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As a model for a "unitary" field theory of extended particles we consider the nonlinear Ioein-Gordon
equation —associated with a "squared" Heisenberg-Pauli-Weyl nonlinear spinor equation —coupled to strong
gravity. Using a stationary spherical ansatz for the complex scalar field as well as for the background metric
generated via Einstein s field equation, we are able to study the effects of the scalar self-interaction as well as of the
classical tensor forces. By numerical integration we obtain a continuous spectrum of localized, gravitational solitons
resembling the geons previously constructed for the Einstein-Maxwell system by Wheeler. A self-generated
curvature potential originating from the curved background partially confines the Schrodinger-type wave functions
within the "scalar geon. "For zero-angular-momentum states and normalized scalar charge the spectrum for the
total gravitational energy of these solitons exhibits a branching with respect to the number of nodes appearing in the
radial part of the scalar field. Preliminary studies for higher values of the corresponding "principal quantum
number" reveal that a kind of fine splitting of the energy levels occurs, which may indicate a rich, particlelike
structure of these "quantized geons. "

I. INTRODUCTION

A fundamental theory of matter based on the
quark hypothesis' has to accommodate an in-built
mechanism of (at least partial) confinement of the
constituent field in stable particles, otherwise
they should be observable at some detectable rate. '
In order to circumvent the Pauli exclusion prin-
ciple, these fundamental fermion fields are as-
sumed to obey parastatistics, or equivalently,
have to carry, besides flavor, additional color'
degrees of internal freedom. These color models
are distinguished by the binding mechanism of
quarks in hadrons, i.e., whether this is mediated
by scalar, ' vector (see, e.g. , Ref. 5), or tensor
gluons "

In quantum chromodynamics (@CD),' nowadays
the most prominent model for strong interactions,
the dynamics of the mediating vector gluons is de-
termined by an action modeled after Maxwell's
theory of electromagnetism. The resulting model
is a gauge theory of the Yang-Mills type. ' How-
ever, it is known' that in such sourceless non-
Abelian gauge theories there are no classical glue-
balls which otherwise would be an indication for
the occurrence of confinement in the quantized
theory. (The phenomenological consequences of
the possible existence of glueballs in QCD have
been discussed by Robson. ~o) The reason simply
is that nearby small portions of the Yang-Mills
fields always point in the same direction in inter-
nal space and therefore must repel each other as
like charges. Nevertheless, vector gauge fields
might be an important ingredient of any model in
order to explain saturation. '

The confinement itself, according to the propo-
sals of an unconventional scheme termed color
geometrodynamics (CGMD) (Refs. 11-13)may be
achieved by strongly"" interacting massless ten-
sor gluons, their dynamics presumably being de-
termined by Einstein-type field equations. CGMD
is a GL(2N, C) gauge model in curved space-time
which may be regarded as a generalization of
Einstein's gravity theory. The latter corresponds
to a gauging of the covering group SL(2, C) of the
Lorentz group. Since CGMD is, in general, based
on a Hiemann-Cartan space-time, "Cartan's no-
tion of torsion is known" to induce nonlinear spin-
or terms into the Dirac equation. This has a pro-
found effect on the "fundamental" spinor fields

distinguished by N color (or flavor) internal de-
grees of freedom. It can be shown also for this
GL(2N, C) gauge-invariant generalization" that
these quark-type fields have to satisfy the Heisen-
berg- Pauli-+7eyl, "' nonlinear spinor equation

(tL "V„—8 eg"'(LSL gL'L" —pc/K)/ =0 (1.2)

generalized to a curved" space-time (compare
also with Ivanenko"). Here L" are space-time-
dependent generalizations of the Dirac matrices
y' tensored with the U(n) vector operators X' (gen-
eralized Gell-Mann matrices). Essentially the
modified Planck length

g+:—(s7fsG /c ) ~ = (87)) ~2@/c~+=10 cm (1.3)

of strong gravity" "occurs also as the coupling
constant of the self-interaction in (1.2).

If we transfer the ideas of Mach and Einstein
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to the microcosmos, the curving up of the hadron-
ic background metric should be self-consistently
produced by the stress-energy content T„"(y) of
the spinor fields (1.1) via the Einstein equations

Q2

AC
(1.4)

with cosmological term (we employ the sign con-
ventions of Tolman"). In this new geometrodynam-
ical model" extended particles owning internal
symmetries should be classically described by
objects which closely resemble the geons or
wormholes of Wheeler. ' In some sense this ap-
proach is also related to the issue to which Ein-
stein and Rosen addressed their 1S35 paper. "

"Is an atomistic theory of matter and electricity
conceivable which, while excluding singularities
in the field, makes use of no other fields than
those of the gravitational field (g„„)and those of
the electromagnetic field in the sense of Maxwell
(vector potentials y„)'?"

The geon, i.e. , a gravitational electromagnetic
entity was originally devised by Wheeler'4 to be a
self-consistent, nonsingular solution of the other-
wise source-free Einstein-Maxwell equations hav-
ing persistent large- scale features. Such a geon
provides a well-defined model for a classical body
in general relativity. If spherically symmetric
geons would stay completely stable objects they
could acquire the possibility to derive their equa-
tions of motions solely from Einstein's field equa-
tions" without the need to introduce field singu-
larities. In a sense this approach also embodies
the goals of the so-called unitary field theory. ""

Geons, as we are using the term, are gravita-
tional soIitons, which are held together by self-
generated gravitational forces and are composed
of localized fundamental classical fields. The
coupling of gravity to neutrino fields has already
been considered by Brill and Wheeler. " The lat-
ter work lays the appropriate groundwork for
an extension of their analysis to nonlinear spinor
geons satisfying the combined equations (1.2) and
(1.4). In this paper, however, we have avoided
algebraic complications resulting from the spinor
structure as well as from the internal symmetry
by considering rather nonlinear scalar fields
coupled to gravity. In order to maintain a similar
dynamics we assume —as in a previous paper
(Ref. 20, hereafter referred to as I)—a self-in-
teraction of these scalar fields which can be for-
mally obtained by "squaring" the fundamental spin-
or equation (1.2). "Linear" Klein-Gordon geons
have been previously constructed. " However, we
view the additional nonlinearity of the scalar fields
as an important new ingredient for our model.

The precise set-up of this theory is given in Sec.
II. For the intended construction of localized
geons, the stationary, spherical Ansatze of I are
employed for the scalar fields, whereas the met-
ric is taken in its general. spherically symmetric
canonical form (Sec. III). As in the case of a pre-
scribed Schwarzschild background —analyzed in
I—the curved space-time affects the resulting
Schrodinger equation for the radial function es-
sentially via an external gravitational potential.

The stress-energy content of these scalar so-
lutions determines the curvature via Einstein's
field equations. In Sec. IV we review the spherical
symmetric case and include also a method which
enables us to incorporate nonzero-angular-momen-
tum states into this framework by averaging the
stress energy of these scalar fields over a spher-
ical shell.

Our geons contain a fixed (quantized) scalar
charge. By imposing this restriction (see Sec. V)
we not only fix 'on otherwise undetermined scale
of our geons but may also increase their stability.
The main concern of Sec. V is, however, to con-
trast two notions of energy for our gravitational
solitons: (1) the field energy of the general-rela-
tivisitic scalar waves, and (2) the total gravita, -
tional energy of such an isolated system. " In
order to probe our concepts we construct in Sec.
VI a simplified geon by considering radially con-
stant scalar solutions owning the particular con-
stants admitted by the nonlinear self-interaction.
Qutside a ball of radius p~ the scalar fields are
discontinuously set to zero. Although this proced-
ure is rather artificial, we thereby obtain a "bag-
like"" object having inside a portion of an Ein-
stein microcosmos and outside a Schwarzschild
manifold as background space-time.

In general, the resulting system of three coupled
nonlinear equations for the radial parts of the
scalar and the (strong gravitational) tensor fields
has to be solved numerically. In order to specify
the starting values for the ensuing numerical an-
alysis we derive in Sec.. VII asymptotic solutions
at the origin and at spatial infinity. Section VII
is then devoted to a discussion of the numerical
results. Preliminary speculations are offered
with the aim to interpret particles as quantum
geons. Section VIII concludes the paper with a
prospective overview of other developments con-
cerning gravitational solitons.

II. THE MODEL

Following the outline given in the Introduction
. we may consider as a simplified model. a theory
consisting of N complex scalar fields

(2.1)
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Their dynamics is governed by the Lagrangian
density

S2
~nfl [f""(&„v*)(s„v)—U(~ v ~')j (2 2)

2p,

defined on a curved pseudo-Riemannian space-
time with metric tensor f„„. In order to obtain a
similar dynamical. problem as in the nonlinear
spinor theory given by (1.2) the self-interaction
potential

U(~ V' ~)
= (uc/~)'V*V 1-6„—P(V*&)3

p. of this model (see Sec. III). Intuitively, we sus-
pect that the stability of these solutions (and pos-
sibly also their degree of confinement) is enhanced
by the attractive forces exerted on them via the
coupling to strong tensor gluons. " ' Geometrically
speaking, this would correspond to a curved-
background manifold. In our model this curving
up of the background is self-consistently produced
from the stress-energy tensor" (MTW, p. 504)

~~H KG
llv( ),/

l f l
6fPv

+ 8'(y*y), e, e =0, +I (2.3) (2.8)

is chosen to be similar to that used in I. Such a
model has recently been treated in 1+1 dimensions
according to quantum-field-theoretical methods. '4

Variation for 6g„xo/6p* yields the nonlinear
Klein-Gordon equation ~If I (R —2A„„„)+ Z„„o (2.9)

of the scalar fields y via Einstein's field equations
(1.4). In effect, our geometrodynamical model is
then completely determined by the Lagrangian den-
sity

[Cl+dU/d(~ rp~ )]y=0,
where

CI=
~

&„(f'Vl fl &„)
1

(2.4)

(2.5)

since (2.6) and (2.9) can be derived from it by a
variation for 6goM J6p" and for 6go n/6f ~'.

III. SPHERICAL SCALAR WAVES IN A CURVED
BACKGROUND

denotes the generally covariant Laplace-Beltrami .

operator. When (2.4) is explicitly written for the
choice (2.3) of the self-coupling it will be referred
to as the nonlinear Heisenberg-Klein-Qordon
equation

(2.6)

Ad 4( ) 16
E

(2.V)

particlelike (stable) solutions can exist. &u is the
ratio between dynamical. mass and the "bare" mass

In I it has been shown that (2.6) is formally sim-
ilar to that obtained by "squaring" the fundamental
spinor equation (1.2). This is part of the motiva-
tion for considering a

~

p~' term in the corres-
ponding Lagrangian density (2.2).

Although the resulting quantum field theory,
contrary to the

~ p~ model, would not be renor-
malizable according to standard criteria of per-
turbation theory we include in this paper the ad-
ditional

~
y ~

self-interaction term. For a semi-
classical approach it may be instrumental for the
construction of quasi stable, spherically symmetric
and localized solutions. At least in flat space-
time, Anderson" has shown by means of a phase-
space analysis that for

dS = ~3 dS =
~3 f~„dx dx-2 2r 2 2'

e"c'dt ' -e dp —p'(d8'+ sin'Hdg')

if the sign conventions of Tolman" are adopted.
Here v.=- v(p) and X =-X(p) are functions which de-
pend solely on the dimensionless Schwarzschild-
type (MTW, p. 721) radial coordinate

(2v)"' ~'cP=-, 3 = 3, r= /x/. (3.2)

The determinant of this metric is given by

3

~lf l'
— pe (v+x) / 2p2 sine

(2 )1/2

For the construction of spherical scalar waves,
we take up the well-known fact that solutions of

(3.3)

As a semiclassical model for a particle we a9'e

considering spherical geon-type'4" solutions
which minimize (2.9). More precisely, we are
looking for spherical wave configurations which
solve the HKG equation (2.6) in a static, spher-
ically symmetric background space-time which in
turn is determined by (1.4).

As is well known33 (see, e.g. , MTW, p. 594 and
box 23.3), a canonical form of the genera. l (di-
mensionless) line element for this background
reads
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the free, linear plein-Gordon equation can be ex-
panded in terms of spherical harmonics Y, (8, (t))

which are eigenfunctions,

[~+l(l +1)]Y",(8, y)
"1

8,(sings, )+ . , 822+i(i+1) Y", (8, p) =0,1
sing 8 8 sin2g

(3.4)
of the Laplace operator a, on the two-sphere S'.
Although a nonlinear theory in general does not
respect such an expansion on, the nonlinear terms
of the field equation (2.6) admit the two distinct
separation &~gytge of I:

4 l 4)T+(()) (p&/h)l/2~ e-ittvuc /2

), 3N

With respect to the new coordinate p* and the
Schrodinger-type wave function F", (p*), the struc-
ture of the Laplace-Beltrami operator is similar
to that of a conformally flat Klein-Gordon oper-
ator with an external potential.

Consequently, the stationary Ansatse (3.5) and

(3.6) together with the property (3.11) cast the
HKG equation (2.6) into the Schrodinger-type equa-
tion

[8,„'-V!„(p*)]F

1 „E ~ 2&e", E —,F'+1-e m' fE (3 12)

with an effective curvature Potential (compare
with MTW Ref. 36, p. 868) implicitly given by

R", (p)Y2) ' '(8, (t)) if N=2l+1,~

~Ro (p) Y 02(8, (t)) elsewhere .
(3.5)

(3.6)

V,'«(p*) =, l(l+1) ——pe 2 8 ()( —v) . (3.13)
)v

Here and in the following the factor

Owing to the familiar addition theorem (Landau
and Lifschitz, Sec. 26)"

M*
2Np, (3.14)

Ym(g y) m Ym(g y)— 2t +1
m= -1

(3.7)

a self-interaction given by a polynomial in ~"y
~

y'" remains spherically symmetric as
required by separability.

In order to see how space-time curvature affects
the wave equation it is instructive to define

denotes the dimensionless ratio between the
Planck mass M* and the bare mass p. of the N
constituent fields. So far we have considered the
formal aspects of the theory. For the ensuing
numerical calculations, however, it is more con-
venient to use the equivalent radial equation

I

j 2 exR" + 2 8 (v —A)+ —R' —l(l+1) 2 R
P- P

R", (p) = —E", (p*)=1 (3.8) , ~ (sR' —2&R'+I —e "&u')R (3.15)
N

dp*=-e" ""'dp.
Then the line element (3.1) takes the form

(3.9)

(in some equations below abbreviated by R or E,
respectively) and to introduce Wheeler's22 "tor-
toise coordinate" p* (MTW, p 663) via the differ-
ential form"

written explicitly in terms of p. (The prime denotes
differentiation with respect to p. ) It may be ob-
tained from (3.12) and (3.13) by resubstitutions,
or more directly from (2.6) and the original
Ansatg (3.5) and (3.6) founded on the background
(3.1). It generalizes Eq. (3.9) of Kaup" derived
there from a linear Klein-Gordon equation.

ds = 2f ec'dt' —dp~
f

—p2(d82+sin28 d(t)2) .
ie*

(3.10)
It resembles the metrical ground form of a space-
time with two eonformally flat portions. Then a
kind of conformal change' of the Laplace-Beltrami
operator (2.4) may be calculated with the formal
result

IV. THE EINSTEIN FIELD EQUATIONS

By applying Machian ideas to the microcosmos,
the strong gravitational background will be deter-
mined from the stress-energy content of the scalar
waves via, the Einstein equations (1.4).

With respect to the diagonal metric of (3.1)
these equations reduce to (see Tolman, "p. 242)

22 1 A+2
pD —=e",8,' —B,~'

7T P 7TC

v' I & 1e' —+ -v f+-—, ii= 7'"
p p ) p' 2m'

(4.1)

+ e- (v+I)/ 2[8 e (v-L) /2]
1

P P

/
r

(3.11)

1 1 1
9() (slug 8()) + . 2 92p', s&n8 ~ ~ sxn2g -2(

E 2

$/p1 p12 p/ /1

4 4 2p

2m he ' 2v@c
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and &lsY l' . , }s Y l'&

R(X' 1 1 /*4e'l, + T
( p p p 2mSC

(4.3)
8 (Y *since Y )

1.

Sing 8 l

Here

+2

cony
7r

(4.4)

1
+ . , 9 (9', *sln9992,"))sin 9

denotes a dimensionless cosmological constant
and the prime again means differentiation with
respect to p. Although this set of equations may
look like an overdetermined system, a simple
argument shows that this is not the case.

According to second-order variational principles
which can be generalized to a curved space-time, '
there exists the conservation law &„T„"=0for the
stress-energy tensor (2.8) provided that the matter
field equation (2.4) hold. In our case, this law
relates the two tangential tensions T~ = T~~ to the
radial tensions, i.e. , to T„",T,o, and d T,"/dr This.
knowledge of Te"= T~~ is not instrumental for the
determination of the gravitational fields from the
field equation (2.9). Owing to the contracted
Bianchi identity &„G,"=0 there exists' the same
relation between the diagonal elements of the
Einstein tensor 6,". Therefore it is enough to
consider the two remaining equations (4.1) and

(4.3) only (Ref. 41, p. 488).
For the supposed spherically symmetric back-

ground (3.1) we notice that the nontrivial Ansatz
(3.5) would lead to an inconsistency in the grav-
itational field equations. The reason is that the
corresponding stress-energy tensor (2.8), in the
scalar case given by

2' Sc
g4 ~00 (4.8}

and

(,)
16 296'9 „(,), R „)
2g Sc

g4 t0y (4.9)

where the spherical average of the Lagrange
function is explicitly given by

( 4' f I

3PRN2 QQ$692 2

-P'N e "(R')'+ @Et' ——ft'
3

' s~(Y", *sins s, Y", )d'x=0, (4.V)'1
4m

which results from the application of Stokes's
theorem.

With respect to the Ans'dtze (3.5) and (3.6) the
averaged radial tensions come out as

)6 29li9 „, (2 )0 3p2N2 g'JtI9922 v'I f1

h'T„"= (s„y6')(8 qr) 5 }fl
it g (4.5) (4.10)

would also depend on the angular distribution of
the solutions, contrary to the Einstein tensor.

For localized solutions the spherical asymmetry
of the scalar waves (3.5) is expected to be neg-
ligible sufficiently far away from the center of the
geon. Therefore it is physically justifiable not
to discard Ansatz (3.5) but rather consider the
Einstein equations (4.1)-(4.3) with respect to an
averaged stress-energy tensor (T,") as proposed
by Power and Whee1er4' (see p. 488). Suitable
is an average ( ) over a spherical shell defined
by the property

In order to bring the radial Einstein equations
in close analogy with those known for a perfect
fluid (Ref. 23, p. 244) we may formally introduce
in (4.8} the dimensionless proper density poo

of the scalar field. It turns out to be explicitly
given by

+ll R 9(R')' —9R + '—R }.3

(4.11)

The evaluation of (T„")will be facilitated by
employing the identity

(4.6)

9

Furthermore, the dimensionless proper hydro-
static pressure p, of a scalar field can (implicitly)
be defined by (4.9).

By subtracting (4.1) from (4.3) and evaluating
the combination
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42
ppp+pp 3~2N2 g2

[~' e "R'+p'N' e '(R ')'] HKG
Qi f i f )L s p g(q )

&2) 6(s )p } 2 p
(5.2)

(4.12)

we obtain

v + X (ppp+Pp)pz (4.13)

whereas in this notation (4.3) is equivalent to

In a static background and for the stationary
Ans'atze (3.2) or (3.3) owning the semiperiod H/0,
where 0 = l)) pc'/I, it is not difficult to see that the
Bohr-Sommerfeld condition (5.1) is equivalent (see
also Ref. 45, Sec. 3.6) to the charge quantization

X' =(p + A)pei - —ei+ —.
p p

(4.14)
Q(y) =ke, k=1, 2, . . . ,

where

(5.s)

These equations are generalizations of those
considered by Kaup" for a linear and, e.g. , by
Kodama et aE. ' for a nonlinear Klein-Gordon field.

It should be noted that (4.14) is a linear dif-
ferential equation in e ". As is well known the
general formal solution can be written as

where

n(p)
p

p 3
(4.15}

Q ('p) Jl ppp x .dx
0

(4.16)

Ae'=e '=1 ————p'.
p 3

(4.17)

They describe the exterior Schwarzschild-de
Sitter geometry for a mass distribution located
at the origin. In the case of vanishing cosmologi-
cal constant, n -=n(~) is the parameter measuring
the gravitational mass O.M* at spatial infinity.

V. GRAVITATIONAL ENERGY OF GEONS
WITH QUANTIZED CHARGE

In order to associate some quantum meaning
to the time-dependent localized solutions of the
HKG equation the Bohr-Sommerfeld quantization
rules may be imposed. For a field theory with

infinitely many degrees of freedom this semi-
classical quantization condition" reads

rs /2Q
d'x +II&, ) epq

")=Hkn
"-f /2~ q= 1

(5.1)

the time integration being performed over the
semiperiod H/Q of the solution. In a curved space-
time the canonical conjugate field momenta are
defined (see, e.g. , Fulling44) by

denotes the effective mass. 73 The meaning of the
latter terminology will be illuminated if we con-
sider the Einstein equations outside the region
where matter fields vanish, i.e. , R =0 in our case.
Then the nonlinear equations (4.13) become lin-
earized and the vacuum Einstein equations admit
the [with respect to the canonical metric (3.1)]
unique set of exact solutions

Q (9 ) 32 p) &' ~™d,F&gy, )2
e SPN(' ~

(5.5)

For fixed P and preassigned p) this condition
normalizes the a Priori arbitrary Planck length
g with regard to the coupling constant g of our
nonlinear model. On the other hand, if we fix
this ratio to be, e.g. , g'2/g =1 as we will assume
in our numerical calculations, the condition
(5.5) determines the physically immaterial initial
constant C„appearing in the asymptotic solutions
(7.1) discussed in Sec. VII. Our normalization
(5.4) is the sa.me as that used by Kaup" but de-
viates from the condition suggested by Feinblum
and McKinley. "

In a curved space-time the energy concept is
known to be rather subtle. Let us recall that for
matter fields coupled to gravitation the locally
conserved four-momentum is given by

(r + I"")v' If I dz„=1
spacelike
hypersur face

the integration being performed over a space-
like hypersurface. Differently as in the case of
flat Minkowski space, in (5.6) the stress-energy
pseudotensor t~z of Landau and Lifshitz" (MTW,
p. 466) must be included in order to account
for the contribution from the gravtiational
field.

For a quasistatic isolated system and A =0
Tolman" (see also Ref. 23, p. 235} has derived
the following equivalent expression for its total
energy

(5.6)

eS .
Q(y) =

2
i d'x))' if i f'"[q's„q —(s„)i)*)y]

(5.4)
in a curved space-time is the conserved total
charge of the complex scalar fields. The con-
dition (5.3) may also increase the stability of
these quantum geons" provided that this sta-
bilizing device for nonlinear semiclassical field
theories" applies also in curved space-time.

By insertion of the Ansiitze (3.2) or (3.3) we
obtain the expression
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Po = — (2To' —T„")v'
I f I d'g. (5.7)

This result which is exact in the static case is
operationally more useful, in particular in num-
erical calculations, since the volume integral
has to be extended only over the region actually
occupied by the matter fields.

In our construction of localized geons we can
satisfy the criteria for the applicability of (5.7}
if we require the radial part of the scalar field
to be exponentially decreasing in the asymptotic
region p-~ (see Sec. VII).

Thereby the gravitational background field (3.1)
tends sufficiently fast to that of a Schwarzschild
geometry given by (4.17) with A =0. By construc-
tion the total mass of our geon is then known to
be o.M* l. compare with E(l. (62) of Ref. 41] and
the Einstein relation

P0 = ~M+C (5.8)

Po =M+c Jt dp+ p e"(poo + SPo) (5.9)

holds in a rest frame.
Using the static background (3.1) and the formal

relations (4.8) and (4.9) the Tolman energy (5.7)
can be cast into the form

interesting to note that gravity alone modifies
the bare mass p by 2k~, whereas a mass re-
normaiisation on this semiclassical level is due
to the (nonlinear) self-interaction. The relation
(5.12) may be contrasted with the curved space-
time definition (see, e.g. , Ref. 44}

1E= — T 'v'
I f I d'x

C

(2v)1/2
dp' p'e" (T '&0 (5.13)

E p it'
(d + —

I dp* p'R'
c 2

P0

x J dp* p'e "R'
Pp

( + )P.N, +82N2 ),

p R

of the field energy of the N scalar constituent
fields q ' of the geon without the contributions
from the self-consistently generated gravitational
field.

Inserting (4.8) together with (4.10) and then
substituting the normalization condition (5.5)
yields the mass formula

(Tolman", p. 248). With respect to a nonlinear
scalar field theory defined by (2.2), the total
energy is equivalently given by

/

-gB2+ -R4
3 (5.14)

,i.—~ &2f-lao~ I'-U(lv I')&""'""p'dp
~o

(5.10)

the integration over angular variables formally
being absorbed in the averages defined earlier
by (4.6). After inserting theAnsiitse (3.5) or
(3.6) we obtain the more explicit result

32 pc' g
o 3 PN go

x dpi''p e" 2&v e "-1+sR' —-R'IR'.

(5.11)

The model-dependent ratio 8 /8 may be elimina-
ted by the previously derived normalization con-
dition (5.5). Then in view of (S.14) the formula

p — ( I pp p*a"(( ((-- p((+( pi p(((
jjpN 2(u f d p, 2R2

(5.12)
finally determines the total gravitational mass
nM~ of a scalar geon with quantized charge. It is

for p0 =0. As a precautionary measure for the
case that this expression diverges at the origin,
we have introduced a cut-off length po& 0 in (5.14),
enabling us to study the regularized field energy
E„,instead. After subtracting the boundary
term

a' d'xs (q*& I flfoos q)5 (5.15)

from (5.13) and then using the normalization con-
dition (5.5) we may alternatively consider what
we call the normalized energy

E„„~=QP pc ——M*c' = ((d —2o((8)p, c'

of a scalar particle within a geon as a function
of (d and (8. Following Ref. 31 we may define it

(5.17)

f,"dp' p'e "(ocR' —3 s R ')
0

f~d p, p2R2

(5.16)

which should be compared with (4.9) of I. Further-
more, it could be physically interesting to study
the binding energy
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as the energy of a free scalar particle from which
its energy contribution to the total geon mass at
rest is subtracted. A free test particle means
free of gravitational and self-interaction. In
view of (5.16) the corresponding normalized
energy is (dpc2 which is the factor appearing in
the phase of the Ansatee (3.5) or (3.6).

VI. GEON WITH A CONSTANT BAGLIKE CORE

(R")'= = (+)
I
I —= + = e

c

=e(+)e &c '~ for e = 1 (6.1)

also in a curved space-time (3.1), provided that
the f„component of the metric tensor is also a
constant, i.e. ,

v,'=0 ~ e "c=1 ——=. const.
p~

(6.2)

In the case that this condition holds Anderson's
analysis" of the classical phase space (R,R') of
the HKG equation can be applied to a certain ex-
tent. The main result is that stable (particle-
like) solutions can exist if the parameter B„~
employed already in (2.7) satisfies the condition

& )(|6~ (6.3)

Then the stable equilibrium points in the phase
space of the asymptotic version of (3.15) cor-
respond to the constant solution (6.1) with the
negative sign of the square root. This solution
which the geon may adopt in its interior gives
rise to a constant scalar density

+2p„=, , (, [4(o'e "~+2-e(R,")'](R,")' (6.4)

as well as to a constant pressure term

8
P. =

9 ~ ~ ] [2e "'~' —2+&(R,")'](R,")' (6.5)

If we absorb (6.4) into an effective cosmological

A,f~ =Ab +poo (6.6)

solutions of (4.14) which are regular at the origin
read

Before we turn to a numerical analysis of the
spherical Einstein-Klein-Gordon system it is
instructive to study an exact solvable geon con-
taining a constant scalar core of radius p~. In or-
der to obtain this highly idealized configuration one
has to note the fact that the nonlinear equation
(3.15) for the radial distribution of the scalar
field y admits for )=0, besides zero, the con-
stant solution

From e&c= const, i.e. , Eq. (6.2), we can infer
that the constant radial solutions (6.1) exist only
in (a portion of) an Einstein microcosmos (com-
pare with Tolman", Secs. 135 and 139). [Note
that (2.6) admits also nontrivial radial solutions"
in an Einstein Universe. These exact solutions,
however, are not geon-type solutions, i.e. , they
do not satisfy the Einstein equations (1.4) at the
same time. ]

The remaining radial Einstein equation (4.13)
yields the equation of state

Poo 2Ab~ —3P ~ 0 (6.8)

for the density p« in terms of the hydrostatic
pressure p, . After insertion of (6.4) and (6.5) into
(6.8) we obtain

3 2N2 2

5(g'e "e —2+@(R,")' = g, A„ (6.9)

which, in view of (6.1), determines v, = v,(~) as a
function of ~ and A.

Our geon construction may now follow closely
those by which Schwarzschild (see Ref. 23, Sec.
96) obtained the exterior and interior solutions
for a spherical star consisting of an incompres-
sible perfect fluid of constant proper density
p„. To this end we may use (6.1) together with
the condition (6.2) and the resulting metric func-
tion (6.7) as solutions for the interior 0 (p (pe of
a ball. Then the curvature potential (3.13) as-
sociated with this metrical background is also
a constant, i.e, , more precisely

V,f~
= —3 e "cA (6.10)

In order to interpret the interior solution (6.1)
as a kind of bound state within a negative potential
produced by a gluonic bag of tensor forces we
have to require A,ff)0.

In view of (6.6) and (6.8) this condition can be
satisfied for Ab ~ 2po) 0 only. Such a nonzero
bag constant Ab is necessary for the interior
of the geon in order to compensate for the vacuum
pressure (6.5) of the quark-type scalar fields.
A similar mechanism has been proposed in the
phenomenological MIT bag model of hadrons. "
[If A~ would be zero, the condition (6.8) is the
same as that for a random distribution of electro-
magnetic radiation (Tolman, "p. 217) except for
the sign. ].

Outside the constant baglike core of radius p~
we may simply continue with R =0 (if in this
idealized construction we are contented with
solutions which are only piece-wise differentiable
and continuous) and obtain for A„,=0 a Schwarzs-
child solution (4.17) for

(6.7) ~
z/s

p) pe-=A
off)

(6.11)
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This crude geon construction allows us to evaluate
the total charge (5.4) in closed form.

Insertion of (6.1), (6.2), and (6.7) into (5.5)
yields

The remaining integration can be performed with
the aid of an integral representation [see Eq. (30)
of Ref. 47] of the hypergeometric function. The
charge quantization (5.3) then leads to the nor-
malization condition

9 p~ $2 5,")'e ""p&'&, (2 2 2 3 p + ) ~

(6.13)

For &,„., =0 and assuming here for simplicity
also p'= 3/A, « the above result can be used to
determine the scalar density (6.4) respecting the
condition (6.8) as

p2~2
0o

3 ~2 ~2 ~ (6.i4}

In a similar way we may calculate the already
normalized expression (5.12) for the gravitational
mass ~M*.

Let us consider the case E =1. The insertion
of (6.1) and furthermore (6.9) into (5.12) yields

de2 Pg-p /2(R(u)2 ~ dp 2(l & 2g )
j./2

e 3PiV g' ' J

(6.i2)

, VII. LOCALIZED GEON SOLUTIONS
FROM NUMERICAL INTEGRATION

According to our introductory remarks we will
reserve the term "geon-type solution" (compare
Sec. VIII for other notions) for configurations re-
sulting from a self-consistent coupling of fields
to gravity in which both the "matter" waves and
the metric tensor are (nonsingular and) sufficient-
ly localized. A precise criterion for localization
depends crucially on the circumstance of whether
or not a cosmological constant A is included. For
the present we put A = 0 and may then require for
localized, spherically symmetric scalar geons
the following.

A. Asymptotic solutions at spatial infinity

%e proceed similarly as in Sec. III C of paper I
(Ref. 30) and consider radial solutions which be-
have asymptotically as

1
f~,"'(p) = C„p exp —— (1 —~ ) pPN

(7.1)

If ~&u(& 1, such boundary conditions for the numer-
ical integration would necessarily lead to expo-
nentially decreasing Yukawa-type solutions (see
also Ref. 48) irrespective of the parameter o.
Since the scalar waves would already be suffic-
iently localized, the Eqs. (4.13) and (4.14) pass
into the Einstein vacuum equations. Given the
canonical form (3.1}these yield uniquely the
Schwarzschild solutions (4.9) with A =0.

Therefore

5~'(+)ee ' —e ' pN g' &

PN 6cu 16 g*

(6.i5)

e" = e =1-—+0(q')
p

(7.2)

will hold. The asymptotic forms (V.l) and (V.2) are
then inserted into (3.15) in order to determine o

on the grounds of self-consistency. By equating
the coefficients of the I/p expansion we obtain

a result which could also be inferred from the
comparison of condition (6.8) with the equivalent
expression (5.9) of the Tolman energy.

Since for p& p~ the space-time geometry is
determined by the Schwarzschild solution (417)
with &,„,=0 and o. given by (6.15), an "observer"
placed outside the core will regard this grav-
itational bound state of scalar fields as an object
having the mass nM~. For &„«=0 the hadronic
environment, i.e., the strong curvature generated
by the tensor gluons f„„inside the constant core
gives rise to such a strong "Archimedes effect"'
on the scalar constituent fields, that their binding
energy (5.14) becomes equal to the rest mass
~ pc' of a self-interacting quark.

This can be summarized in a %wheeler-type
phrase: A constant baglike geon may have "mass
without mass". (Ref. 37, p. . 25).

a(l —2 (u')

2 pN(1 —(d')'/' (7.3)

B. Asymptotic solutions at the origin

Guided by the constant-core case analyzed in
the preceding section we found it reasonable to
assume

v'=0 ~e" = e"' = const (V.4)

in the vicinity of the origin.
(0, ) Suppose we find

R' —Co . (7.5)

This result being independent of the quantum num-
ber E of angular momentum agrees for the plus
sign with that obtained by Kaup. "

Let us turn to the following.
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Then from (4.14) and (4.13) it follows that the
radial metric function behaves as

e =1 ——,p A,f,
-X (7.6)

at the origin. This corresponds to the exact re-
sult (6.7). Then the radial equation (3.15) takes
the asymptotic form

2 f(l+1)
Bp +—Bp—

, (ZR' —2eR'+I —e "'uP)R (7.7)

[cpmpare with Eq. (3.11) of I]. A familiar argu-
ment expanded in I yields

R g ( p) = Co p ' (V. 8)

as asymptotic solutions regular at the origin. The
system of approximate solutions (V.4), (V.6), and

(7.8) turns out to be consistent.
(0&&) Another set of asymptotic solutions can be

obtained by proposing instead of (7.5) the trial
function

tends to zero for p-0. Therefore the charge inte-
gral (5.5) should be bounded even at the origin.
Since the subsidiary conditions of bounded square
integrability and fast decrease at spatial infinity
turn out to be fulfilled, solutions with the asymp-
totics 0&& in curved space-time can also be regard-
ed as "eigensolutions, " according to the criteria
of quantum mechanics (see Sec. 16 of Ref. 38).
Vfith respect to the formal Schrodinger-type equa-
tion (3.12) the dynamics corresponds to the motion
of a particle in a centrally symmetric field char-
acterized by a centripetal potential

C

I'.ff( p*) =-4,g (7.15)

near the origin. By applying l'Hospital's rule we
find that

&"( p*}= —
I

—(»*)"»~& p*)"'~3&"' f
0 8] gg 0

3 )1/2
g

(V.14}

R, (p) =) —
~

—lnp

for l =0.
Assuming that e =0 for p-0 such that

pooe =

we obtain from (4.14) the result

4Q 2p2
0

(V.9)

(7.10)

(V.11)

near the origin (compare with Ref. 38, p. 109).
With this information at hand we have performed

the numerical calculations on a DEC-PDP-10
computer using single precision NAG and IMBL

Library subroutines. The evaluation of the func-
tions R", ( p), e", and e~ ~ has been done in dou-
ble-precision mode. For all calculations the free
parameters of the model have been fixed accord-
ing to

i.e. , the three-geometry is "conical" (Ref. 73, p.
14). This together with (7.4)' satisfies also (4.13).
Furthermore, the insertion of (7.11) into the rad-
ial equation (3.15) yields

R"
R' p

(7.12)

Its integration results in (7.9), the integration
constant already being determined by (7.10). The
sets (7.4), (7.9}, and (V.10) of asymptotic solutions
have earlier been discussed by Feinblum and
McKinley. "

In spite of the fact that in the latter case the
radial part of the scalar waves is logarithmically
divergent at origin, we should not disregard these
solutions. For a more precise reasoning we have
to also take the strongly deformed space-time
manifold at the origin into account. This effect be-
comes more transparent if we consider the func-
tion F, ( p*) defined via (3.8) in terms of the tor-
toise coordinate (3.9). In view of (V.4) and (7.12)
the latter acquires the asymptotic behavior

1
p+ ~ p (7.13)

Ao

A= 0, a=a=1, n=3, @=1,

l =0, 8*/g =1, P=0.2.

Then for each given cu and n„ the system of ordi-
nary differential equations (3.15), (4.13) and (4.14)
has been numerically solved by Runge-Kutta form-
ulas of order 5 and 6 as developed by Verner
and coded by Hull and co-workers" in the IMPEL

subroutine DVEHK. The global error of the sol-
utions has been estimated to be less than 10 4.

Using the asymptotic conditions (7.1) and (7.2) as
starting values the integration has been performed
going from p„=30 backwards to zero. Self-con-
sistent solutions are constrained by two additional
conditions. First, they have to fulfill the charge
normalization (5.5) and second, they have to re-
produce the parameters n chosen for the initial
conditions consistent with the Tolman integral
(5.12) for o.. This has been achieved by an itera-
tive least-squares fit using the NAG subroutine
E@4FAF which is based on a method due to Peck-
ham. " Thus the parameters n and C„have been
determined by minimizing the sum of squares
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where j denotes the jth iteration step, ~,-, is the
result of the (j —1)th step which fixed the initial
conditions (7.1) and (V.2) and Qz, ~,. are calcula-
ted from (5.5) and (5.12), respectively.

Using appropriate starting values for C„and m, -

a convergence of (V.16) better than 10 ' has been
obtained by the method resulting in a relative er-
ror in o, and Q of less than 10 '. The numerical
integration of Q, o., and E„~ has been performed
by using the NAG Library procedure DQ1GAF

which estimates the value of a definite integral
(when the function is specified numerically) using
the method described by Gill and Miller. " The
maximal relative error should in no case be larger
than 10 6.

As can be deduced from the asymptotic solutions
(7.10) and (7.12) of the second set Oq, the energy
expression (5.14) contains a term ln po which di-
verges for po-0. Therefore in Fig. 1 we have
computed only the finite part of E, i.e., E„I, cor-
responding to the cut-off parameter p, =0.001.

So far our method of integrating backward has
produced solutions belonging solely to the set 0&

of asymptotic solutions at the origin. In this case
we found solutions with and without nodes, The
number of nodes of the radial part R, ( p) of the
wave function for finite values of p (excluding the
point p =0) may be used to define a radial quan-
tum number n„a,s in the nonrelativistic Schro-
dinger theory (Ref. 38, p. 109). From the theory
of the hydrogen atom we suspect the relation

(7.17)

to hold (Ref. 38, p. 123) where n would denote the
principal quantum number of the geon.

Figs. 2 and 3 reveal that our numerical results
interpolate rather well between the asymptotic
solutions at infinity and at the origin (set 0&& ). In
the case without nodes [Fig. 2(a)] the radial scalar
function Ro( p) joins smoothly the asymptotic sol-
ution (V.9) with the localized solution ('7. 1). Both
metric functions show a Schwarzschild-type be-
havior for large p. For small p, e" becomes con-
stant [Figs. 2(b) and 3(b)] similar as in the con-
stant-core case, whereas e tends to zero in ac-
cordance with (7.11). The latter function develops
in between a noticeable peak [Figs. 2(c) and 3(c)]
which corresponds to the confining barrier in the
effective curvature potential (3.13) [Figs. 2(e) and
3(e)l.

An interesting phenomenon can be observed on
the level of the Schrodinger-type wave function
E, (p*) being defined with respect to the "pseudo-
flat" space-time (3.10). E, (p*) is concentrated
[see Figs. 2(d) and 3(d)] within the negative well
of V,'«( p*) with its maximum close to the zero of
the potential. For smaller values of ~ this maxi-
mum is shifted by the barrier of the curvature po-
tential closer to the origin. This seems to indicate
a self generati-ng effect of the geometrodynamical
confinement mechanism (being here only partial).
This confinement scheme and its proposed" ex-
tension including color may be compared with,
e.g., the MIT bag model" (see also Hasenfratz
and Kuti" for a review). There an ad hoc intro-
duction of a vacuum pressure term Ab, g

is needed
to compensate for the outside directed pressure
of the quark gas. In contrast to this phenomeno-
logical device our approach resembles rather
Creutz's" reconstruction of a bag model from
local nonlinear field theory. Similar to his, the
core of our bag is produced by employing the stable
(quantum-mechanically meastable solution) of the
HKG equation for an extended part of the space.
Surrounding this core is a transition region, the
skin of the bag, consisting of an exponentially de-
creasing Yukawa-type radial solution for the scal-
ar field and a Coulomb-type potential for the ten-
sor gluons.

The total gravitational mass (5.12) as measured
at infinity exhibits a branching for the zero- and
one-node solutions with respect to its x depend-
ence (Fig. 4). For n„=0 and low ~ we may under-
stand the qualitative behavior of a(e) by comparing
it with (see Ref. 54)

0'.f.
' ' ' '

0'.e
' ' ' '

0'.e

FIG. 1. Regularized field energy of the scalar waves
within scalar geons as a function of cu, corresponding
to a cutoff length p p

= 0.001. but for higher values of &u Eq. (5.12) tends to

(7.18)
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FIG.4. Tolmanenergyor Schwarzschild mass nM*as
a function of m for quantized scalar geons with "princi-
pal-quantum number" n =1,2.

respectively, agree quite well with our results
(Fig. 4).

Already for n„=1 and higher-node solutions we
found parts of several sub-branches in o.(~), i.e.,
the Tolman energy of these geons deviates in a
noticeable way (not shown in Fig . 4). In a pre-
liminary study we could distinguish the corre-
sponding solutions among others by the number of
nodes in R

Further analysis is in progress in order to un-
derstand these highly interesting instances of a
possible fine structure in the energy levels of the
geons. In view of these rich and prospective
structures does there exist the speculative alter-
native to interpret extended particles as quantum
geons" capable of internal excitations?

VIII. OTHER GRAVITATIONAL SOLITONS

To some extent Wheeler's" geon concept has
anticipated the (nonintegrable) soliton solutions4'
of classical nonlinear field theories. As men-
tioned in the Introduction a geon or gravitational
soliton originally was meant to consist of a spher-
ical shell of electromagnetic radiation held to-
gether by its own gravitational attraction. In the
idealized case of a thin spherical geon the corre-
sponding metric functions have the values e"'
= -,' well inside and e" = e = 1 —n/p well outside
the active region. The trapping area for the elec-
tromagnetic wave trains has a radius of p„,„-,
= —,

' n. This result has been confirmed by apply-

ing Ritz variational principles. "
Constructions with toroidal or linear electro-

magnetic waves have been given by Ernst" where-
as neutrino geons have been analyzed by Brill and
Wheeler. "

Brill and Hartle" could even demonstrate the
existence of pure gravitational solitons. By ex-
panding the occurring gravitational waves in terms
of tensor spherical harmonics" it can be shown
that the radial function experiences the same ef-
fective potential (3.13) except that an additional
factor —,

' appears in front of the contribution from
the background metric.

In a relevant paper the coupling of linear Klein-
Gordon fields to gravity has been numerical1y
studied by Kaup. " Moreover, the problem of the
stability of the resulting scalar geons with re-
spect to radial perturbations is treated. It is
shown that such objects are resistant to gravita-
tional collapse (related works include Refs. 58,
46, and 48). These considerations are on a semi-
classical level. However, using a Hartree-Fock
approximation for the second quantized two-body
problem it can be shown" that the same coupled
E instein-Klein-Gordon equations apply.

As an important new ingredient, Kodama et a/. 4'

have been considered a real scalar field with a
y' self-interaction as a source for the gravita-
tional field. In this preliminary study the Klein-
Gordon operator corresponding to flat space-time
is assumed.

A general relativistic Klein-Gordon field with
an effective y' self-interaction for an interior
ball has also been analyzed by this group. " In
order to avoid a singular configuration at origin
a repulsive (or "ghostlike" ) scalar field has been
chosen as a source of Einstein's equations. In a
further step Kodama" constructed a spherically
symmetric kink-type solution for a repulsive
scalar field with y' self-coupling (compare also
with Ellis" ). As is common for kinks, the radial
function at spatial infinity is chosen to be a con-
stant characterising this nonlinear model. If we
want to transfer the method to our case, we may
use instead of (2.3) the symmetric self interaction-

(8.1)

The additional constant in (8.1) necessarily elim-
inates the gravitational source which otherwise
would occur for the constant solution

(8.2)
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characterizing the kink solution asymptotically.
In flat Minkowski space it is conjecture that (8.2)
constitutes a first approximation to the vacuum
expectation value (0~4 ~0) of the corresponding
quantum field.

For the general-relativistic kink of Kodama'
the radial solution becomes zero at a certain
radius xo at which the background geometry de-
velops a Schwarzschild-type horizon. (Geon-type
solutions exhibiting an event horizon may be
termed "black solitons. "") The boundary condi-
tion at xo, however, allows an extension of these
solutions into a three-manifold consisting of two
asymptotically Euclidean spaces connected by an
Einstein-Rosen bridge. " Arguments are given"
that this extended, nonsingular configuration is
stable with respect to radial oscillations. .

It should be noted that such solutions cannot be
constructed for the wormhole topology R x S' ~ S'
which would be obtainable by identifying the
asymptotically flat regions. The reason simply
being that the radial functions of the kink has an
opposite sign in the other sheet of the Universe.
Since the quantum-mechanical probability density
) y(x) (' is single valued and completely regular
also for the wormhole topology, such scalar kinks
provide interesting objects for further studies.

Although we have no intention to give a complete

review, we would like to mention that other stud-
ies on geons involve massless scalar fields, ""
coupled Einstein-Maxwell-Klein-Gordon sys-
tems, ~ ""or even combined Dirac-Einstein-
Maxwell field equations. "

As a final observation we remark that, accord-
ing to a result of Brill" a massless scalar field
can be geometrized in the sense of the already
unified field theory or geometrodynamics of
Rainich, Misner, and Wheeler. " Loosely speak-
ing, this means that the scalar fieM can be com-
pletely read off from the "footprints" it leaves on
the geometry.
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