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Effect of a strong magnetic field and high temperature on broken gauge theories
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We explore the consequences on spontaneously broken gauge theories of a simultaneous presence of strong
magnetic field and high temperature.

The idea that the vacuum may not display the
symmetry of the Lagrangian has been exploited'in
several areas of physics. In the area of high-en-
ergy physics these ideas have been used to con-
struct unified field theories. ' In the area of solid-
state physics examples of similar nature occur
in magnetic ordering, superconductivity, ' etc ..
It is worthwhile to note here that the physical
states share the symmetry of the vacuum state
as opposed to the symmetry of the Lagrangian.

The symmetry of the vacuum depends on con-
figurations of temperature' and external field. 4 In

the area of high-energy physics it is well known

that a phase transition may occur for sufficiently
large values of the temperature or external mag-
netic field. However, a phase transition under the
simultaneous impact of the external field and
temperature has not been studied so far.

The motivation for studying these phase dia-
grams in field theory is twofold:

(i) The critical temperature in the simplest of
gauge theories, the Weinberg-Salam theory is
roughly 10"-10~' degrees. Similarly, the critical
field is estimated to be as high as 10"G.' Such
high magnitudes of temperature and field are not
known to exist anywhere in the universe. Thus
the realization of the symmetric vacuum remains
problematic. It is necessary to point out that un-

til the symmetric vacuum is realized experimen-
tally, or observed, one of the fundamental as-
sumptions of these theories remains unconfirmed.

The phase diagram of superconductivity may
bring home the importance of the simultaneous
impact of the external magnetic field and temper-
ature. ' It is obvious that to enact a phase transi-
tion it is not necessary to reach the maximum
value of the critical magnetic field or the maxi-
mum value of critical temperature. Indeed, a
point between these critical parameters could be
substantially below their respective maximas and
still effect a phase transition. This necessitates
putting both external parameters (external field
and temperature) together.

The simultaneous impact of the external mag-
netic field and temperature may reduce the es-

timates of both temperature and the magnetic
field required to enact a phase transition. A high
magnetic field is known to exist in nuclear matter.
In stars hot nuclear matter abounds. Therefore,
it may become possible to observe a symmetric
vacuum in these objects.

(ii) The second motivation rests on an analogy
between field theory and solid-state physics. Re-
cently, it has been shown' that in theories that
break CI' symmetry softly through a vacuum, the
CI' asymmetry of the vacuum may persist at high

temperatures (in fact, the CP asymmetry will
probably not disappear at any temperature). The
crucial feature of these theories is the simultan-
eous existence of more than one Higgs multiplet.

In solid-state physics such systems have recently
been discovered. ' Coexistence of magnetic order-
ing and superconductivity in the atmosphere of an
external magnetic field and temperature has
raised considerable interest of late. Analysis of
this problem from field theory with more than one
Higgs multiplet may give us some insight into
ways of realizing superconductivity at high temper-
atures. With these goals in mind we set up a pro-
cedure for computing the effect on the ground state
of a strong external magnetic field and tempera-
ture together.

Several points need to be emphasized in this con-
text. First, our procedure will follow closely the
earlier work (with the external magnetic field
alone) by Salam and Strathdee. ' Second, in their
work they considered only small magnetic fields.
In practice, however, in realistic gauge theories
a small magnetic field is unlikely to yield the re-
quired critical field. Therefore, it is necessary
to study the effect in the presence of an intense
magnetic field. Finally, the effective potential in
an intense magnetic field is beset with ambiguities.
In particular, we obtain quantum corrections that
have complex coefficients which are difficult to
interpret. As will be mentioned later, this dif-
ficulty arises owing to nonpositive energy eigen-
values of the excitation spectrum of charged gauge
bosons. ' In the spirit of Salam and Strathdee we
avoid this difficulty by summing over the physical
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part of the energy spectrum that is positive defin-
ite. We only hope that this procedure of retaining
only the physical states will prove reliable.

Further, we want to emphasize that we are un-
able to compute the effective potential to one loop
exactly. Instead, we make a Euler-Maclaurin ex-
pansion of the effective potential. " Our earlier
work convinces us that such an approximation is
not far off the mark. In fact, by taking appropriate
limits we have established that this approximation
does make sense.

Under these assumptions we consider the pos-
sibility of symmetry restoration. Our results in-
dicate that the possibility of symmetry restoration
becomes likely in the simultaneous presence of an
external magnetic field and temperature. How-

ever, owing to difficulties associated with the
choice of the renormalization scale our observa-
tions would have to be qualified.

In Sec. I we outline the method of calculation of
the effective potential under the external magnetic
field and temperature. In Sec. II we carry out the
calculations for contributions of scalar particles.
In Sec. III we discuss the effect of gauge bosons.
In Sec. IV we compare our results with the ones
previously known and touch upon the difficulties
that still need to be overcome in order to carry
out realistic calculations.

I. EFFECTIVE POTENTIAL

To be definite let us consider a scalar field
multiplet P that belongs to an irreducible repre-
sentation of a group containing electromagnetism
Let us also assume that the potential part of the
Lagrangian of this field is of the Higgs type so that
we have spontaneous symmetry breaking. We of
course assume that the electromagnetic symmetry
stays intact.

The Lagrangian far such a system is given by

'F;.F'.—2 (&,-4) '(D, 0)- i'(4),
where &(Q) is the classical potential. The above
Lagrangian describes the field system at absolute-
zero temperature. We will be interested in the be-
havior of the field system away from absolute
zero, i.e., for finite values of temperature. The
expectation is that for some critical temperature,
the symmetry (which is spontaneously broken at
O' K) will be partially or completely restored.

Aside from that, we will also introduce an ex-
ternal magnetic field into the above Lagrangian.
The procedure for doing this has been amplified
in Ref. 4 and we will not repeat those steps here.
The introduction of an external magnetic field is
also meant to restore symmetry.

The study of phase transition in field theory is

v, =--i2(lniD )
, d k

(3)

where & is the scalar propagator.
We find it convenient at this stage to divide the

particles in our system into two groups: elec-
trically neutral and electrically charged. The
reason for this grouping is that the external mag-
netic field affects only the charged particles while
temperature affects all the particles. The rele-
vant quantities for the charged particles will from
now on be written with a subscript c, and that for
the neutrals will be given with the subscript n.

Define M„2($) as the second derivative with re-
spect to the neutral fields evaluated at the classical
minima while M,2($) is the corresponding second
derivative with respect to charged fields evaluated
at y'=O.

So far as the neutral fields are concerned, since
they are unaffected by the external magnetic field,
the results obtained by Jackiw and Dolan' are
taken without any modifications. For charged
scalars the procedure is to be modified as fol-
lows. We will first carry out the d'k, integration
by the procedure outlined by Jackiw and Dolan.
Subsequently, we shall sum over all the zero-point
excitations (keeping only the positive-energy part
of the spectrum for gauge bosons). To carry out
the dk, integration we note that it can be replaced
by a sum (as explained by Jackiw and Dolan).
Thus,

and

dk,
a

(4)

D (5)
cp tl 4+2+2/P 2 + @ 2(m)

C2 tl

where F, „2(m) is the excitation energy spectrum
to be defined shortly. Note that the subscripts re-
fer to either charged or neutral particles. We
shall, of course, concentrate an the charged par-
ticles since the results for the uncharged particles
have been obtained by Jackiw and Dolan. Thus,

done by studying the effective potential. This
question has been broadly studied in Ref. 3. The
procedure replaces the classical potential by
studying the effect of one-particle-irreducible
graphs with all the external momenta set at zero.
Thus, we get the loop expansion

V' =Vo+V, +V2+ ~ ~ ~,
where V,. gives the correction to V„ the tree po-
tential, due to one-particle-irreducible diagrams
with i loops with "amputated" external legs. Thus,
for the scalar field theory above we get (following
Ref. 3)
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we get v and take the derivative with respect to v and then
go to the v=0 limit. This gives

II. CONTRIBUTION FROM THE SCALARS

We now evaluate V, for scalar particles. The a
sum is performed following Jackiw and Dolan.
The addition of the magnetic field only changes
the excitation spectrum. Thus, we get

V =P'+ V,

~

3
~~ ~~

~

~ ~~
~

~

3

~

~ ~~
m

In I ~ eIdpk ~E 1 ) dpk

( f)

where V,' is the part independent of temperature
and V, depends on temperature. Thus the first
integral on the right-hand side is V', while the
second corresponds to V, . In the presence of a
magnetic field in the direction labeled by sub-
script H, the density of states is no longer d'k/
(2&)' but is given by (ea/2tt) dkH/2tt. The excitation
spectrum is given by

(2eH)' ln2eH (2eH)2 1 M~2

(4v)' 2 (4v)' 2 2ea

(2ea)' 1
(tw) t 'teH )' (14)

V,' =—,(ln2eH —1)(2M,4)

-(2ea)M
5 (4v)'

where g' stands for the derivative with respect to
v ~

Now, f(-1, M /2ea+2) is simple to compute.
The second term contains the derivative of the
zeta function f'. We assume that e»&M' and ex-
pand f' around f'(-1, —,'). The procedure for doing
this is sketched in Appendix A.

The result is

E '=K '+M '+(m+ —,)2ea.

Thus, V, becomes

eH dkH gE
2m 2m ~ 2

(8)
We remind the reader that to this we must add the
temperature- independent quantum contributions
of the neutral scalars as given in Jackiw and Do-
lan's work.

+ f " Q )n(( —e ' -) . (9)
. 7P

A. Computation of the temperature-independent part Vj

B. Computation of the temperature-dependent part Vj

The temperature-dependent contribution is given
in Eq. (9) as

Consider V', . We have

ea "dkH g [kH2+M „'+(I+ ,')2ea]'~2—

(10)

ea1 "dkH p 1
2tt 2 „2v ~ 1"(v ——,')

We shall, in what follows, take the v=O limit of
this integral. Carrying out the m summation, we

get

VT H

2wP „2w

where E is the energy spectrum defined in Eq. (8).
The m summation is replaced by an integral (for
gauge bosons this procedure is to be modified as
will be discussed). Thus, we have an Euler-Mac-
laurin expansion of V, . We obtain

V r = H ln(] e-t)& ~)dttt
e& "dk

2wP

eH dt t"-sy2 -t(gc2+~H&e e- tk2
1 4+2 Z( t) 1 e 2eHt H '

(12)

T.he rest of the integrals are easily evaluated and

we get

(2ea)2-v 1 M 2

16m 2 v —1 2v '2e@

where g is the Riemann zeta function. " Since the
limit of v going to zero is singular, we multiply by

e8 po

dk„ ln(l —e 2H m)dm .
tl p p

We make the following change of variables:

2P'eIIm = y'.

Therefore, we get

(18)

(19)
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t

] OO ~0

y dy dx ln(l —exp[- (x'+ y'+ P 'M '+ P'eH)'~']].
2W 0 0

Expanding around small P'M we get

(ao)

4v'p«0 0 (x'+y2+ p'eH)'~' exp[(x'+y'+ p'eH)'~') —], ' (21)

where the term independent of I,' has been disre-
garded. We expand the integral around P'eH = 1.
We are therefore expanding around T'= W. Thus,
we are in the high-temperature, high-magnetic-
field domain. The result is

M 2eII M2
(22)

We would like to state the obvious fact that the in-
tegrals encountered in the expansion of Eq. (21)
are done in polar coordinates. Several of these
integrals have been obtained numerically and
these integrals have been summarized in Appen-
dix B.

To this equation, once again, we must add the
contributions due to neutral scalar particles. For
that, we take the results obtained by Jackiw and
Dolan.

We observe that the charged scalar particles
work against restoration of symmetry. The un-
charged scalar particles contribute, according to
Jackiw and Dolan, a temperature-dependent term
as follows:

V =M2
n (23)

where M„ is as defined earlier. Thus, these un-
charged scalars tend to restore the broken sym-
metry. The situation changes somewhat for the
gauge bosons all of which work towards restora-
tion of symmetry.

III. CONTRIBUTIONS OF GAUGE BOSONS

E,2(m) =K„'+M,,2+ (2m+ 1 —aqS„)eH, (24)

where S~ denotes the component of spin in the di-
rection of the external magnetic field.

In computing the gauge-boson contribution, we
shall follow closely the work of Salam and Strath-
dee. Let us once again group the gauge bosons into
two groups —the charged and the uncharged. The
contributions of the uncharged gauge bosons have
been computed, for example, by Jackiw and Dolan,
and these are unaffected by the introduction of an
external magnetic field. Once again we shall use
the subscripts c and n to distinguish between the
charged and neutral particles.

The dk0 integration can be done as before (see
Sec. 1). However, the excitation spectrum now is
different:

d3k+- g ln(1 —e ") . (25)
e, SH

A. Computation of the temperature-independent part V
&

'The temperature-independent part is given as

"d'k
(26)

eH "dk„g E
m Sm, SH

The procedure for evaluation of the above is as
outlined in Sec. D. The difference lies in the case
in which SH= i. Since the m =0 state has nonposi-
tive energy the sum is carried out from m =1 to
infinity, instead of from 0 to infinity. Thus, for
example, for 8„=1we get the contribution to
as follows

V,'(S„=l}=,(ln2eH —1)(—,'M„')

2
—0(aeH',

(
"')0 —«(2eH)M„» . (as)

Following this approximation we readily evaluate
the temperature-independent contribution to ef-
fective potential due to charged gauge bosons and
we obtain

Y,'= "' (1naeH+ —',) . (29)

To this the contribution of the neutral gauge
bosons have to be added, as in Jackiw and Dolan's
work for example.

I

While for small eH (which is the case in Salam
and Strathdee's work), the above expression for
E is positive, the same is not true for an intense
magnetic field. In fact, it is easy to observe that
the spectrum of eigenvalues contains nonpositive-
energy states. In what follows we shall, while
summing over the excitation spectrum, carry the
summation only over the positive-energy states.
Once again, we get

f d'k E.
V, —= V,'+ V,r =

Jl ( m, SH
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ln(1 —e»~)1 ~ d'k
(2&)' ., s„

(30)

B. Computation of the temperature-dependent part

The temperature-dependent part is computed as
in the case of scalar particles, except that we now
have to contend with nonpositive-energy eigen-
values.

This is done once again by summing only through
the positive part of the energy spectrum. We have

Changing the density of the states we get

1/,r= " P ln(1 —e-»~).
2vP „2w (31)

For S„=0and —1 we encounter no difficulties and
follow the procedure laid out for the scalars. For
8~=1 we carry the m summation from 1 to infinity.
This avoids going through nonpositive-energy
eigenstates. '2 Equation (21) is now altered as fol-
lows:

1
1 4v2P 2 2 &/ (+2+@2+P 2elf)1/2 exp[(+ 2+ y2+ P 2eH)1/2] l

(32)

Once again, we convert this integral to polar co-
ordinates and then expand around P'e&=1. (Some
relevant integrals have been evaluated and re-
corded in Appendix B.) The result is

V ="'"~ — "' (0.09).1 4+2p 3 cl 4&2 (33)

To this the effect of temperature on the neutral
gauge bosons has to be added. The results for
the neutral scalars can be obtained from the work
of Jackiw and Dolan.

IV. DISCUSSION

The case of fermions is straightforward. The
energy spectrum is positive and the procedure of
summation is identical to the case of scalars.
Since no new difficulties are encountered we have
not dealt with this case.

In our earlier work we dealt with the ease of
weak magnetic field and high temperature. To
lowest order we showed that the limit of small
temperature produces the results of Salam and
Strathdee and the limit of no field reproduces thy
results of Jackiw and Dolan. This need not be
taken to mean that the effect of putting temperature
and field together is just the naive summation of
the results of previous papers. First, the ex-
ternal field impacts only on the charged particles
in the system. Second, the naive summation of the
previous works will yield wrong results as shown
in this paper. We, however, agree with the gen-
eral trends that the previous authors have estab-
lished. Our results are valid for strong magnetic
field unlike the previous work.

However, there are several hurdles to get over
before we can embark on realistic calculation.
The most important among these is the choice of
renormalization scale. In the work of Salam and
Strathdee the renormalization scale has been cho-
sen to be given by the classical value of the fields.
While this choice may be appropriate for their
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APPENDIX A

We list some of the well-known results on Rie-
mann zeta functions for the convenience of the
reader. First, f(-l,~ /2eH2+ ~) is evaluated by
using the following relationship:

g( —m, et) =-&...(n)
m+1 (A1)

where &'s are the BernouOi's polynomial defined

I

case we find it to be parti. cularly indefensible in the
case under consideration. This is because we have
two external parameters, and choosing the scale
arbitrarily as the vacuum expectation value of the
field is going to go counter to the aim of our work.
This is evident from Eq. (29) where the choice of
scale would determine crucially the question of
surviving symmetry. It therefore seems that a
careful renormalization- group analysis is re-
quired. We note in passing that the external mag-
netic field contributes a divergent piece to the
mass and wave-function renormalization of the
relevant fields.

We have adopted a somewhat unorthodox pro-
cedure of keeping only the physical degrees of
freedom in our calculations. While this process
can equally well be adopted for calculations in
arbitrary gauges, the results may become numer-
ically ambiguous though the trend may be identi-
cal.'
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&„(x)=Q B,x" ', (A2) —g(z, a) = lnl'(a) —s In2m .d 1

dz
(Alo)

where &, 's are the Bernoulli numbers. To expand
g'(-I, M'/2eH+ s) around Ms «eH we use the fol-
lowing method. The first term, which is inde-
pendent of ~ is disregarded. The second term
in the Taylor expansion is

Ms, l d d+ —'
I
——g(v, a) =I.2' i da dv (A3)

a Djh

Interchanging the order of differentiation, we get

M2 d d——K(v, a)2e& dv da
a J./2

where once again we have dropped the term that
has no field dependence. Thus

- I dI= —[-vt(v+ 1,a)],2' dv

where we have used the formula

d
d f( va)=- gv( vl+, a).

(A5)

Carrying out the differentiation with respect to v,
we get

M2 d-f(v+ 1,a) —v—g(v+ I, a)2' ' dv

It is now a straightforward exercise to obtain the
next term in the Taylor expansion.

APPENDIX B

We list several integrals here that are useful in
the evaluation of the Taylor expansion of the
temperature-dependent part of the effective po-
tential around P seH = I:

l (y'+I) expl (y'+.I)' ]- I

(y '+ I)'a exp(y '+ I)'t' —1

t" y'dy exp(y'+ I)'t'
(y '+ 1) [exp(y'+ 1)' ' —1]s

t dy ' 1
0 996

(y —I)'t' exp(y' —1)its —1

~ (y —1) exp(y —1) —1

~ (y' —1) [exp(ys —1)' ' —1]'

y'dy, 1
0 369(y'+ 3)"' exp(y'+ 3)"'—I

[-(—,
' —a)+ lnI'(a) —s In2z'],

2e&

where we have used

L(0, a)=s a-
(A8)

(Ae)

f y'dy 1
0 47(y'+ 3)'~ exp(y'+ 3)' ~' —1

l" y'dy exp(y'+ 3)"'
=O.i36 .(y'+ 3) exp(y'+ 3)' ' —1

(a8)
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