980).
~~For a discussion about the use of parallel-transported

local frames in gauge theories, see B. Y. Hou, Y. S.
Duan, and M. L. Ge, Sci. Sinica 21, 446 (1978).
P. Di7ecchia and S. Ferrara, Nucl. Phys. B130, 93
(1977); E. Witten, Phys. Rev. D 16, 299 (1977);
Z. Popowicz and L.-L. Chau Wang, Phys. Lett. 98B,
253 (1981).


