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The infrared structure of charged, O(V)-invariant field theories in three dimensions is analyzed. The zero-mass
limit, appropriate for a mean-field-theory description of phase transitions in statistical physics, is studied using the
1/N expansion. The infrared divergences of the loop expansion are then eliminated, and it is shown how the low-
momentum behavior is completely governed by an infrared-stable fixed point of the renormalization group. In
particular, the fixed point, which appears to leading order in 1/N, is shown to persist to higher orders by virtue of
cancellations among terms which are singular in the zero-momentum limit. Some new computations of anomalous
dimensions are presented and transcribed into the corresponding critical indices of statistical mechanics. The
structure of the effective potential of the theory is summarized. It can be computed order by order in the 1/N

expansion and its only minimum is at the origin.
I. INTRODUCTION

Quantum field theories in three Euclidean dimen-
sions have interesting and unusual properties and
can be important for a variety of physical prob-
lems. Consider, for example, a four-dimensional
gauge theory at very high temperature.! Its long-
distance behavior is determined completely by the
corresponding theory in three dimensions.2™* For
a non-Abelian theory such as quantum chromody-
namics (QCD), the three-dimensional version con-
tains interacting massless fields which lead to sev-
ere infrared divergences in the loop expansion.?'*
These divergences, due in effect to the super-re-
normalizability of the theory, appear in the
Green’s functions of the theory at two loops and be-
yond. When the external momenta are large, they
can be connected with the appearance of new op-
erators in the operator-product expansion.®:5

Another class of three-dimensional theories, of
more immediate physical interest, are the mean-
field theories of the Ginzburg-Landau type. They
are formulated in terms of an N-component,
charged or neutral, field ¢,(x) and used to compute
the critical indices associated with second-order
phase transitions. At the critical temperature
T=T, the physical mass (the inverse correlation
length) goes to zero and again infrared divergen-
ces appear in the loop expansion. In order to deal
with this problem, two methods have been used to
circumvent the loop expansion. One is the 1/N ex-
pansion where N is the number of components in
¢, and the other is the € expansion where € =4 —d,
d being the dimensionality of space.

In this paper we shall discuss several aspects of
the 1/N expansion for Ginzburg-Landau theories
in three dimensions. The work has grown out of
the earlier efforts of R. Pisarski and one of us?®
to analyze finite-temperature and three-dimen-
sional QCD. There the 1/N expansion for, say,
an SU(N) gauge group is still far from tractable
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since it involves all planar diagrams to leading
order. In order to get some feeling for nonpertur-
bative behavior in a three-dimensional theory, a
simpler model was examined. The model involved
an Abelian gauge field A,(%) coupled to a mass-
less, charged, N-component field ¢,(X). It was
analyzed in the 1/N expansion which involves a
much simpler set of diagrams to leading order
than in SU(N) gauge theories.

This paper continues that analysis. In addition
to the gauge coupling, a ($'- $)? coupling is also
included, which makes the model a genuine Ginz-
burg-Landau theory. In a three-dimensional mod-~
el, this coupling is not required for ultraviolet
renormalizability but, as we shall see, it ¢s neces-
sary for vacuum stability. Although this theory
has been extensively analyzed in the 1/N expan-
sion,® many of its important properties have not,
to our knowledge, been described in the literature.

We shall consider the theory only with the physi-
cal mass of the field ¢, set equal to zero. This
corresponds to working at T'=T_, that is, “on the
critical surface.” The theory contains a nonzero,
infrared-stable fixed point in both the gauge and
($*+ $)? couplings and the objects of main interest
are the anomalous dimensions and critical indices
associated with this fixed point. Some of these
have to do with the behavior of correlation func-
tions at T =T, and others have to do with the ap-
proach to T,. However, it is sufficient to work at
T =T, to determine all the critical indices. This
well-known fact will be reviewed briefly at the end
of Sec. III.

It is perhaps worthwhile to list some of the ques-
tions which generated this investigation and which
arose during the course of it. Each of them will
be treated in some detail and at least partially
answered in Secs. I1I-V.

1. In a general sense, both this work and much
of Ref. 3 developed in an effort to learn more
about the structure of massless three-dimensional
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field theories. For the class of O(N) theories
being considered here, some new things have been
learned. Whether any of these provide insight into
SU(N) gauge theories remains to be seen.

2. Perhaps the main question to be addressed in
this paper is the nature of the 1/N expansion. Are
higher orders truly of order 1/N, 1/N?, etc., for
arbitrarily small momentum? The answer is yes,
although not obviously so. After the cancellation
of singular terms, the running coupling constants
and associated g functions can be computed to
higher orders. However, a convention dependence
enters and the running coupling constants ¢an be
defined, for example, so that their infrared-sta-
ble fixed points are exactly given by the leading-
order values.

3. The anomalous dimensions and critical indices
associated with the fixed point are not convention
dependent. As a part of our general analysis, we
have computed some of them which we have not
seen reported before in the literature.

4. In any dimension above three, it is not hard
to show that the addition of higher-dimension in-
teractions such as ($7- ) or ($'- $)* will not af-
fect the infrared structure of the theory. These
are so-called “irrelevant” operators. However,
in three dimensions, the interaction ($"- &) is ex-
actly renormalizable and its effect on the infrared
structure is not so clear. We shall consider the
addition of such a term to the Lagrangian and show
that, in the presence of the ($'- §)? interaction,
it is irrelevant even in three dimensions.

5. The cancellation of singular terms in the
higher-order contributions to the coupling-con-
stant renormalization has important consequences
for the effective potential” of the theory. This can-
cellation results in a vanishing of the ($'- &)
term, thus strongly changing the character of the
effective potential from its classical behavior. We
find that in the 1/N expansion the effective poten-
tial starts off like ($'+$)? for small . On the
other hand, we see no sign of instability of the
classical, symmetric vacuum.

The paper is organized as follows. In Sec. II,
the theory is defined and the elements of the 1/N
expansion are reviewed. The behavior of the theo-
_ ry to leading order in the 1/N expansion is des-
cribed and interpreted in the language of the re-
normalization group. An infrared-stable fixed
point is shown to exist and the associated anoma-
lous dimension of the scalar field ¢, is computed.

In Sec. III, we consider higher orders in the 1/N
expansion. It is shown that singular dynamical
factors arise in the infrared but that they cancel
in the running coupling constants and B functions,
verifying that 1/N is the correct expansion par-
ameter. The convention dependence which enters

the nonsingular corrections to the 8 functions at
order 1/N is described. The anomalous dimension
of $"+$ is computed and that, along with the an-
omalous dimension of §, is used to tabulate the
various critical indices of the corresponding sta-
tistical-mechanical system.

Section IV examines the consequences of adding
a ($T- $) term to the Lagrangian. It is shown how
the ($'+ §)? term controls the infrared behavior
and renders the (' $)® term irrelevant even
though it is just renormalizable, entering with a
dimensionless coupling constant. Finally, we point
out that an effective (- $)° vertex will be induced
even if it is not inserted by hand. No attention
need be paid to this for purposes of computing crit-
ical indices but it is an important piece of the ef-
fective potential of the theory.

In Sec. V, our results are summarized and some
comparisons with the € expansion are offered. The
reliability of our results and the second-order
character of the phase transition depend on the
stability of the symmetric vacuum $ =0. To verify
the stability, we have analyzed the effective poten-
tial of the theory in the 1/N expansion. The struc-
ture of the potential is briefly described here. A
more detailed study of the effective potential in
three-dimensional O(N) theories will be presented
in a separate publication.

II. ELEMENTS OF THE 1/N EXPANSION

In this section we will define the model, estab-
lish the notation used in the remainder of the pa-
per, and review the idea of the 1/N expansion.
Running coupling constants are introduced and the
existence and meaning of fixed points of the re-
normalization group are discussed. Finally, we
compute the anomalous dimension of the charged
scalar field to leading order in 1/N which is just
the critical exponent n of the corresponding sta-
tistical-mechanics problem.

The Lagrangian density for the Euclidean theory
is

N
L=5F;*+ Z |0 +ieA,),|* +m?$"- &
a=1

LG (2.1)

where $ is an N-component vector of complex
fields and 7, j run from one to three. All expres-
sions and computational results will be restricted
to the Euclidean theory in this paper. The coup-
ling constants A and @ =Ne? both have dimensions
of mass. The theory is super-renormalizable.
We shall restrict our attention to those values of
the parameters (m,, @, 1) which lead to the vanish-
ing of the physical mass of the scalars and which
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determine the so-called critical surface. The bare
mass my(@,\,A), which depends linearly on an
ultraviolet cutoff A, is adjusted at each order of
approximation to make the physical mass vanish.
The inverse scalar propagator can then be written
in the form )

G\ (k) =k? -11,(k), (2.2)

where I, (%) is the subtracted scalar self-energy

(k) =T (k; m=0, @,\) -1(0; m =0, &, 1), (2.3)

Since the coupling constants have dimensions of
mass, this massless theory is plagued with infra-
red divergences. The effective loop expansion
parameters are a/k and A/k, leading to infrared-
divergent Green’s functions already at the two-loop
level.’** One scheme which leads to infrared-fin-
ite results is an expansion in the dimensionless
parameter 1/N with @ and A fixed. Each order in
the 1/N expansion sums an infinite class of Feyn-
man graphs which in turn leads to infrared-finite
amplitudes at the next level of approximation.

To leading order in 1/N, only those graphs are
included which contain one closed loop for every
additional coupling factor of @/N or A/N. The two
possibilities are the corrections to the gauge prop-
agator shown in Fig. 1, and the corrections to the
(¢T+ $) vertex shown in Fig. 2. The Feynman
rules can be read off from the Lagrangian (2.1)
and all computations will be performed in the Lan-
dau gauge. The gauge boson propagator is readily
computed to leading order with the result®

o, =k
g e @
where k=|k|. Note that there is no tachyonic
pole in this propagator and that the interactions
soften the infrared behavior from 1/%? to 1/k.

It is convenient to interpret the result (2.4) in
terms of an effective or running coupling constant.
The factor which renormalizes the bare propaga-
tor is Z,(k)=(1+a/16k)"". The running coupling
constant is formed by starting with the dimension-
less factor a/k and then multiplying by Z,(k). The
result is

3 O() =‘_Z. (1 i)-l . (2.5)

*1er

Note that it is not necessary to consider ¢ self-
energy and vertex corrections since these enter

RSN S W Vo

FIG. 1. The leading corrections to the photon propaga-
tor in the 1/N expansion.

only at next order in the 1/N expansion.

The only other graphs which must be computed
and summed to leading order in 1/N are the cor-
rections to the (§'- $)? vertex shown in Fig. 2.
The arrows indicate the flow of “isospin” indices
required to produce the necessary factors of N.
Each loop contributes the factor —1/8k, and the

_sum, indicated by the isosinglet dashed line, is

—Z\(k)\/N where Z,(¢)=(1 +1/8k)"'. A running

- four-point coupling can now be defined. In gen-

eral, it requires the computation of both the one-
particle-irreducible (1PI) four-point and two-point
functions. However, the latter first appears only
at next order in the 1/N expansion. The dimen-
sionless running coupling constant is thus defined
to this order by multiplying A/k by Z,(k),

g (1 2)
X ()= (1 +8k) . 2.6)
Note that to this order, X receives no contribution
from the gauge coupling and vice versa.

Both @*(k) and X1)X%) are dominated by lowest-
order perturbation theory as k-, vanishing
like 1/k. As k-0, they approach the con-
stant values 16 and 8,. respectively. This be-
havior can be interpreted in terms of a renor-
malization-group fixed point by introducing 8 func-
tions as follows. We write the coupling constants
in the form @(k/k,, @,) and \k/ky,N,), Where @,
and ), are the values of @ and X at some reference
momentum k,. Then

s

Bal@o) = 5= lx, T

x=1
_ 5 — — 2.7

Balny) =%y A%, no) .
and, to leading order in 1/N,

Bul@)=-avit o, (2.8)

Ba(A) ==n+&2%. '
These B functions have zeros at

(@, %) =(0, 0) (2.92)
and at

(@, %) = (%, %) =(18, 8), (2.9b)

the origin being an ultraviolet-stable fixed point
and (a*, x*) being infrared stable. Since we are

> KX YO

FIG. 2. The leading corrections to the four-point
coupling in the 1/N expansion. The arrows denote “iso-
spin” flow.
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mainly concerned with the infrared structure of
the theory, it is the latter fixed point which is the
more interesting. Its presence in a statistical-
mechanics context signals the existence of a criti-
cal surface of second-order phase transitions due
to the change of sign of the square of the physical
mass of the scalars.

All further interactions in this theory are non-
leading in the 1/N expansion. As an example, we
compute the leading scalar self-energy corrections
shown in Fig. 3. A subtraction at zero momentum
is to be made and, with that, it has already been
observed® that the gauge boson contribution is
gauge invariant. The result, written explicitly
here in Landau gauge, is

= oy _4da [ dq k¢ - (k-qP 1
M,06) = f(Zﬂ)3 (k+4)q q° +(a/16)q
A (d% E2+2k-q 1
N f(21r)3 (R +q)Pq® 1+(/89) (2.10)

In the infrared limit # < a/16, k< 1/8, this be-
comes

2 2
0= (- Bl %) o),

3 o N
(2.11)
Therefore, to this order and for small %,
4 8k 16\ A
G(k)— [1+ v (1 ———161n-——> +N]’
(2.12)

where A is a constant.

Given the existence of the infrared-stable fixed
point (2.9b), the behavior (2.12) can be interpre-
ted as the buildup of an anomalous power behavior
of the full scalar propagator for small k. To make
this connection, we first remind the reader of the
result of a renormalization-group analys1s of a
general connected n-point function T (p,, . - ., P,;
@(A),MA);A). Here, A is some arbitrary refer-
ence scale, @(A) and A(A) are the dimensionless
running coupling constants defined at that scale,
and the bar indicates that I", does not contain the
o function for momentum conservation. Suppose
that each momentum p is scaled by k and then « is
allowed to approach zero. Using the fact that I,
must be independent of A and the existence of the
fixed point (@*,A*), it can be shown® that

T, (KDyy - ooy KDpj o oo )~ KD+ /2 (2.13)

where D, is the naive scaling dimension of the

TN
/ \ i :2
....I_,_._‘_._ +

FIG. 3. The leading scalar self-energy corrections in
the 1/N expansion.

Green’s function and 7 is the anomalous dimension
of the field ¢,(X), associated with the fixed point.
The naive dimension D, is given by

d
D,,=d—n<1‘+ 5 )

in a general dimension d. For a two-point func-
tion, D, =- 2 independent of the number of dimen-
sions. For a four-point function in three dimen-
sions, D,=-"T, etc. The value of the anomalous
dimension 1 can be determined by comparing the
computation (2.12) with the known scaling behavior
of the two-point function

G(R) =T,(r)~E"2*". (2.15)
For small 5, (2.15) may be expanded,

(2.14)

G(k)~k-2(1 +n1nk +’2’—21n2k+- -o), (2.16)

and thus, to order 1/N,
n=—-20/(°N). 2.17)

Note that the effect of the dynamics is to make the
propagator somewhat more singular in the infra-
red than naive power counting would suggest. This
is due to the presence of the gauge interaction
which opposes and overwhelms the scalar self-in-
teraction.

In the statistical-mechanics interpretation G (¢)
is just the two-point correlation function for the
order parameter, and the power n governing its
small-momentum behavior at the critical tempera-
ture is one of the measurable critical exponents.®

IIl. HIGHER ORDERS IN THE 1 /N EXPANSION

The anomalous dimension n (2.17) is the first
example of a higher-order effect. A program to
compute others quickly encounters some of the
peculiar features of the 1/N expansion. Two of
them which must be dealt with in order to compute
other anomalous dimensions or higher-order cor-
rections to n are the following:

(a) From our treatment of the leading order it
might appear that the expansion parameter is not
1/N but a/NEk or A/NEk. Such terms appear in some
of the next-order contributions to A(k) and if they
were not to cancel they would render the 1/N ex-
pansion useless in the infrared.

(b) In both A(¢) and @(k), corrections of order
(1/N)1nk appear.® These too must cancel if the
infrared-stable fixed points are to persist beyond
leading order.

We will show that 1/N is indeed the expansion
parameter and that the only effect of higher-order
diagrams is a shift of the fixed point (\*, @*) and
the anomalous dimensions by constants of order
1/N.
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A. Gauge coupling renormalization

We begin with the next-order contributions to
the photon polarization operator. These are shown
in Fig. 4. The diagrams not involving the (§'- )
interaction were examined in Ref. 3 for both large
and small momenta. For the small-momentum
limit of interest here, it was observed that there
are contributions to the polarization operator of
order ak/16N and (ak/16N)In(k/a). Recall that
the lowest-order contribution Eq. (2.4) is of order
ak/16. All contributions have now been analyzed
with the following result'®: (1) The polarization
tensor is transverse as expected. (2) The
(ak/16N)Ink terms cancel.

The photon propagator through second order in
the 1/N expansion and for small momentum is
therefore -

5u "";1%.1

DR = b ADTTATN)

(3.1)

where A is a numerical constant.'® The cancella-
tion of the (1/N) Ink terms,. a consequence of the
Ward identity of the theory, will be briefly des-
cribed. The fact that they cancel is important be-
cause it indicates that the expansion parameter in
the infrared is indeed 1/N. Thus, if a running
coupling constant is defined from Eq. (3.1), it has
the form

2w =2 & A
a@(r) 7 [1+16k (1 +N)] . (3.2)
In the limit 2 -0,
— 16
2)(5)
a®Nr) T3A/N (3.3)

so that the infrared-stable fixed point continues to
exist and is simply shifted by an amount of order
1/N. Note that the constant A receives contribu-
tions from both the gauge interactions and the
(¢7+ $)? interactions but that the fixed point is in-
dependent of both a and .

To this order in the 1/N expansion, vertex and
scalar self-energy contributions also enter the
running coupling constant. However, the same
Ward identity leading to the cancellation of Ink
terms in the photon propagator (3.1) ensures that
similar terms cancel between vertex and self-en-
ergy. There can be left over finite parts which

2 /vv@x\/v + \/\@\/\+4Aﬁ@«\/\l+z\/@\,\:@\
(o) (b) (c) (d) (e)
+ 2 N@\/‘ + ’\I\@N\ + 2 MO\MOW
) (g) (h)

(i)

FIG. 4. The next-to-leading corrections to the photon
propagator.

can introduce additional (and convention dependent)
contributions to @(2). We shall return to this point
shortly.

The cancellation of logarithmic terms in the

" propagator (3.1) goes roughly as follows. It might

be anticipated that for small external momentum £,
any graph of Fig. 4 will be dominated by small in-
ternal momenta and therefore that the internal
gauge propagator (2.4) can be approximated by the
linear term in the denominator. That, in fact, is
true for a graph like Fig. 4(d) and therefore, on
dimensional grounds, it behaves like ak for small
k. However, an attempt to do the same thing for
Fig. 4(a) induces a logarithmic ultraviolet diver-
gence in the subgraph. It is of course cut off by
the quadratic term in the denominator of the in-
ternal propagator (2.4) but then the diagram be-
haves like @k In(k/a). The Ward identity en-
sures that the induced ultraviolet divergence

in the self-energy subgraph will be canceled

by a vertex subgraph. In the Landau gauge,
the necessary cancellation is provided by Fig.
4(c). With the cancellation, the gauge propa-
gator denominator (2.4) can be reliably approxi-
mated by the linear term and from dimensional
analysis it can again be seen that no logarithmic
factors can enter. A similar cancellation takes
place between Figs. 4(f) and 4(g).

B. Renormalization of the four-point coupling

The diagrams contributing to the renormaliza-
tion of the four-point coupling to next order in 1/N
are shown in Fig. 5. Recall that the leading con-
tribution (Fig. 2) vanishes proportional to 2 as
% - 0and that the running coupling constant X"’ (%)
(Eq. 2.6)was formed by dividing this result by 2. The
first problem encountered now is that some of the
graphs of Fig. 5 do not vanish at zero momentum.
An example is Fig. 5(a) which is proportional to
A/N?. Fortunately, this constant is canceled by
similar contributions from Figs. 5(b) and 5(c) and
the sum vanishes in the zero-momentum limit.

The three other graphs not vanishing at zero mo-
mentum are the set (h,i,j) of Fig. 5. The fact that
only the seagull diagrams of the gauge theory fail
to vanish is a property of the Landau gauge. Fig-
ure 5(h) is especially interesting since, in a theory
without the A ($T+ &) interaction, it would be the
leading contribution to the effective potential for
small $. It is an effective (¢'+ ) term which,
however, enters with a negative coefficient, sig-
naling the instability of the symetric vacuum. In
fact, the full effective potential in the absence of
the 2 ($"~$)? interaction has no stable minimum
at all, and therefore this interaction in the La-
grangian (2.1) is indispensable if the zero-mass
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FIG. 5. The next-to-leading corrections to the effective four-point coupling.

theory is to be physically meaningful. For the
problem of concern here, it provides graphs 5(i)
and 5(j) which precisely cancel graph 5(h) at zero
momentum.

The two sets 5(a), 5(b), and 5(c) and 5(h), 5(i),
and 5(j) are very similar in their structure and
cancellation. In the second set, 5(h) can be viewed
as the core, appearing again in 5(i) and 5(j). By
adding the three graphs, the core 5(h) is in
effect multiplied by a factor which vanishes like
k? as k~0. Similarly, 5(a) is the core of the 5(a),
5(b), 5(c) set. The situation is slightly more com-
plicated here since the graphs depend on more
than a single external momentum. However, that
does not affect the cancellation of the leading, con-
stant terms.

With the constant term gone, attention canbe fo-
cused on those terms which vanish proportional to
one power of the external momentum. Thelimitcan
be taken, for example, by starting at the sym-
metry point p,2=p,% =p,2=p,2=5k% s=t=u=k? and
then scaling & to zero. We adopt this arbitrary
procedure for now, and return later to the question
of prescription dependence.

There now remain terms which vanish like
kInk along with others vanishing like 2. It
is the latter terms which provide the order 1/N
contributions to (k) once they are divided by the
factor k. The k1lnk terms must cancel if the in-

frared-stable fixed point is to survive to this or-
der and beyond. The relevant graphs are shown in
Fig. 5 and the cancellation works as follows.

(a) The set 5(a), 5(b), and 5(c) contains no klnk
terms in any of the graphs in dimension d=3. For
d+ 3, they reappear, but cancel within the set.!!

(b) In the set 5(h), 5(i), and 5(j), the individual
graphs also contain no klnk terms in dimension
d=3.

(c) Each of the graphs of the set 5(d), 5(e),
5(f), and 5(g) behaves like klnk. The origin of
these terms is similar to that of the 2 In% terms
in the photon propagator graphs. That is, they are
present because the small-momentum approxma-
tion for the internal propagators does not quite
work. It induces an ultraviolet sensitivity in the
self-energy or vertex subdiagram which cancels
between 5(d) and 5(e) and between 5(f) and 5(g) .
Note that the external-line corrections 5(e) and
5(g) are crucial here since there is no Ward iden-
tity for the scalar coupling.

(d) Precisely the same thing is true for the set
5(k), 5(1), 5(m), and 5(n).

(e) The set 5(0), 5(p), 5(q), and 5(r) is built
around a core 5(o) which vanishes like % in
the Landau gauge. The additional integrations in
5(p) and 5(q) introduce % In% terms which cancel
between the two of them.

(f) The final set is 5(s), 5(t), and 5(u) and each
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member vanishes proportional to two powers of
the external momentum.

With all the singular terms having canceled, the
general form of the running coupling constant ()
can be written down through order 1/N. For small
k, it becomes

) =kl‘- [1 + %(l +B/N)]—1, (3.4)

where B is a numerical constant. In the limit -0,

I(z)(k)*ﬁ%ﬁ, ) (3.5)

showing that an infrared-stable fixed point sur-
vives in\ with its value shifted by an amount of
order 1/N.

The existence of the fixed point given by Egs.
(3.3) and (3.5) has important consequences for the
infrared structure of the theory. It means that
scaling will continue to exist to this order and that
corrections to the anomalous dimensions such as
7 (2.17) can be reliably computed. A proof that
the fixed point remains to all orders in the 1/N
expansion would be a useful addition to the large
body of 1/N computational work already in ex-
istence.

C. Prescription dependence of the running
coupling constants

Although the survival of the fixed point is impor-
tant, its precise value is not. The location of the
fixed point depends on the prescription employed
to define @ and}, i.e., on the choice of coordinate
system in the two-dimensional coupling-constant
space. The position of the fixed point is not ex-
perimentally measurable; only the anomalous di-
mensions are. They, of course, must be pre-
scription independent.

The origin of the prescription dependence of the
fixed point will now be described in a little more
detail. The constants A in @(k), (3.2), and B in
A(R), (3.4), will be shown to depend on the point in
momentum space at which they are evaluated. It
is even possible to make them vanish by an appro-
priate choice. Consider, for example, diagrams
5(f) and 5(g). We saw that both diagrams contain
a leading logarithmic term, and that these terms
tend to cancel each other. However, whereas in
diagram 5(f) the logarithm depends on the momen-
tum flowing through the diagram, the logarithm of
diagram 5(g) depends upon the momentum of the
external leg. Hence, even at the symmetry point,
both logarithmic terms only cancel up to a differ-
ence proportional to (2/N)1n($'/2, which contribu-
tes to the constant B. In general, we are not
forced to use the symmetry point for renormaliza-

tion. Any choice for the six invariants p?
(i=1,...,4), u, and s (¢ is then determined by ¢
=—u-s+2,,p, is allowed, as long as none of
them becomes zero. Defining

pi=vR? (=1,...,4),
s =k?, (3.6)
u =Vu2k2,

B will in general get contributions proportional to
Iny; due to the incomplete cancellation of logar-
ithms depending upon different invariants. Simi-
lar remarks apply to other diagrams in Fig.5. It
is easy to see that this dependence of B on the v,
does not cancel and that it could be used, for ex-
ample, to make B vanish by suitably choosing the
v, in Eq. (3.6)

In a similar way, the constant A appearing in the
running gauge coupling constant (3.2) can have a
prescription dependence. In general, a@(k) depends
on vertex corrections and ?p self-energy correc-
tions as well as the gauge-boson propagator cor-
rections which went into its definition in Eq. (3.2).
Logarithmic singularities will cancel between the
vertex and self-energy corrections because of the
Ward identity, but there can be left over constant
terms which have the same kind of prescription
dependence entering A(k). It could be used, if de-
sired, to make the constant A vanish.

If it is assumed that N is large enough to ensure
the convergence of the expansion, there is no rea-
son that the prescription dependence we have des-
cribed could not be employed to make all higher-
order corrections to the fixed point vanish as well.
Equation (2.9b) would then give the position of the
fixed point to all orders in 1/N. Note that this
freedom is only sufficient to make the higher-or-
der corrections to X(¢) and @(2) vanish for momen-
ta k<< A, @. The forms (2.5) and (2.6) only become
exact in this limit. Thus the 8 functions are not
given exactly by the lowest-order expressions
(2.8).

D. The anomalous dimension y "

All the conventionally used critical exponents
are experimentally determined by studying the
critical scaling behavior of correlation functions
containing only the operators ¢ and ¢*+$.° In
Sec. II we studied the behavior of the ¢ -¢ cor-
relation function to obtain the critical exponent 7.
We are now going to calculate the | |2-|& | cor-
relation function in order to obtain y 42, the anom-
alous dimension of [$|2=¢"-&.

We start by applying a renormalization-group
analysis similar to that of Sec. II to the general
correlation function of m|$|? operators,
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TO™(D;, ..., Pm; @A), MA);A). [The bar again de-
notes omission of the momentum-conserving &
function, and A is some arbitrary reference scale
where @(A) and X(A) are defined.] Scaling all the
momenta by a factor k, we obtain from the condi-
tion of invariance of the correlation function under
redefinition of the renormalization scale A

TO™KB,, - .-, kDm; - - - ) ~ kD™ ™7 g2 (3.7
in the infrared limit x - 0. Here
Dn=d-2m (3.8)

is the canonical dimension of T®™), and y 4 is the
anomalous dimension of | $|? at the fixed point
(a*, \*):

v =limA L [inZ(@@), Xa)] . (3.9)
A—o0 dA

From (3.7) we obtain for the | $|2-| $|2 correlation
function on the critical surface, which is conven-
tionally called X (%), the small-momentum behavior?

X () ~RP =p2 42V 42, (3.10)

Now we turn to the calculation of x(¢). The lead-
ing contribution is given by the sum of strings of
scalar loops, starting with a single loop:

NAN N ANMN_
8k 8L N 8k *SENBENBE

N A\t
8k(1+ ) .

Hence x® (£) has the leading small-momentum be-
havior

xP (&)~ const =k .

YO (k) =

(3.11)

(3.12)

Naively one would be inclined to compare the con-
stant term with the scaling prediction (3.10) and
conclude p =0. However, this is wrong. In fact,
as shown below, it is the term proportional to 2
which gets logarithmic contributions from higher-
order diagrams, and not the constant-term.
Therefore, to leading order, p=1 (p=4-dind
dimensions), yielding a large [#of O(1/N)] anoma-
lous dimension for |'$|? in d =3 dimensions:

y42=1+0(1/N). (3.13)

The appearance of the constant term in x (%) is due
to the fact that in this theory x (k) does not diverge
for .~ 0. Therefore, in the limit k-0 the con-
stant term [which for a theory with singular x (%)
would have been nonleading] surfaces from below
the term describing the scaling behavior. In this
sense the constant behaves very similar to a mass
term in the ¢ -® correlation function: For small
k it would dominate the k~2*" scaling behavior
found for the critical theory.

The diagrams contributing to x (k) in next order
are obtained from Figs. 5(c), 5(d), 5(f), 5(j), 5(),
5(m), 5(q), and 5(u) by simply cutting off the ex-
ternal scalar-field lines. [This corresponds to
dividing the corresponding expressions by (\/N)?.]
From Sec. Il B we know that diagrams 5(c) and
5(j) approach a constant for £ —0 and thus con-
tribute to the constant in x(¢). The terms propor-
tional to 2 Ink in diagrams 5(d), 5(f), 5(m), and
5(q) will modify the linear term in y(¢) by log-
arithmic corrections and hence contribute to the
anomalous dimension y 42. The contributions of
the relevant diagrams are

81
x4 (%) =y +0 (),

X0 =33 5 m&rop,

X (&) = 36: :’2 1n§£ +0@®), (3.14)
WO () = iz 7‘:‘2 +0®),

Xk = - 2° le %ki+o(k),

(a)(k)=2_2- %lnﬂ-l-o(k)

The other diagrams [5(k) and 5(u)] approach zero
like two powers of & as k- 0. Putting these re-
sults together we obtain for x (k) to this order

xP®)== [1 +L (1 L )}

_I_v_ﬂe[l_ 32 | 8k 256 _@}
A Al 3N A 3N «a

(3.15)

We may now compare this with the scaling law Eq.
(3.10). Writing the latter in the form

x (k) ~const ~k!*2° (3.16)

where now o is of order 1/N, we may expand for
large N

x(&)~const —k(1 +20 Ink +++ + ). (3.17)
Comparison with (3.15) then yields
48
0= (3.18)

The anomalous dimension of | §|? at the fixed point
therefore is

48

‘y¢2=1—m. (3.19)
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E. Other critical indices

We conclude this section by summarizing the
critical indices which can all be obtained from 7
and y,2 by using the scaling relations given by the
solution of the renormalization-group equations
for small momenta. As shown, for example, in
Ref. 8, one can generalize the scaling relations in
Egs. (2.13) and (3.7) to the case T #T, (massive
theory). A general correlation function of # ¢
fields and m | ¢ |2 fields,

TO™(Byy e v v, Bpi Ay - -« @mg @A), XA);A),

in a neighborhood of the fixed point (a*, 1 *) (i.e.,
either for small momenta or for small T - T,)
scales similar to®

T kps kg5 -..)

~ gDmm)+ anfesmygz um(er)  (3.20)
~ £ =Dln,m) =nn/2=m yy2 FOm) et , (3.21)

where |
E~(T-T,)™" (3.22)

is the 25-213 correlation length. D(n,m)

=d —n(1+d/2) - 2m is the canonical dimension of
1'“"""’ and 17and 7,. are the anomalous dimensions of
P and | B[?, respectively. Fm™ andf (™™ are func-
tions of one argument x£. For k—~ 0 F™™ ig regular,
and in this limit (3.21) describes the scaling be-
havior of F™™) at zero momentum, as £~ and
the system approaches the critical surface. f™m™
in turn is regular as £ -, and in this limit (3.20)
describes the scaling behavior of F™™ on the
critical surface.

As an instructive example in the use of these
scaling relations we now derive the relation be-
tween v and y ;2. We recall that T2 (¢ =0) for
T #T, is just the specific heat C,,, which is ob-
tained from the free energy per volume Q/V by
differentiating twice with respect to the tempera-
ture (this corresponds to two | §|? insertions into
T©9 the sum of all connected vacuum diagrams):

C. = ﬁ_(_a__ﬂ)
Vo TeT e (1/T)V
722 T00 27 L F00) | (3.23)
9T? 9T ’

From Eq. (3.21) we read off the leading scaling be-
havior

1—-(0 ")(k 0)_1nZ ‘SIZ

£, (3.24)

Replacing T by ¢ via Eq. (3.22) one finds the lead-
ing term

CV ~ gz/v-vl ~(T - Tc)ua-a . (3_25)

Since Cy, ~ (T —T,)™® defines the critical index o,
we have

a=2-vd. (3.26)
On the other hand, comparing (3.25) with (3.21)
for (n, m)=(0,2), we find

2

;—d=—d+4 =2y42
or

1
2-—')/¢2'

V=

(3.27)

In a similar way one derives many other scaling
relations.® We finally summarize our results for
the critical indices in d =3 dimensions:

20 1
n==-53 2N +O<N2)
48 1
Y & =1—_ +O(N2)’

V= 1 =1~ 48+O<1),

2—yg4 N N?
144 1
a=2-vd=-1+—= 2N+O(F>’

96 1
p=d—4 +2'y¢2=1—-7-r-2—1\—r+0(?),

_fd_,om\_1 3¢ (1
A= (2 -1 2)‘5_ 2N+O<N2>’

d+2-1_. 40 1
0=3= 2+11 5_112N'+O< )

We recall that p describes the small-momentum
behavior of x () as defined in Eq. (3.10). 8 des-
cribes the vanishing of the order parameter ($}

as T approaches T, from below (i.e., as the square
of the scalar mass changes from a negative to a
positive value),

() ~(T -T,)°.

Finally, 6 governs the order parameter as a func-
tion of an external static scalar field A (% =0),

(@) ~n®.
IV. EFFECT OF A ¢® INTERACTION

The Lagrangian (2.1) describes only one of a
class of Ginzburg-Landau mean-field theories. If
the addition of other interactions allowed by the
symmetries does not alter the infrared behavior,
then the original Lagrangian is sufficient to com-
pute the critical indices. Other interaction terms
will be hlgher dimension operators such as
(@13, (- $)%, etc., and in any mumber of di-
mensions above three, these are nonrenormaliz-
able with coupling constants having negative mass
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dimensions. They should therefore be irrelevant®
in the infrared and should indeed not contribute to
critical indices.

In three dimensions, however, the operator

£o=g($" PP 4.1)

is precisely renormalizable and it is perhaps not

so clear whether it influences the infrared struc-

ture of the theory. This section will be devoted to
answering this question in the negative. We have

been unable to find any previous discussion of this
point directly in three dimensions and in the con-

text of the 1/N expansion.

It is important to emphasize that we are talking
here about the effect of £, in the presence of the
(A/N)($T-$)? intevaction. The theory without the
($T- ) interaction has been analyzed at some
length in connection with the behavior of statisti-
cal systems at tricritical points.'®* These occur
if, by varying the physical parameters of a sys-
tem, it is possible to make the physical ¢ mass
and the (¢ $)? interaction simultaneously vanish
with g>0 in £,. A recent renormalization-group
analysis of this problem has been given by Pisar-
ski.!*

The manner in which £, is treated depends on
the order of magnitude of g. We shall assume that
it is small enough to justify the use of perturbation
theory. To see just how small that is, we first re-
call that for the ($'- $)? interaction, the coupling
constant was taken to be of order 1/N in order to
make use of a 1/N expansion. An analogous ap-
proach to the g(¢'+ $)® interaction could be con-
templated by making g of order 1/N3/2. Then, for
example, the class of graphs shown in Fig. 6 will
all be of the same order. However, the summation
of all these graphs seems to be a rather difficult
chore and so we retreat to perturbation theory in
g by assuming that g <1/N3%/2.

The way in which the £, interaction affects the
infrared structure of the theory depends on the
behavior of the running coupling constant g(k) or,
equivalently, its 8 function,(g). The dominant
contribution to g(¢) is due to the corrections shown
in Fig. 7 which arise from the ($'- §)? interaction.
These leading corrections in the 1/N expansion
determine a g(k) when evaluated at a symmetric

L
>l/+> O +>€@v been

FIG. 6. T_Pe lgading corrections to the six-point
coupling g(¢'- ¢)3 in a 1/N expansion with g?N?® fixed.

point as shown in the figure. One finds

Thus g(k) vanishes like k3 as k- 0. A B function
can be defined from g() in analogy to Eq. (2.7),
with the result

B.(g,1)=3gx/8. (4.3)

This function governs the evolution of E(k). To re-
produce the behavior (4.2) as k-0, we first re-
call that the 8 function for X Eq. (2.8) depends only
on X itself to this order. Thus the fixed-point be-
havior X(k)~ 8 as k~0, can be used to first ap-
proximation on the right-hand side of Eq. (4.3).
Then the renormalization-group equation for g can
be integrated to recover the result (4.2).

To summarize, in three-dimensional coupling-
constant space, to leading order in 1/N, an infra-
red-stable fixed point is located at

(0%, 2*, g*)=(16,8,0). (4.4)

Even if the @ and A couplings were not present in
the theory, the origin would be an infrared-stable
fixed point for g. The B8 function (4.3) contains an
additional term of order g* (and higher-order
terms as well), and in the absence of the X g term,
it would drive g(k) to zero like 1/ink as k- 0.
However, in the model we are considering, the
Xg term (4.3) takes over at sufficiently small g
and g(k) goes to zero like 2%, much more rapidly
than an inverse logarithm.

It is because of this rapid approach of g(k) to
zero that the £, interaction has no impact on the
computation of critical indices. As an example,
consider the correlation function G (¢) (2.12).
There are diagrams of order g, g% g3, etc. After
the mass subtraction at # =0, it is easy to see that

FIG. 7. Leading corrections to the six-point coupling due to the presence of a ($ . &;)2 interaction.
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FIG. 8. One of the self-energy corrections due to the
six-point coupling. :

if the six-point vertices were constants, then the
contribution of order g? (see Fig. 8) would behave
like %2%1nk and therefore contribute to the anoma-
lous dimension 7.5 However, since these vertices
vanish like three powers of the momentum, any
G(k) graph containing them will vanish like %£* (not
k?Ink) as k~ 0. The same is true for other cor-
relation functions and thus £, is irrelevant for the
computation of critical indices.

There is one more remark worth making with
regard to the six-point vertex. Even if £, is not
introduced, an effective six-point vertex will be
induced by the ($'+ $)? coupling. The leading con-
tribution in the 1/N expansion is shown in Fig. 9.
The amplitude, on general grounds a function of
the three magnitudes &, k,, k;, is computed to be

3
64
gl(ku ko, ka)=ﬁg(ﬁ‘%‘) (4.5)

This expression has the finite zero-momentum
limit 64/NZ2. ,

The first important point to be made about this
induced six-point vertex is that, unlike the funda-
mental six-point coupling g, it will not be correc-
ted by multiplicative factors which vanish at zero
momentum. The kind of corrections pictured in
Fig. 7 are already included in g; (&, k,, k,). That
being the case, it might be worried that higher-
order corrections in g, itself might cause g; to
vanish logarithmically at zero momentum just as
a fundamental coupling would in a pure g(¢'- $)?
theory. If that were to happen, logarithmic cor-
rections to scaling might be anticipated.'®'* ;

However, it does not happen. Corrections to g;
must be computed not as an expansion in g; itself,
but as an expansion in 1/N. When that is done, it
can be shown that there are no logarithmic cor-

N LN

|
Ay

3 i
A

FI(_?L. 9. The effective six-point interaction induced by
the (¢'. ¢)? interaction (to leading order in 1/N).
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rections in the zero-momentum limit. The in-
duced six-point coupling 64/N? does not run in
this limit; it merely picks up corrections of order
1/N%,1/N%, etc. The details of this argument are
similar to those already used to show that X ()
continues to exhibit fixed-point behavior to higher
order in the 1/N expansion. One class of correc-
tions to g, is obtained by replacing one of the three
dotted lines in Fig. 9 by the next-order corrections
shown in Fig. 5. Since we have already shown that
all constant and logarithmic terms cancel within
the diagrams of Fig. 5, this replacement only
changes g; by a constant of order 1/N%. The only
other types of next-order corrections to g; are
shown in Fig. 10. Each of these diagrams is loga-
rithmically divergent as the momenta flowing
through the diagrams vanish. However, the same
cancellation mechanism which worked for the cor-
rections to the four-point coupling leads to a can-
cellation of these logarithmic terms in Fig. 10,
again leaving a constant 1/N® contribution to g, at
zero momentum.

Assuming that these cancellations can be estab-
lished to higher orders in 1/N, the existence of
g; may be happily ignored for the computation of
critical indices. Its effects are of course auto-
matically included in the higher-order corrections
due to the four-point coupling. However, it plays

" an important role in the effective potential of the

theory. This will be described briefly in Sec. V,
and more completely in a separate publication.

V. CONCLUSIONS

The infrared structure of charged, O(N)-invari-
ant theories in three dimensions has been analyzed
making use of a 1/N expansion. We have consid-
ered only the zero-mass case, corresponding to
being at the critical temperature in the related
statistical-mechanics problem, and we have studi-
ed the infrared behavior of the correlation func-
tions of the theory. The expansion parameter 1/N
appears multiplied by expressions which become
singular at zero momentum but these singular
terms were shown to cancel. The infrared behav-
ior is then governed by an infrared-stable fixed
point of the renormalization group. The anoma-
lous dimensions associated with this fixed point
can be computed and we have reported the results
of some of these computations. The proof that

hd
< Q

O = S 5
L g igg T gn

FIG. 10. Some 1/N® corrections to the induced
(¢'. $)° interactions.
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singular terms cancel and that the running coup-
ling constants track into an infrared-stable fixed
point has been given through second order in the
1/N expansion. We see nothing that would prevent
extending the proof to higher orders.

This entire investigation began in an effort to
determine the infrared behavior of the gauge boson
propagator. The result, given by Eq. (3.1) through
second order in 1/N, corresponds to an infrared-
stable fixed point (3.3) for the running gauge coup-
ling constant. In this case, the necessary cancel-
lations are ensured by the Ward identity and they
can be expected to take place to all orders. One
would then conclude that D;,;(k)<1/% as k-0, ,with
the coefficient of proportionality computable order
by order in the 1/N expansion.

The effect of adding higher-dimension operators
to the interaction Lagrangian has been discussed.
The most interesting is the renormalizable inter-
action £, (Eq. 4.1), and it has been shown to be ir-
relevant for the computation of infrared behavior.
The anomalous dimensions which describe the
theory in this limit are determined completely by
the dominant, lower-dimension interactions ap-
pearing in the Lagrangian (2.1). Finally, we ob-
served that even if the six-point coupling £is not
included in the theory, an effective six-point ver-

tex is induced by the lower-dimension interactions.

We now offer a few qualitative comments on the
relation of our results to the € expansion. Where-
as in the € expansion critical indices are obtained
exactly in the number N of scalar-field compo-
nents, the 1/N expansion yields results which are
exact in the number of dimensions. We may use
our results to check the convergence of the € ex-
pansion in three dimensions (at € =1). To this end
one can expand Wilson’s results® for the pure ¢*
theory additionally in 1/N and compare the resul-
ting coefficient of the 1/N term (which is a series
in €) with our exact coefficient in the limit of van-
ishing gauge coupling. It is then seen that contri-
butions at least to order €® have to be included to
get a 20% agreement between the coefficients at
€ =1. Therefore, at € =1 the quantitative agree-
ment of the critical indices in both expansions will
generally be bad in low orders. In this sense both
approximations are complementary, and in order
to get good experimental predictions for systems
with moderate values of N in three dimensions,
one has to perform the calculations to rather high
orders.'®

However, comparison of both approximations
can yield some useful qualitative checks already
at low orders. For example, in Sec. II we saw
that n (the anomalous dimension of ¢) is positive
for a pure (¢7+ $)? theory, but after inclusion of
the gauge coupling, it is overwhelmed by an ad-

ditional, larger negative contribution. This is
consistent with the negative sign of 1 obtained in
the € expansion in Ref. 17 as opposed to Wilson’s
positive n for the pure ($T.-' 5)2 theory, which can
be found in Ref. 9.

The fixed-point structure which we have estab-
lished order by order in the 1/N expansion is evi-
dence that the zero-mass theory defines a surface
of second-order phase transitons. In the zero-
mass limit, the scalar potential part of £ (2.1) is
simply A/2N| #|¢, whose minimum is at the origin
( 5) =0. The second-order character of the phase
transition in fact depends on the ground state
moving to the origin at T =T,, but it is not suffici-
ent to examine the Lagrangian to settle this ques-
tion. The effective potential V of the theory should
be computed in the 1/N expansion and it should
then be seen whether its minimum lies at ($} =0.

The effective potential of three-dimensional O(N)
theories will be described in a separate paper.'®
We summarize here some of the results of that
paper which lead to the conclusion that V4 has only
one minimum, at ($) =0.

1. The effective potential can be computed order
by order in the 1/N expansion. This far-from-ob-
vious result involves the cancellation of a host of
singular terms and is closely tied to the behavior
of the running coupling constants established in
Secs. II-1IV.

2. There is no |$|" term in the effective poten-
tial. Its coefficient vanishes at each order in the
1/N expansion as long as the running coupling con-
stant approaches a fixed point. The leading-order
graphs are just those of Fig. 2.

3. The induced six-point coupling of Fig.9 shows
up as a positive | 5[ S term. It dominates the po-
tential for small &.

4. The full result for the effective potential is a
Taylor series in | $|2/Nx with finite coefficients
calculable to arbitrary accuracy in the 1/N expan-
sion. The leading-order terms give

1672 6[ 247% | 1,
%ff(¢)-__3Nz [ N [l

+4(i{4:2)2|$|4+- ] . (5.1)

These terms can be summed to a closed form'®
and it can be shown that the only minimum of V
is at ($) =0.

The full structure of the effective potential will be
described in Ref. 18.

A change to a first-order phase transition (re-
flected by a spontaneous development of a nonvan-



24 THREE-DIMENSIONAL O(N) THEORIES AT LARGE DISTANCES 2181

ishing order parameter (¢) #0) is consistent with
the structure (5.1) only if the series in 1/N for
each coefficient sums up to a value strongly dif-
ferent from the leading result. In particular, a
negative coefficient for the | | ® term would in-
duce a nonvanishing vacuum expectation value for
$. However, this would very likely signal the
breakdown of the 1/N expansion, and therefore
one could not determine the critical number N
where this occurs, within the 1/N expansion. On
the other hand, such a change from a second- to
a first-order phase transition has been found in
an € expansion for this model'’; for d=4 —¢, the
change occurs at N =365.9/2.
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