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Present observations are consistent with a number of neutrinos in the Universe much greater than the number of
photons. We explore the possibility of the production and/or survival of a large lepton number within the
framework of grand unified models. We find that standard unified theories with gauge-invariant initial asymmetries
may give lepton numbers much greater than the photon number (even with zero initial baryon and lepton numbers),
and lead to the possibility. that the present Universe is hot in baryons (n~ &n~) but cold in leptons (n. &n~ j. Detection
of a large lepton number may thus provide a probe of initial conditions.

I. INTRODUCTION
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Any large lepton number in the Universe must

The recent development of theories that at-
tempt to unify the strong, weak, and electro-
magnetic interactions' has led to the speculation
that the baryon- and lepton-number-violating
interactions that occur in such theories provide
a natural explanation for the observed cosmo-
logical baryon asymmetry. 2~ One of the strong
points of this mechanism is thought to be the lack
of dependence of the final baryon asymmetry on
the initial conditions. If any initial asymmetries
are destroyed before baryon-number-generating
decays take place, then the final baryon number
depends only on the dynamics of the theory being
considered. In this paper we demonstrate that
initial conditions may be important, i.e., that
grand unified interactions need not eradicate the
memory of initial conditions, and we suggest that
the lepton number of the Universe may provide a
measurement of these initial conditions. In par-
ticular, we find that in SU(5) models both the
final values of the baryon number (&) and lepton
number (l,}depend sensitively on initial condi-
tions and may be 'independent of each other. The
conditions necessary for a large L and small I3
in SU(5) models naturally lead us to a considera-
tion of SO(10) models. We find that large initial
SO(10)-invariant asymmetries (but with zero
initial B and L) naturally lead to a present Uni-
verse with L»B.

Overall charge neutrality of the Universe re-
quires that the excess of baryons over antibaryons
be balanced by a corresponding excess of elec-
trons over positrons:

thus be due to an excess of neutrinos over anti-
neutrinos (or vice versa).

The existence of a large neutrino degeneracy
would have several interesting cosmological ef-
fects. In particular, it would largely determine
the results of primordial nucleosynthesis. ' The
primordial He abundance is particularly sensi-
tive to the value of the neutrino chemical poten-
tial. The existence of a large neutrino de-
generacy may also prevent the high-temperature
restoration of spontaneously broken gauge sym-
metries and the associated phase transitions. '
This would prevent the possibility of any exponen-
tial expansion~ and dissolve bounds on Higgs
masses found by limiting the entropy produced
in phase transitions. ' It would also solve the
problem of excess heavy stable monopoles pro-
duced in the phase transitions of hot models. ' A
large neutrino chemical potential may also make
present-day detection of the background neu-
trinos possible due to the increase in number and
energy of the neutrinos over the case of zero
chemical potential.

The best limit on the neutrino number of the
Universe comes from the limit on the total energy
density of the Universe. In the absence of a large
cosmological constant, the total energy density
po may be expressed in terms of the Hubble con-
stant Ho, the deceleration parameter qo, and the
Planck mass m~ =1.2 X10" GeV (Ref. 10):

p =2q 3Ho m

The observational limits, "100 ~HO(km sec '
Mpc '}~ 50 and [q, l

& 2, require the present en-
ergy density of the Universe to be p, ~ 8
X10 "

g cm '. This limit restricts the possible
number of primordial neutrinos, and hence re-
stricts the lepton number. In order to apply this
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limit it is necessary to calculate the present
number density of primordial neutrinos.

Neutrinos were in thermal equilibrium until
about one second after the big bang when the
temperature of the Universe had dropped to about
1 MeV. ' After this time the mean free path of
the neutrinos was larger than the size of the Uni-
verse, so neutrinos were effectively decoupled
from the rest of the Universe. After decoupling,
the number density of neutrinos was changed. only
by the overall expansion, and the present neutrino
number density may be expressed in terms of the
polylogarithm function'

T i . (2~)' exp[(E-&o)/TDJ+I.

increase by a factor of ~2&(3)(pD/T~)' in the cold
limit. If the neutrino is massless, its contribu-
tion to the energy density would be

T ' " d'p g
T. . . (2~)' exp [(E —uD)/T~]+1

Li,(-e"~"~) (T&T }.
T~ 2m' 4

(1.4)

which has the hot and cold expansions

p„(T)=~~, t(4)T 'l&1 i ~ + )
(&a «Ta)

(T& T, )

Za ~D'
Li,(- e "~~ru) (m„& T~),

k&g

(1.2)

where g» T~, and p D are the number of spin
states in equilibrium, the temperature, and the
chemical potential at neutrino decoupling. In Eq.
(1.2) the factor (T/T~)~ represents the dilution
of the neutrino number density due to expansion.
If m„&TD, there is probably only one spin state
of the neutrino in statistical equilibrium at de-
coupling, and below we will set g~ =1. In the cold
limit (p~/T~)»1 and in the hot limit (pD/TD)
«1, Eq. (1.2) becomes

(1.5)

(1.8)

The observational limit of Eg. (1.1) then implies

p, &'1.3 &10 ' eV,

If the only entropy increase subsequent to de-
coupling is the increase from electron-positron
annihilation, then (p/T} is constant, and in the
cold limit the present neutrino energy density is

~4p„(T}=,1+12'(2)l —
I

+8n2

g) D

&.(T}=I ', 1+8K(2) ~
I + ~ ~ ~ (~.» Tn)

( T pD Tg
iT~ 8w' . PD )

(1.3)

where g is the Hiemann zeta function. Therefore
in cold models the number density of neutrinos
today is larger than would obtain for zero chemical
potential by a factor of ~9 g(3)(pD/T~)'. If a species
of neutrinos has a mass greater than the present
"blackbody" neutrino temperature T„=(1.4) 'T&,
where 7.'z is the present photon temperature
T& =2.9'K=2.5x10 eV and the factor of 1.4
accounts for the heating of the photons (but not
the neutrinos) from electron-positron annihila-
tion, then the effect of the chemical potential
would be important in determining the mass
density of the neutrinos. For instance the con-
tribution to the mass density by a massive neu-
trino would increase by a factor of
fl +~3[/(2)/g(3)] p~/Tz} in the hot limit, and would

—& 60.T

Therefore, even though the present Universe is
hot in baryons (ns/n& =10 '0"), the only reliable
limit on the neutrino number allows the Universe
to be cold in leptons (n„/sz & 8 &&10').

In the next section we 'consider the damping of
initial asymmetries in a simple model. In Secs.
III and IV we generalize these considerations and
show how initial conditions may lead to a large
lepton number in SU(5) and SO(10) unified theor-
ies. Section V contains our conclusions. Details
of the evolution of a cold Universe are discussed
in, an appendix.

II. THE DAMPING OF INITIAL ASYMMETRIES

In this section we construct a simple model that
illustrates the damping of initial asymmetries by
particle interactions in the very early Universe.
The results derived here describe the evolution
of initial asymmetries in the absence of con-
served quantum numbers. In subsequent sections
when we treat actual unified models, the exis-
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tence of conserved, or almost conserved, quan-
tum numbers must be taken into account.

For the production of asymmetries, C& viola-
tion is crucial, but for the damping of an initial
asymmetry the small corrections due to CI'
noninvariance are unimportant. This allows us
to consider a model that is a simplification of one
considered previously. ' %e will consider the
damping of initial baryon number; the results may
be easily generalized to the damping of asym-
metries in any quantum number, e.g. , L. In the
model we consider, )( is a massive boson (vector
or scalar) that violates baryon number, i.e. , it

decays to channels of different baryon number,
and b and 4 are massless fermions with baryon
number 1 and -1, respectively. Ignoring CP
-violation, the decay amplitudes for the y and X

are equal:

IM()(- bb)l =IM()(- bb)l = ~ IM I

IM()(- bb)I2 =IM(x - bb)l' =-,' IM I'
(2.1)

The Boltzmann equation for the evolution of the b

number density is given by (the R/R term repre-
sents the dilution of the number density because
of expansion).

""' +3—n, =A,",I f„(p„)[1 -f,(p, )][1—f,(P,)]IM()( —bb)l'+f-, (p-„)L1 -f,(p, )J[1 -f', (p, )JIM()(- bb)I'

-f,(P, )f,(P, ) [I +f„(P„)]IM(bb-)()I' /, (P,)f,(—P, ) [I +f-„(P-„)JIM(bb-)()I )
+&x'2'(/T(px) f «(pm) [1 —f n(p&)][I -fs(p, )]IM'(bb - bb)l'

-f,(P,)f,(p, ) [1 -f-(P,)][1-f;(p, )]IM'(bb - bb)I'j,

where f,.(P) is the phase-space density of species i,
(2.2)

d p
(2„),f;(P),

and A~bs'. .'. is the integral operator

d pa d' d'pb Pn ds
2w 5 p +p+. ~ —p -p2E, (2&)~ 2E,(2E)~ 2E„(2w)~ 2Es(2E)

(2.3)

(2.4)

The IM()(- bb)l' terms in Eq. (2.2) represent the change in the b number density due to decay and inverse
decay processes, while the IM'(bb bb)l' terms represent the change in the b number density due to two-
body scattering processes with the exchange of an intermediate )(. IM'I' is the square of the total ampli-
tude for the scattering processes minus the part of the squared amplitude corresponding to the propaga-
tion of a real intermediate )( state, since the real intermediate )( state is already included in Eq. (2.2) as
a sum of inverse decay and decay processes. The Boltzmann equation for rib may similarly be obtained
and combined with the equation for nb to form an equation for the evolution of the baryon number density:

nE =-n&- n& =A»IMOI lfx(Px) [1 -fg(pg)][1 -f g(pm)] -fx(PX) [1 -f~(P&)][I -f~(P2)]

-fg(P&)f ~(pm) +fI(pi)f g(P2)}

+2Aga I M'I'Mn(p&)f i(p, ) I1 -fr(p, )]ll -f~(p.)]-f~(pi)f n(P2) I1 -fi(p, )ill -fs(p.)]]

R—3—n (2.5)

vrhere we have made the approximation that
f„(p„)=f-„(p-„)«1 (i.e., no Bose condensate). The
equation for n~ is in general quite complicated,
but it has reasonably simple forms in the hot
limit (n, /nz =n;/nz = 1), and in the cold limit
(n, /n, »1;n;/n, «1).

In the hot limit f~(p), f~(p)«1, p/T«1, so the
phase-space distributions may be approximated
by the Maxwell-Boltzmann form

f E (E P)/T E E/T 1 -+ -+, -

(2.6)

(E+ 0 )/T E E/T 1 +, -

The products of distribution functions appearing
in the decay and inverse decay parts of Eq. (2.5)
become
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f,(p, )f,(p ) =2—e sx+e2 t =2 ~ eex~r
b

R
ne+3 ne—=- 2n, '(lpl g') . (2.12)

=2 f '—
X s

(2.'I)

f-(p )f (p ) -=- 2 —"e""""'=-2—"e'""
b 1 b

f OCJ

X s

where the energy conservation 5 function in A,",
has been used to set E, +Em =Ex, and f ~x is the
equilibrium distribution function for g. There-
fore, in the hot limit, Eq. (2.5}becomes

n +3—n =-4—Axlll'f"R
p g y 12 0 ~ X

—8 AM—:lM'l~ee~t eem~
12

n p

ny T
(2.9)

Assuming adiabatic expansion (n& 8) the B-oltz-

mann equation for B is

tt=e„'~l&e et—e }

=- 4—"(r„)n"„-8—n&'(l~l o'),
(2.8)

where nx~ is the equilibrium X number density
(nxq= I [d'p/(2w)']f~x}, (I"„) is the thermal aver-
aged y decay width

1 d'p, d'p,(r)=2E (2 )E (2„}E ™ol(2 )5(p

n, is the baryon density (n, =n-,), and (e') is the

thermal averaged two-body cross section with

real intermediate y removed. Using Maxwell-

Boltzmann statistics for photons and baryons

gives

Now as n~ =n, is damped by the creation of anti-
baryons, the number of "photons" (in this case a
bb pair is equivalent to a photon) increases and
A/R+- T/T, i.e., the expansion is no longer
adiabatic in the sense that nz is not constant.
However if we now define B as the baryon number
in a comoving volume element, then Eq. (2.12)
becomes

Jb =-2Bn, (i~le'). (2.13)

Only in the limit that B is small can the B in Eq
(2.13) be associated with the baryon to photon

ratio,
The cross sections for b&-bb as a function of

total center-of-momentum energy squared

s=(P, +P~P =4(E)~ for s&mx are given by

4mn 2

(scalar y)3s

4rn2
(vector lt),

X

(2.14a)

(2.14b)

16n2
tt =tt exp ——" (See t)e)'

81 m

with n =g'/4e where g is the gauge coupling con-
stant at the scale -m„, and a„=h'/4v where h

is the Yukawa coupling of scalars to fermions at
the same scale. The fact that the vector X cross
section is a constant for high energies is evidence

of the fact that at large s, the total cross section
for two-body scattering through t-channel ex-
change of a spin-j particle is o-(s/m')'/s. In the

cold limit, the baryon number density is n~ = p'/
6w', the average energy is (E) =3M/4 (e =9M'/4),
and the age of the Universe is (see Appendix A)

t = 3m~/2 pm. In the cold limit the final value of
8 is thus

n=-2B(r„) ~ -4Bn, (lvle'). (2.10)
16 n„3m~=B p —— (2.15)

The first term in B represents the damping of B
due to inverse decay (bb- g}, and the second term
represents damping of 8 due to two-body scat-
tering (bb- bb}.

In the cold limit (f,=0;f,=l) the fermion de-

generacy: blocks production of baryons, and Eq.
(2.5}becomes

ne+3 —ne = —A,",l Mal' [f,(p, )f,(p, )]

2Al 'bIf'Lf, ( p)f, ( p)]. (2.»}
For large chemical potentials p & m„, Eq. (2.11)
simplifies to

for scalar y, while for vector y

2 2

B =B,exp —2&6
n m~

mx
(2.16)

In grand unified gauge theories the vector gauge

coupling is typically n - 1/40, while the Yukawa

coupling is given in terms of the W-boson mass
and a typical fermion mass for the heaviest
family of fermions mz by n„=hm/4nwith'
h=gm&/W2m~. Since quark masses typically
decrease by a factor of three between present
energies and the unification scale, we expect
that (m&/m~)'- 10 ' even for fermion masses that

saturate the bound m~- 100 GeV from stability
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of the effective potential. " The baryon-number-
violating reactions will freeze out when

(E) ~m„, so the destruction of the initial baryon
number due to scalar exchange would be

if

o ~ 81 m mx

& expi —10 (scalar X)
(,m~

mx

with (mz/m~) =0.1. Therefore if m„~ 10"GeV,
essentially no damping will occur. However for
damping due to exchange of a vector y, the baryon
number is reduced by

=exp —10 'I&
B,fm

(2.18)
+o kmx

(vector Ii) .

III. LEPTON NUMBER IN SU(5)

The results of the previous section indicate that
the damping of initial asymmetries is governed
by the structure of the vector-gauge-boson
couplings. In this section we consider the damp-
ing of initial asymmetries in unified gauge theor-
ies based on the group SU(5).'"

SU(5) is the simplest group (and the only group
of rank 4}which contains the group necessary to
describe low-energy phenomenology, SU(3) c
8 SU(2)~ SU(1). A family of fermions consisting
of fifteen left-handed fermion fields is placed
into the reducible representation 5~$10~. Such a
family has the generic particle content

~5 = (D~, v~, E~),

~10 = (U~, Uf, D~, Ef ),
(3.1)

where U, D, v, and E represent the charge,
quark, the charge —~3 quark, the neutrino, and
the charged lepton in the family. The vector sign
represents transformation as a SU(3)c triplet.
The subscript L indicates projection of the left-

For a vector mass of mx =5&10"GeV=0. 5 IIeV,
B/Bo = exp(-10').

We conclude that scalar exchange is ineffective
in damping the initial baryon asymmetry if the '

scalar mass is greater than about 10 m~=10
IIeV. Vector interactions, however, are very
efficient in damping initial asymmetries, and un-
less the vector is sufficiently heavy (m„~ 10 '
m~=10' IleV) initial asymmetries will be de-
stroyed by vector interactions.

In the next section we will see that the existence
of quantum numbers conserved by vector inter-
actions may change the above conclusions as
shown by Treiman and Wilczek in Ref. 2. Equation
(2.17}may be used to estimate the damping of
these quantum numbers by scalar interactions„

[~5x ~5+~10 x~10 Jx24»,v2 f (3.3)

where g is the gauge coupling constant.
The breaking of SU(5) to SU(3)„-SSU(2)~SU(1)

is usually effected by means of a 24H of Higgs
scalars which is postulated to obtain a vacuum
expectation value of order 10" GeV=—1 IIeV.
Scalar fields which couple to fermions must
transform according to representations that ap-
pear in the I orentz scalar products of fermion
fields:

~513~5 =10$15,
~5L3~10 =5%45,

~10 (3~10 =5 e45e50.
(3.4)

The only representations in (3.4) which have a
neutral component and may thus have nonzero
vacuum expectation values are the 5, 15, and 45.
A 15„Higgs field is usually excluded since it
would give a Majorana mass to the left-handed
neutrino that cannot be made naturally small.

In this section we consider only a single 5„of
Higgs. The results derived here are essentially
independent of the Higgs sector as long as there
are no scalars with anomalously large Yukawa
couplings. The Yukawa coupling of a 5~ to
fermions is given schematically by

Z „=L0,(h„)"L0,.]x~5 + f 5,.(h~) "L0,.]x5„, (3.5)

where i and j are family indices and h~ and hD

are the Yukawa coupling matrices. In the single
family model we consider, h~ =(g/v 2)m~/m~,
hD = (g/&2)m~/m~, where m~ is the mass of the
SU(2)~ gauge boson, m~=100 GeV, and mU (mD)
is the mass of the charge ~~ (-~~) quark in the
family.

If we consider only vector couplings, then it is
clear that the couplings in Eq. (3.3) are invariant
under two global phase transformations:
~5- e'

~5 and ~10 —e'8~10 . The corresponding
conserved quantum numbers are given by

X, =+1 (—1) for each field in the ~5 (~5), and
y«=. +1 (-1) for each field in the ~10 (~10 ). Scalar
interactions violate X, and It«, but from Eg. (3.5)
we see that it is possible to take a linear com-

handed component and the superscript C indicates
the charge conjugate state. The CP conjugates of
the particles in Eq, (3,1) transform as 5&$10&.

~5=(Ds, &S., Ez),
(3.2)

~10 = (Ug, U~, Dg, Eg) .
The vector bosons transform as the adjoint 24-

dimensional representation and have gauge coupl-
ings to the fermions given by
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U =—(nv —nvc)/n„,

D =-(n~c —n~ )/ny, (3.8)

v =- (n, —n „c)/n~

SU(3)ccmSU(2)~ ISI U(1) invariance requires the
equality of asymmetries between different colors
of quarks and between weak isodoublets and also
requires that the total hypercharge be zero. '
The independent fermion asymmetries may thus
be parametrized by the quantities

B=U +D -U —D

B-I =U +D —U -D +E -E -v

gs =- 3D —E —vC

v =v

(3 'l)

where the asymmetries in the quark fields are
summed over the three possible colors.

At temperature above the unification mass the
full SU(5) invariance will enforce equality in the
asymmetries among members of irreducible
representations of SU(5). We thus consider SU(5)
invariant but CP-noninvariant initial conditions
with an asymmetry q, in each member of the ~5

and an asymmetry g» in each member of the ~10 .
In fact this is a quite general result. The fast
vector interactions will convert any asymmetries
into gauge-invariant initial conditions with equal
asymmetries in all fermion fields within an ir-
reducible representation of the gauge group as

bination of y, and y, p that is still a conserved
quantum number, Z =3 (-3) for ~5 (~5), Z =+1
(-1) for L0& (10I), and Z =- 2 (+2) for the 5s (5„).
When SU(3}cSSU(2}~8U(1 ) breaks to
SU(3)cSV(l)», Z is spontaneously broken, but a
combination of Z and the hypercharge remains
unbroken. This combination is just the baryon
number minus the lepton number B—L. Although
the full SU(5) theory does not separately conserve
X, and X,p, the results of Sec. II indicate that to a
good approximation the scalar interactions may be
neglected in the damping of initial asymmetries.
In this approximation both g, and X1p will be con-
served. Since the linear combination of y„g,o

and hypercharge given by B—L is conserved by
the Higgs sector as well, it will be convenient
to work with the quantum numbers y, and B —L

rather than Xs an X10
We now consider the damping of initial asym-

metries. f will denote the asymmetry between
a left-handed fermion field f and its CP-con-
jugate antiparticle, normalized to the photon
number density

long as there are no net asymmetries corres=
ponding to gauged quantum numbers. The initial
values of the quantum numbers in (3.V) are then

B =g, +g, ,
(B —L)' =3@,+2q„,

X,'=5@„
(3.8)

The initial lepton number is given by I =-2g,
~10'
Vector interactions will exactly conserve these

initial values since they conserve X, and y, p

separately and will maintain the equality of asym-
metries among members of the ~5 and ~10 . This
may also be seen by explicitly considering the
terms in the Boltzmann equation for the damping
of asymmetries through, for example, vector
inverse decay. These terms give'

B—L=0,
B cc [2B—v —(B—L)],
i ~ [5v +X,].

(3.S)

With the initial conditions (3.8) these equations
then give j, = (B —L) =B = v =0.

Scalar interactions violate X, and y, p but con-
serve B —L. They will thus eventually relax all
the initial asymmetries except B —L. The usual
weak doublet of Higgs scalars may violate v

and X, but not B or L. They will thus relax all
asymmetries except B and L to zero since their
effects are important until T&100 GeV. The re-
sults of Sec. II indicate, however, that the
massive B- and L-violating scalars are ineffec-
tive in reducing the initial values of B and L.
In particular, if the initial conditions consist
of an equal asymmetry in each left-handed fermion
field so that g, =- q», we have

BO
t

L -@10
(3.10)

Scalar interactions will give final values of B and
L which differ from these initial values by
~ O(exp(-10 em~/m, }) (cf. Eq. 2.18) which for
the conditions (3.10) could yield a large lepton
number and a small baryon number compatible
with present observations. Since the initial B
and L are independent it is also possible that both
a large L and a large B survived which were later
diluted by entropy production to yield the presently
observed value of ns/n„.
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16~ =(U~, Uf, , D~, D~, E~,Ef, , v~, Nf).

The ~16 contains the CP-conjugate states:

16~ =(Ug, Us, Dg, Ds, Eg, Es, vg, Ns).

(4.1)

(4.2}

Since there are only 15 known fermion fields per
family (assuming the existence of the top quark)
it is necessary to postulate the existence of a
particle, the N~, that is neutral under
SU(3)c SSU(2)z, U(1). The existence of this parti-
cle has interesting consequences for the lepton
number of the Universe as well as for low-energy
neutrino phenomenology.

The gauge vector bosons in SO(10) transform as
the 45-dimensional adjoint representation. The

gauge coupling to fermions has the form

z~ = p- ~lg x~16 x45v. (4.3)

The vector interactions in SO(10) conserve a
quantum number, y„=+I (-1) for each field in the

~16 /~6), analogous to the lt, and y» conservation
in SU(5).

The Higgs fields which can couple to fermions
appear in the decomposition of 1616:

16816=(L0+126)g +(120}~. (4.4)

If only the 10„contributes to the fermion masses,
then to lowest order at unification energies

mU —mg —mg —m p (4.5}
I

This very simple mass relation is unfortunately
very wrong. The most obvious contradiction is
the prediction that the neutrino in a family has the
same mass as the charged particles. However,
if the N~ acquires a very large Majorana mass
M„presumably through a ~onzero vacuum expec-
tation value for the 126„(Ref. 15) or through
radiative corrections, '6 then the neutral lepton
mass matrix in the v, N basis will have the form

(4.6)

where m, is the mass of the charge ~~ quark in the
family. The approximate eigenvalues of this
matrix are m,n/M„and M„. The observed low-

energy neutrinos will thus have masses
O(m„'/M„) which can be made compatible with

present observations if M„ is sufficiently large.
In order to adjust the other mass relations in Eq.

IV. LEPTON NUMBER IN SO(10)

In grand unified theories' based on the gauge
group SO(10) all the fermions in a, single family
are assigned to the complex spinor representation
~16:

U =U =D =D ~E =E = v =N =go . (4.7)

The global B —L symmetry present in SU(5)
models is gauged in SO(10}models with the Nf
assigned B—L =1. This initial condition thus
corresponds to zero net &and L. It should be
noted that in the limit of exact SO(10) invariance
the presence of an unbroken charge conjugation
operator C requires any asymmetries in quantum
numbers that are odd number C (e.g. , B, L,
Q, . . .}to be zero.

The damping of asymmetries will in general
depend on the pattern of symmetry breaking. We
first consider the case SO(10)-SU(5)-SU(3)c
xSU(2)~xU(1). The ~16 has the SU(5) decomposi-
tion

16 =10+5+1 (4.6)

with Nc corresponding to the SU(5) singlet. In
terms of SU(5), the initial conditions (4.7) thus
correspond to

ggO g5 g$ (4.9)

with g, =N . If onlyvector interactions are in-
cluded then the initial conditions (4.7) will be
maintained and bene, e no B or L will be produced.
In order to convert the asymmetries in (4.7) into

a net B or L, Higgs bosons and the breaking of
SO(10}and C invariance must be taken into ac-
count. As discussed in Sec. II, 2-2 reactions
mediated by scalar bosons may be ineffective in

damping initial asymmetries and will give only
small corrections to the relations in Eq. (4.7}.
However, the presence of a Majorana mass for
the &~ requires that N~ be zero at tempera-
tures below the N mass.

The dominant process that modifies the rela-
tions (4.7) and thus generates a net B and L is
the damping of the asymmetry in N~ through
the Majorana mass term and the subsequent re-
arrangement of asymmetries by vector inter-
actions. The asymmetry in NL is relaxed by the
Majorana mass term which induces the transition
Ã~ -N& at a rate given approximately by

r(Nc -N, ) =M„(M„/E), (4.10)

where the factor (M„/E) accounts for the effect
of time dilation. The equation governing the
damping of the WL, asymmetry in a cold Universe
is thus given. by

(4.5) various machinations in the Higgs sector
are often performed; these complications mill not
concern us.

We now consider the damping of asymmetries
in SO(10) models with an initial asymmetry q„
in each member of the ~16:
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M~~ 4 M~~
'g = —'g ——'g—E 3

with the solution

(4.11)

(4.12)

L may be reduced somewhat from this value by
the interactions of the usual weak doublet of Higgs
bosons which may couple to the N. At tempera-
tures 7.'& m„ these bosons are effectively L con-
serving. Equation (2.16}suggests that these in-
teractions should reduce L by an approximate
factor of

2'/~0 — ~5 +~l

or, using B=g, +/gpss

B =pi geo ~

(4.14)

(4.15)

Assuming that the X' interactions freeze out at
p =M„,and using (4.12) then gives for B

2 m~
16 g m, 3

, 2 m„'m, &~

'Oj.e g 3 )(y (4.16)

where we have assumed m„«m~ . As shown in
Sec. III, the conservation of y, and y„ in SU(5}
keeps this baryon number from subsequently being
damped by the vector bosons of SU(5}.

The lepton number, given by

(4.1"I)

is of order B at the temperature at which the X'
bosons freeze out. However, since q, is eventual-
ly driven to zeroby the Majorana mass terra, the
final value of I is given approximately by

L ——2/5 glo AS (4.18)

where we have used the equations in the Appendix
with $ =48 representing the existence of three
families of fermions and where q'„ is the initial
value of g

As g, is driven to zero the vector interactions
will redistribute the asymmetry in the other
fields. As an example, we consider the inter-
actions of the B-violating vector boson X' which
occurs in the SU(5} representation 10 under the
decomposition of the SO(10) gauge bosons:

45~ =24+10+10+1. (4.18}

The X' induces transitions between the SU(5)
representations of fermions of the form ~10

+~10 ~1+~5. When geo = $5 =gx, the forward
and reverse interactions occur at the same rate.
As q, is destroyed at a rate given by (4.12), the
reaction ~10 +~10 -~1+~6 proceeds at a faster rate
than the reverse reaction ~5+~1-~10 +~10 . Since
the baryon number is given by B=g, +g», these
reactions will tend to produce a nonzero baryon
number by destroying the balance between g, and

Qg p We can estimate the baryon number produced
by assuming the X' interactions are fast enough
to establish chemical equilibrium so that

L 9M~ 3 (4.20)

GeV, ~~=10"GeV then this gives
I &/&I =1.2 x 1o-'.

The ratio IB/II could be easily smaller than
the estimate given in Eq. (4.20). So far we have
considered the breaking scheme SO(10)-S'U(5)- SU(3)cxSU(2)z, x U(1}. Other breaking schemes
such as SO(10)-SU(4) x SU(2)~ x U(1)„-SU (2)c
xSU(2)z, xU(1) are also possible. Since the gauge
bosons of SU(4) xSU(2)~ x U(1)„do not violate
baryon number, this intermediate symmetry may
persist to lower temperatures than the SU(5)
symmetry. Since the U(l)„symmetry forbids a
Majorana mass for the N, the N becomes massive
only after the SU(4}xSU(2}~xU(1)~ intermediate
symmetry is broken. At this temperature all
B- and I -violating vector bosons will have frozen
out and as a result the final L vill be of order
g«while the final B will be produced only through
2 2 Higgs exchange processes and will thus be
much smaller than the estimate (4.16).

V. CONCLUSIONS

We find that the interactions of grand unified
theories combined with CI' noninvariant initial
fermion asymmetries can naturally lead to the
present lepton number of the Universe being much
larger than the baryon number. W'e thus disagree
with others who have claimed that L -& as a con-
sequence of grand unification. " In SU(5} models
the requirement that L»B requires a cancellation
between different contributions to the initial bar-
yon number. This cancellation has a natural
explanation in SO(10) models where all fermions
in a family are placed in a single irreducible
representation. While we have considered ex-
plicitly only SU(5) and SO(10) unified models, our
results can be easily generalized to other theo-
ries. The reason that SU(5}and SO(10) theories

exp —5 x10
~ ~

=1 for M„~ 10' GeV,
/I lleV&

Mg j„
(4.19)

where we have used o. =1/40 and m, /Mv=0. 02
at the unification scale.

Comparison of Eqs. (4.19)and (4.16) reveals a
large lepton number and a small baryon number
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APPENDIX A: THE DYNAMICS
OF A COLD UNIVERSE

In this appendix we derive the equations de-
scribing the evolution of a cold Universe. By
cold, we mean a Universe with at least one
fermion species with a chemical potential p

larger than the thermodynamic temperature T.
The number density of a fermion species is

given-by

d'p 1
(2»)' exp[(E —p)/T]+1 ' (Al }

Since we are interested in the evolution of the
I

Universe for T»m& we may ignore the mass of
the fermion in Eq. (Al), and the number density
becomes

n= — — Li( e" )
T ~ /T
32 3 (A2)

where Li„ is the polylogarithm function

allow L»B can be related to the fact that they
also predict a discrepancy between quark and
neutrino masses. In SU(5) m„=0 as a result
of the global B-L symmetry which in turn
is related to the reducibility of the fermion repre-
sentation. It is this reducibility that allows &
and L to be independent. In SO(10}, m„«m,
is a result of a large SU(3) cxSU(2)~ &U(1)-in-
variant Majorana mass term for the right-handed
component of the neutrino. This mass term
rapidly destroys any net lepton number residing
in the right-handed neutrino field thus leaving
any initial asymmetry in the left-handed neutrino
unbalanced. We expect that any theory that pre-
dicts m„«m, in a natural way will also allow
L»B. In light of this fact, we feel that further
investigation of the evolution of a Universe with
a large neutrino degeneracy is warranted.

Finally, we remark that in SU(5} theories and
in SO(10) theories with M„-M», B and L may
both be large. A large B present after B-vio-
lating interactions have frozen out would invali-
date the constraints on cosmological models due
to limiting the dilution of B due to entropy pro-
duction "'
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Li„(x)=J " ' dt
0 0=1

For p, /T»1 the number density becomes

(A3)

p
3 T'

1 +6&(2) — +
6m 2

where t;(n) is the Hiemann zeta function.
The energy density of a massless degenerate

fermion species is

d3p E
(2»)' exp [(E —p, )/T]+I

I +12&(2) —
i

+ ~ ~

. 8@2 „ (A5)

The average energy of a degenerate species of
massless fermions is

(S) =p/n=~ p. (AS)

In a homogeneous and isotropic Universe the
dynamic equation that describes the expansion at
early times is (assuming zero cosmological con-
stant)

Qm p
3 m''P

(A7}

where B is the scale factor in the Robertson-
Walker metric, and may be considered as the
radius of the Universe. If p is associated with
an exactly conserved quantum number, then
conservation of that quantum number implies
p3R3 =constant, and

R p,

R p.

(AS}

—(pZ') =- 3pR'd
dR (A9)

where p and P will receive contributions from the
degenerate fermions and the photons. In the limit

where the last equality comes from conservation
of the number of photons. If there were a signifi-
cant change in the quantum number associated
with p, , then (AS} is not correct since p, would
change due to interactions, as well as expansion.
In that case the relevant equations are an equation
describing how p changes from interactions and
the energy-conservation equation
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R -j Svp 't x/a

R p. 3m~')

) 1/h ~a

3mj m
(A10)

With the initial condition p(t =0) =~, Eq. (A10)

that p from interactions is less than p from ex-
pansion,

may be integrated to yield

2/J a (A11}

If Eqs. (A4), (A5), (A6), and (All) are com-
pared to the analogous results for a hot big bang,
the order of magnitude of p, n, (E}, and t may
be found by the substitution p —7.".
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