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Structure of gauge theories with spontaneous symmetry breaking
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It is shown that the state space corresponding to a spontaneously broken global (position-independent) symmetry

can be described in two complementary ways. The first is a Hilbert bundle and the second a Hilbert space. The

Hilbert space, which is obtained from the bundle via a direct integral, is reducible, i.e., the vacuum state is

degenerate. The degeneracy is labeled by a certain integer-valued parameter. It is noted that the above structure

continues to be true for a suitably restricted broken local (position-dependent) gauge symmetry in the unitary gauge.

The significance of the vacuum degeneracy is discussed.

I. INTRODUCTION

We wish to consider a local gauge theory with a
Higgs-type symmetry breaking triggered by the
nonvanishing vacuum expectation value of some
scalar field. We expect such a theory to share
many common characteristics with nonrelativistic
many-body theories with "an order parameter, "
where the phase is broken. To bring out the simi-
larity between the two cases, we consider the de-

scriptionn

of the underlying state space of a gauge
theory. Now, the state space can look nice only
in the unitary gauge —the gauge in which the un-
wanted components of the scalar field have been
eliminated and, consequently, where the Yang-
Mills fields are no longer massless. In contrast,
in renormalizable gauges we have to be prepared
to face the indefinite metric, So, we will confine
our attention to the unitary gauge. For the same
reason, we will restrict ourselves to a "complete-
ly broken" gauge theory, where no subsymmetry
of the original gauge symmetry remains unbroken.
In this way we will avoid the massl. ess Yang-Mills
quanta of the unbroken symmetry.

Matters are particularly simple in a "simple"
gauge theory, as defined by Weinberg. ' In such
a theory the remaining component of the scalar
field in the unitary gauge ean be made to align in
the same direction at every point of space, the
common direction of the field being that of its va-
cuum expectation value. But the precise choice
for this common direction is without any intrinsic
significance and thus we have the residual freedom
of subjecting the scalar field to global, position-
independent symmetry transf or mations. Even
when the gauge theory is not simple, it seems
that one always has the freedom of applying global.
symmetry transformations as long as one does
not impose special restrictions, such as that the
gauge transformations reduce to identity at spatial .

infinity. This residual global symmetry transfor-
mation is broken by the vacuum expectation value
of the scalar field. Thus the problem of under-

standing the structure of a broken local. gauge
symmetry reduces to the (simpler) problem of
understanding the structure of a broken global
symmetry.

The situation noted above appears to be quite
reasonable. Because of the translational invar i-
ance, the vacuum expectation value of the scalar
field cannot respond to local symmetry transfor-
mations but it can, and does, respond to global
symmetry transformations. Also, while discuss-
ing the state space one usually smears the local
fields (with suitable test functions), and these
smeared fields, again, do not respond to local
symmetry transformations. Thus, one does not
know how even to raise the question as to what
effect a local gauge transformation has on the
state space. In contrast, the action of the global
symmetry transformation on the states is well
defined.

Along the lines indicated in the foregoing, it will
then be shown in the sequel that the under lying
state space of the theory can be described in two
distinct, but mathematically equivalent, ways.
The first way involves a IIilbert bundle and the
second a IIilbext sPace. A Hilbert bundle is a fi-
ber bundle whose fiber is a Hilbert space and
whose "group of the bundle" is the group of all the
unitary operators in the Hilbert space. The base
space of our Hilbert bundle is the group manifold
of the global group Q that accompanies the local
gauge symmetry (G is the structure group of the
space-time-based principal fiber bundle that char-
acterizes' the local gauge symmetry). The Hilbert
space of the second description is what we call the
physical Hilbert space. We show that the vacuum
state of the physical Hilbert space is degenerate,
and the degeneracy can be labeled by a certain in-
teger-valued parameter possessing the following
topological significance. The parameter is re-
lated, in a prescribed manner, to the mapping-
degree of mappings of the group manifold of G to
itself. On the other hand, the vacuum state of the
Hilbert bundle is unique in the technical sense that
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each fiber carries a unique Poincard-invariant
ground state. ' Thus, the mathematical multiplicity
(labeled by the points of the base space) of the
vacuum in the bundle description does not signify
a physical degeneracy. This way of looking at the
meaning of vacuum degeneracy is completely equi-
valent to the traditional way, which is within the
context of the following theorem valid for a local,
relativistic field theory4: any one of the three
properties (I} uniqueness of the ground state, (II)
irreducibility of the field, (III) existence of the
linked cluster decomposition for the ground-state
expectation values, implies the two others. The
theorem also happens to be valid for a class of
nonrelativistic theories that we shall review pres-
ently (next section).

This paper is organized as follows. In the next
section we present a brief summary of those as-
pects of nonrelativistic theories with lang-range
order that most concern us here. In Sec. III, the
breakdown of a global symmetry group is analyzed.
The picture that emerges from this analysis has
implications for local gauge theories that are then
spelled out in Sec. IV. The physical significance
of the vacuum degeneracy is also discussed there.
In Sec. V we make concluding remarks.

II. NONRELATIVISTIC THEORIES

Nonrelativistic many-body theories that display
a breakdown of the (constant) phase transformation
have been known for quite some time. Below is a
brief summary of those features of the theory that
are most relevant for our purpose.

The common structure of these theories emerged
from the pioneering work of Haag' (on the BCS
model) and of Araki and Woods' (on the Bose gas},
and is as follows. The ground state is such that it
can be labeled either by a continuous parameter
e, with O~n&2m, or by an integer-valued para-
meter ~. The state space that corresponds to
these two descriptions, we denote by B(a) and H,
respectively. Then, 8 is a Hilbert space which is
the union of all H„, where H„ is the Hilbert space
that results from the pgth ground state. The field
is represented (the algebra generated by the
smeared fields is represented) irreducibly in

B(a}but reducibly inH, the linked-cluster expan-
sion is valid in B(u) but not in if, the ground state
is unique in B(n} but degenerate iniI. Thus B(n)
possesses nice features that are not shared by B.
Nevertheless, FI is the physical Hilbert space;
unphysical, phase-variant quantities have zero
ground-state expectation value in' [and nonzero
values in B(o.)]. The physical significance of the
ground-state degeneracy (in H) was explained by
Haag' and by Araki and Woods' as follows. Ground

states that differ from each other by the presence
of a finite number of zero-momentum bosons re-
present the same physical state; since the ground
state, in any event, contains an infinite number
(in the infinite-volume limit) of zero mo-mentum

bosons. Notice that for superconductivity the con-
densate is one of zero-momentum Cooper pairs.

In a recent reexamination of Haag's paper, ' it
was pointed out' that the space B(a}is a Hilbert
bundle based on the circle and that the ground-
state index pg has the "topological" significance
that it denotes an element of -the fundamental
group of the circle. Exactly the same analysis
can be carried out for the Araki Woods paper and
leading to the same conclusion. We make a final
remark. As explained in Ref. 7, the phase trans-
formation is implemented in B(o.) as a bundle
mapping which acts essentially as a translation of
the base space, and not as a unitary operator on
the fiber. This is a natural way of implementing
a "broken symmetry, " as has been explained by
Borchers and Sen' in a different context.

In the next section, we will analyze the break-
down of a global symmetry in such a manner as
to bring out, to the fullest degree possible, the
analogy with the structure of nonrelativistic the-
ories, summarized above.

IH. BREAKDOWN OF A GLOBAL SYMMETRY

Relativistic local field theories with spontaneous
symmetry breakdown were considered by many
authors in the past. Of these, the model that is
closest to the spirit of the Haag-Araki-Woods
theory is the one due to Lopuszanski and Reeh, '
based on a one-parameter group of symmetries.
Here again the existence of two complementary
descriptions provided by the reducible Hilbert
space and the irreducible Hilbert bundle (although
the authors do not explicitly mention the word bun-
dle, it is clear that their irreducible space is a
Hilbert bundle) is noted. Here, we wish to analyze
the structure of the underlying state space of a
theory with a broken non-Abelian symmetry. We
focus our attention exclusively on the intuitive,
geometrical aspects of the problem, as we have
done in Ref. 7 for the HCS model. The probl. em
is interesting in its own right, quite irrespective
of its possible relevance for local gauge theories.

We consider a Lorentz-invariant, local field
theory possessing a global symmetry group Q.
That is, G is a group of automorphisms of the
algebraic structure generated by the fields. We
require G to commute with the Poincare group;
in other words, Q is an internal symmetry. It is
sufficient to restrict Q to an SU(pg) group and we
will do so; although our results remain valid for
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any compact, Lie group. Let the field theory have
a scalar field @(x) transforming, in general, as a
reducible representation of 6 such that the vacuum
expectation value (Ol 4 l 0) is nonvanishing and is
such that the group is completely broken. Focus-
ing our attention on the vacuum expectation value,
we will find out what structure the state space
should have, provided it exists. We begin our
discussion with a simple model, where t" is the
group SU(2).

vacuum
l q) is Poincare invariant (Q commutes

with the Poincare group), and each fiber H, has a
unique vacuum. We consider the action of Q on
B(q). Clearly, G acts as a left translation on the
base space; let k (g), g G G, denote the corre-
sponding base map. Then the action of g on B(q}
corresponds to a well-defined bundle map h(g)
such that the following diagram

a, '+a, '+b, +b,'=N,

where N is some fixed real number. We.set a,.
=a;WH and b, =b, &N (i =1,2) so that

a '+a '+b '+b '=1.

(la}

(1b)

Thus the orbit of the vacuum expectation value is
a three-sphere. It is, in fact, the group manifold
of SU(2). We denote by q the collection (a„a„b„
f),) and also label the vacuum state by q. Thus

We may look uponq as a number; it is, in fact, a
unit quaternion. We may go further and obtain an
explicit picture of q by introducing a 2x 2 matrix
(over complex numbers) basis for the quaternionic
units. Then q looks like

where z* is the complex conjugate of a. The
above matrix is unitary with determinant equal to
one.

We consider the structure of the state space that
corresponds to the above description of the vacu-
um. The Hilbert space that results from the vacu-
um

l q) as a result of the application of "creation
operators" (suitable polynomials in the smeared
fields) we call H, . Thus we have a family of Hil-
bert spaces labeled by the continuous parameter
q. A118,'s are exact copies of each other and
thus of some II. Linear combinations and inner
products are not defined between states that sit
over distinct values of q. It is clear that these
properties define a Hilbert bundle; H is the (ab-
stract) fiber, H, the fiber over q, and the base
space is the manifold of q which is a three-sphere.
We denote the bundle by B(q) We note that. each

A. A simple model based on SU(2)

Let Q be the group SU(2). The vacuum expecta-
tion value of 4 (x) can be characterized by a set of
four real numbers (a„a„b„b,}satisfying the
constraint

is commutative. ' Here II denotes the projection
from the bundle to the base space X. We can also
write down an explicit bundle mapping formula for
h(g}, along the lines of Ref. 11, but we will not do
it here.

The foregoing description corresponds to a per-
fectly legal conventional field theory such as de-
scribed, for instance, by Reeh. " The precise
choice for the base point q is without any physical.
consequence and one can thus work with an arbi-
trarily chosen fixed q and the corresponding fiber
H, and do field theory (for instance, a Wightman
field theory) there. Thus the bundle structure is
physically superfluous, but its existence has to
be kept in mind to see the underlying mathematical
structure. We ask: Can we now construct a phys-
ical Hilbert space in which the symmetry breaking
is no longer apparent? To do this, we have to
"wash out" the dependence on the group; that is,
we have to do an integration over X. This direct
integra/ is obtained as follows.

Now, our Hilbert bundle has the property of
being equivalent, in the group of the bundle, to
a product and this fo.llows from a very general
result stated by Borchers and Sen, ' which is, that
any Bilbert bundle based on a paracompact base
space is equivalent to a product. On the other
hand, the group manifold of any Lie group is
known to possess the property of being paracom-
pact. " Thus our conclusion follows. Since the
bundle B(q) is a product, we are assured of the
existence of (continuous, global) cross sections of
the bundle. A point b of B can written as a pair
(q, f), where fGH and q&S' (S' is the three-
sphere). Then (q, f ) -f, defines a cross section
of the Hilbert bundle. Let f, and g, be cross
sections and let (f„g,) = (f,g), denote their inner
product in &,. Define now a new inner product
[, ] by the rule

(4)
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$3

where we have used the fact that I q) is normal-
ized. Thus IQ) is normalized also. We next de-
rive from (2} and (4) that

&II I@ In) =N qdp(q)=0.
$3

(6)

Although the above result follows from general
theorems, it is instructive to give a direct proof.
For this purpose we use the picture of q given by

Eq. (3) and take the following form for the mea-
sure".

dt d&t) dg
dp, =

where

t=uu*, u = v t e'~, P=(1 —t)'t'e'~,

to conclude that

(vb)

u dp, = Pdp. =0.
$3 $

(8)

Thus Eq. (6) stands proved. We may note, at this
stage, that the passage from the q vacuum to the
Q vacuum corresponds to the usual procedure of
redefining the "physical field" of 4 (x) by subtract-
ing from C(x) its vacuum expectation value. The
real significance of relation (6) lies elsewhere and
can be seen as follows. Let us assume provision-
ally that there exists an operator U with the fol.—

lowing properties: (1} U is unitary, (2) U com-
mutes wi.th all the field variables and thus also
with the elements of the Poincare group, and (3)
U satisfies the relations

&q IUlq)= ~ &q I 4 I q) =q,

&n I UI II) =o.
(9)

Then, we interpret our relation (6) to signify that
the state IA, ) in H defined by

I a, &
= UIn& (10)

where dt&, (q) is the normalized measure on S [the
.Haar measure of SU(2)], and the integration is
carried out over the entire group manifold. It now
follows from the general theory that with respect
to the inner product [, ] the linear space of the
cross sections gets endowed with the structure of
a Hilbert space. ' We call this Hilbert space lf.
Let I 0) denote the vacuum state constructed
from

I q) via direct integration. Then, we obtain
from (4)

&0 l &) -=&)), &1= f&s I e, )du &a)

1
U =—lim — 4 (x}d'x,

N y
(13)

where p is the three-dimensional volume. If our
theory is quantized according to the canonical
commutation relations then the above U commutes
with the field variables 4 (x}, 4) (x} and also with
all fields other than 4 (x} that might be present.
We consider the representation of U in the bundle

B(q). Since for each fiber H, there exists a unique
vacuum state, we can appeal to the general theo-
rem of Ref. 4 to conclude that the field is irredu-
cibly represented in H, and ther efore U must be
a c number (multiple of the identity operator in

H, }. In other words, U is equal to its vacuum ex-
pe ctation value

U=&q I Ul q) =q. (14)

Notice that in the second step in the above, use
has been made of Eqs. (2) and (13) and the trans-
lational invariance of the vacuum. It now follows
rapidly that

&q I O'U'UQ
I q) =(q I Q'Q I q), (15)

where Q' and Q are arbitrary polynomials in the
fields. We are now in a position to show that U is
a nontrivial unitary operator in II. Indeed, from
(4) and (15) it follows that

&~ I e'v'~Q
I ~) =f &~l))'~'rr)) I ~)~r &~)

$3

(16a)

In an exactl.y similar way

&n I
q'UU'q In) =&n I q'q In). (16b)

is orthogonal to the state I 0); that is,

&a Ia, ) =0.

Proceeding inductively and using unitarity of U,
we easily see that we have the string of vacuum
states (in H)

Ifi.&=U" I», n=O, ~1, ~2, . . . (12)

obtained by the repeated application of U to I 0).
All these vacuums are Poincare invariant and re-
present one and the same physical state. The Hil-
bert space that corresponds to IQ„) we call H„.
Thus 0 is the big Hilbert space which is the union
of all8„'s. To see the significance of the integer
yg, let us look at the picture of tJ in the fiber 8,
[Eq. (9)]. The mapping q q" maps S' to itself
and all mappings S'-S' are known to fall into
homotopy classes characterized by the mapping
degree g. In fact, g denotes an element of the
Hurewicz group II,(G), with G= SU(2). To conclude
this part of our discussion, we have to exhibit the
existence of the operator U. It is given by
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Thus tJ is a unitary operator. Since it is not a
c number in H, it follows that the fields are re-
presented reducibly in K This concludes our dis-
cussion of the SU(2)-based model.

B. The general case

We want to show that the structure uncovered
in the foregoing example remains val. id, with ap-
propriate modifications, for the general case
where the symmetry group G is some SU(m). The
general case is of intrinsic interest. Equation (2)
of the foregoing example has to be replaced now

by

where N is some real number and g denotes a
point on the group manifold of Q. We may, if we
wish, get an explicit picture of x in terms of a
certain ~ xm unitary, unimodular matrix u, in
exact analogy with (3), or equivalently, in terms
of some orthogonal matrix (over reals). We will
also label the vacuum by x. Repeating our previ-
ous arguments, we easily arrive at the following
conclusion: the state space of our theory is a
Hifbert bundle based on the group manifold of G.
At this stage it is useful to get a feel for the geom-
etry of the manifold. The relevant result is given
by Hopf. " The group manifold of G is a "twisted
product" of a certain number X of odd spheres,
where A. is the rank of G. An odd sphere is an
odd-dimensional sphere, such as 8'"+' (m is a
positive integer here). Twisted product means
a "topological product insofar as the cohomology
theory is concerned" (it is not generally a homeo-
morphism, however). Thus

SU(m) =S'xS'x$'x-" x S'~ ', m &2

where we have denoted the manifold of SU(m) also
by SU(m) and the equality sign means a twisted
product. Another way of visualizing the above is
to consider SU(m) as a principal fiber bundle, "
over the sphere 9' ', with structure group
SU(m —1) and proceed recursively. The local
product structure of the twisted product is now
quite obvious.

The construction of the physical Hilbert space
& proceeds as before, namely, via Eq. (4) with
the only change that we have to replace q by z
and dp, (q) by dg(z) and integrate over the group
manifold of G. Of course, dy, (x) is the Haar mea-
sure of G. Equation (6} remains valid, when ap-
propriately generalized. This last abatement fol-
lows from the Schur orthogonality relation for
unitary materi ces:

(19)

where u and v are two nonequivalent matrices (u, &

and e, &
are matrix elements). The desired result

follows upon taking for v the corresponding unit
matrix. All the steps of our foregoing model now

go through in toto; the unitary operator U is de-
fined the same way as before [Eq. (13)]. Thus we
see that the vacuum state in H is degenerate,
which is label. ed, again, by an integer pz.

To see the significance of the vacuum degneracy
parameter pg, we consider maps U- U", which
look in the Hilbert bundle simply as (bundle)
mappings g-x". Now, the general class of map-
pings of the type g-g", g&Q, G is any compact
Lie group, was studied by Hopf. " Following Hopf,
we call such maps power maps. Now let p„be the
power map

(20)

and let d„denote the corresponding mapping de-
gree, defined in the usual way. " Then, Hopf
proves the result

(21)

where X is the rank of G. For our case G = SU(m)
g is simply (m —1). The significance of the inte-
ger pg that we have been seeking is contained in the
above Hopf relation. To form a complete mental
picture, we remember the intuitive significance
of mapping degree as the number of times the
manifold wraps around itself (under the map}. It
is also known that homotopy classes of maps are
characterized by the mapping degree.

The physical significance of the vacuum degen-
eracy is read off from Eqs. (12) and (13). The
vacuum states

~ 0„) are all Poincare invariant
and represent one and the same physical state.
But ) 0„) differs from

~ Q) by the presence of n

spurions that carry zero energy and momentum.
From the presence of the spurion alone we cannot
draw any conclusion regarding the possible exist-
ence of massl. ess Goldstone modes. " However, the
Goldstone theorem, as is well known, can be
proved provided we make use of the additional
assumption that the symmetry is generated by
conserved currents. " In the latter event, it seems
permissible to proceed a step further and identify
the spurion with an infrared Goldstone boson. Qn

the other hand, we will, in the next section, en-
counter a situation in which the spurion coexists
with a spectrum free of massless particles.

IV. GAUGE THEORIES

The unitary gauge has been defined by Weinberg'
to be the one in which the "unwanted" components
of the scalar field 4(x}have been eliminated (i.e. ,
transferred to the Yang-Mills fields). For a sim-
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pie gauge theory the scalar field, moreover, is
brought to the form

(22)

where q denotes a point on the group manifold of
G (q does not depend on x), g(x) is the surviving
component of the scalar field, and & some real
number. The vacuum expectation value of the real.
field $(x) is here normalized to unity. Since the
precise value of q has no intrinsic significance
(only N has), we are thus left with the residual
freedom of subjecting 4(x) to global, position-in-
dependent symmetry transformations. The corre-
sponding global symmetry group is broken by the
vacuum expectation value of 4(x). Therefore, our
previous results apply to the present case and
there is nothing more to discuss as far as the
mathematical structure of the theory is concerned.
Our conclusion remains valid even when the gauge
theory is not "simple" since the breaking of a re-
sidual global symmetry is present here also.

The vacuum degeneracy, as remarked earlier,
implies the presence of spurions. However, the
spurion does not have any physical significance.

We should note the precise nature of the residual
global symmetry. Inspection of Eq. (22) shows
that the group acts on the field C(x) via left trans-
lations. Thus there is symmetry. However, the
symmetry is not genes'aSed by conserved cut'rents
possessing the property of being local neith re
sPect to the fields. Consequently, the proof of the
Goldstone theorem does not go through in the
present case."

The analysis of this paper does not apply to real
life gauge theories such as the standard electro-
weak model, "where one symmetry always re-
mains unbroken. It remains an open question
whether our methods could be generalized to in-
clude more realistic situations.

V. CONCLUDING REMARKS

In conclusion, we make the following remarks.
(I) In the theory of induced representations, '~

it is shown that the inducing construction can be
carried through provided that the base space of
the Hilbert bundle is locally compact. However,
we have seen that the direct integral construction
of the vacuum state given by the analog of Eq. (5)
for the general. case is possible only when the total

measure of the group manifold g[G] is finite, that
is, when G is compact. This has happened because
we have demanded that both the vacuum ~x) and
the vacuum ~Q) be normalizable. It is to be noted
that all useful broken "gauge groups" in physics
are compact.

(2) AII compact Lie groups have nontrivial
"topological quantum number s" associated with
them. Thus we should always expect the latter to
enter the description of broken symmetry.

(3) The structure that has emerged from our
analysis bears a certain degree of parallelism
with the instanton phenomenon, "with the problem
of magnetic monopoles as discussed by Arafune,
Freund, and Goebep' and also with Michel's treat-
ment of topological classification of defects, "al-
though the physical origins of these effects are
entirely different. It is also interesting to note
that many of these later developments are antici-
pated in the work of Finkelstein and co-workers. "

(4) We should mention yet another possibility of
describing the state space, now involving a Hilbert
bundle based on the circle into which the Hilbert
space H can be decomposed. The circle here is
the Pontrjagin dual to the additive group of inte-
gers that labels vacuums in II. The 0 vacuum that
resides in the circle-based bundle is formally
similar to the quantum-chromodynamic vacuum. "
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