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Cosmic strings
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Phase transitions in the early universe can give rise to a network of vacuum strings. The dynamics of strings is
studied in flat space-time and in expanding universes. The cosmological evolution of strings is discussed, and in
particular the black-hole production by collapsing closed loops. Estimations are made for strings of electroweak {10'
GeVj and grand unification (10" GeVI mass scale. It is shown that the effect of electroweak strings is negligible,
while grand unification strings can have important cosmological consequences. In particular, massive black holes
and large oscillating loops can provide seeds for galaxy formation.

I. INTRODUCTION

In gauge theories with spontaneous symmetry
breaking, the masses of vector bosons and of
fermions are absent in the initial Lagrangian and
arise due to the appearance of a nonzero vacuum
average of a Higgs scalar field P. The original
symmetry of the Lagrangian can, however, be
restored' at sufficiently high temperatures, T
& To. This phenomenon, combined with the hot
big-bang cosmological model, leads to the pre-
diction of a vacuum domain structure of the uni-
verse.

As the universe cools below the critical temper-
ature T„ the Higgs field P acquires a nonzero ex-
pectation value (P) x0. The direction of (P) in the
manifold of degenerate vacuum states M can be
different in different regions of space. One can
introduce a correlation length ((t) such that the
values of (P) at points separated by much more
than ( are uncorrelated. It is clear that $ cannot
be greater than the horizon4: ( ~ t. The initial
scale of the vacuum domain structure is given ap-
proximately by (,= $(t,), where f, is the time at '

which the phase transition occurs.
As the universe expands, most of the initial

chaotic variation of (P) dies away, since, for en-
ergetic reasons, a constant Or slowly varying
(Q) is preferred. However, a residual vacuum
structure can remain. It can take the form of
vacuum domain walls, strings; or monopoles,
depending' on the topology of the manifold M.
Cosmological monpole production has been dis-
cussed by a number of authors' who have found
that the estimated number of monopoles is too
large to be compatible with observations. Pos-
sible ways out of the difficulty have also been
discussed. ' Another group of authors2 "consid-
ered the cosmological effects of, the domain walls.
It has been shown' that the walls are gravitationally
unstable and collapse at certain time -t after
their creation. This implies that models which
lead to domain walls have to be ruled out, unless

one can devise a mechanism by which the walls
disappear at t &t . Kibble' has also discussed the
evolution of cosmic strings. With certain assump-
tions concerning the interaction of strings with
each other and with surrounding matter, he found
that there can be only a few strings in the visible
universe now. He notes, however, that the strings
may have had an important effect at earlier times.
Unusual gravitational properties of the strings
have been discussed in Ref. 6.

The purpose of the present paper is to study in
more detail the evolution and the cosmological
consequences of cosmic strings. In the following
two sections we shall study the dynamics of strings
in flat space-time and in expanding universes.
Sections IV and V discuss the cosmological evolu-
tion of the strings and, in particular, the black-
hole formation by collapsing closed loops. The
conclusions are summarized in Sec. VI.

II. DYNAMICS OF STRINGS

Since we are interested in macroscopic effects
of the strings, it is reasonable to approximate
them by infinitely thin curves. (The transverse
dimensions of the strings are comparable to the
Higgs Compton wavelength. ) The linear mass
density of the strings is of the order'

(2.1)

where n and m are a typical coupling constant
and boson mass, respectively, and it is assumed
that all relevant masses and coupling constants
have the same order of magnitude (m and z can
be different on different levels of symmetry break-
ing). For the. numerical estimations below we
shall take cy -10 '. Then on the electroweak scale
(m -10' GeV) Eq. (2.1) gives p. -10 ' g/cm. For
grand unification strings (m -10"GeV) we get p,
-10"g/cm.

We shall assume that the strings can be either
infinite or closed; finite strings connecting two
monpoles will not be discussed. The space-time

2082-



COSMIC STRINGS

trajectory of a string can be parametrized as

x"=x"(o, r), (2.2)

where 0 is a spacelike and v. is a timelike para-
meter. Then the action functional of a string is
given by" E —p J[ dx (I +y x2) (I + y

I2
y

2)-1/ 2 (2.12)

where the prime now stands for x derivative.
The conservation laws corresponding to the ac-

tion (2.10) can be easily derived. For example,
the energy is given by

(Bx xx )' (xx& '(Bx]
' "'

(2.3)

This can be also written in the form

dt(1 —v 2) ~/2
4

(2.13)

where g ~ 5 = g'5'- a ~ b. This action is invariant
with respect to a reparametrization

where v, =y (sx/ st) .
It is easily verified that

o o(o r) r T(o r) . (2.4) y =f(x- t)

If we take o to be the length along the string I and
r to be the time t then Eq. (2.3) takes the form'

$= —p, J[ dt dl(I —v,')"' (2.5)

where

BX
v

M

8X 8X 8X
(2.6)

8 8L 8 8L
~ ~+

8 T 8x" 80' 8x
(2.7)

is the transverse velocity. Equation (2.5) is eas-
ily understood if we note that only the transverse
motion of the string is physically observable (see,
e.g. , Hef. 6).

The. equations of motion corresponding to the
action (2.3) are

and (2.14)

y =f(x+t),
with an arbitrary function f(x), are solutions of

Eq. (2.11). These solutions describe waves propa-
gating with the velocity of light without changing
their shapes. In contrast to electromagnetism,
the general solution cannot be written as a super-
position of solutions (2.14), because Eq. (2.11) is
nonlinear. In the case of small perturbations
(y",y' « I) Eq. (2.11) reduces to the wave equa-
tion

(2.15)

and the general solution is y =f(x —t)+g(x+t).
(Here I assume that the unperturbed string is
parallel to the x axis. )

For a circular loop
where J is the Lagrangian,

S= dv dvL,
4 4

(2.8)
y =+[R (t) —x']"

the action is given by

(2.16)

and dots and primes stand for derivatives with
respect to 7. and v, respectively.

An important special case of the string dynamics
is the propagation of waves on a straight string.
Let us assume for simplicity that the string (in-
cluding the wave) lies in the (x,y) plane (x =0).
We want to find an equation for y =y(x, t). Sup-
pose that x(o, t) is a one-to-one function of o (we
take r =t). Then we can choose x(o, t) to be a new

parameter o [see Eq. (2.4)]:

$ = 2t/ ~ dt R(I R2)&/~ dx(R2 x2) &/2

-B

27/t/, dt —R(1 —R')" ' (2.17)

and the equation of motion is

R(1 —R') '+R '=0. (2.18)

The energy corresponding to the action (2.17) is

Z = 2~~(1 —R')-"'. (2.19)
o(o, t) =x(o, t), r =t .

The action then becomes

dx(1 +yx2 y2)1/2

(2.9)

(2.10)

If at t =0 the radius of the loop is Ro and R(0) =0,
then R(t) =Ro cos(t/Ro). The loop collapses to a
point at t =zRo/2.

III. STRINGS IN EXPANDING UNIVERSE

and the equation of motion is

8
[ (I + x2 2) 1/2] — [yl(1+yx2 y2)-1/2]8

8t 8x
(2.11)

In this section we shall discuss how the dynam-
ics of strings is affected by the expansion of the
universe. For simplicity, we shall consider a
flat- space cosmological model
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ds' = a'(7)) (dq' —dx' —dy' —dz'), (3.1)

I = ta'-(n)(I+y" y')—"', (3.2)

where a(ri)dq =dt. The action integral for a string
in a curved space-time is given by Eq. (2.3) with
a b =g„„a"b". As in the previous section, we
shall assume that the string lies in the plane z
=0 and that the x coordinate can be chosen as a
parameter on the string. Then with 0.=x, 7 = q
the Lagrangian of the string becomes

the horizon t I.f X»t (kq«1), then y =0. This
means that the string is conformally stretched by
the expansion of the universe. When X becomes
much smaller than the horizon (X«t, k7» 1), then
the wavelength keeps increasing proportionally to
the scale factor a(q), but the amplitude remains
constant [a(q)ri ' = const].

The energy of the perturbation related to one
wavelength can be written as [compare with Eq.
(2.12)]

where y = sy jet. The equation of motion takes the
form

E=2 PQ
Jp

dx(y" +y') . (3.11)

+2 — [y(I+y"-y') "']
q a

8
[y i(I +yI2 y2) I/2] (3 3)

~X

The energy grows proportionally to the scale fac-
tor when A» t and it decreases as a ' when X« t.
It can be shown that this result holds in the gener-
al case of a power-law expansion: a(g) - 7'.

The Lagrangian of a circular loop in the metric
(3.1) is given by

For small perturbations (y",y'«1) this equa-
tion reduces to L =-2vpa'{g)r{1—r')"', {3.12)

7+2 —7-3a (3.4)
where 8 =a(rt)r is the radius of the loop. The
equation of motion is

In a radiation-dominated universe (p = e j3), a(q}
-rt and Eq. (3.4) becomes

r'(1 —r ) '+ 2 —r+ r ' = 0 .
a (3.13)

7+2'9 7-7 -0.
The solutions of Eq. (3.5) are easily found:

y (x, ri) = q 'f (x+ q),

(3.5)

(3.8)

Analysis similar to that for small perturbations
shows that the loop is conformally stretched until
its radius becomes smaller than the horizon.
Then it collapses with a relativistic speed.

where f(x) is an arbitrary function. Any solution
of (3.5) can be represented as a superposition of
standing waves

y =q ' sin(kr)) cos(kx), (3.7)

y =q ' cos(kq) cos(kx), (3.8)

y(r}0) = o ~ (3.9)

and similar solutions with sin(kx).
It is natural to assume that at the time of form-

ation (q =q, ) the strings are at rest with respect to
the surrounding matter:

IV. EVOLUTION OF COSMIC STRINGS

A. Straight and almost straight strings

T"„=p, diag (1,0, 0, 1) . (4.1)

Assuming that the distribution of strings is uni-
form and isotropic and averaging over all direc-
tions we get

We shall start with a rather unrealistic case
when the strings form as chaotically oriented
straight lines. It has been shown in Ref. 6 that
the energy-momentum tensor of a string parallel
to the z axis is given by

For sufficiently long waves (k7)0«1) this initial
condition can be replaced by

T", = & drag(1& 3& 3~ ~) & (4.2)

y(n)-0 (a-0). (3.10)

The condition kqo«1 means that at t =to the wave-
length Ao=2ma(qo)k ' is much greater than the hori-
zon t, = 2 a(q, )qo. The requirement (3.10) selects
waves of the form (3.7) and prohibits waves of the
form (3.8).

To give a physical picture of the evolution of a
string with a, standing wave of the form (3.7), we
shall consider two limiting cases when the wave-
length A(t) is much greater and much smaller than

where & is the energy density of the strings.
Equation (4.2) shows that the strings behave like
a medium with p =-e/3. This equation of state is
easily understood if we note that the energy of
strings in a comoving volume V grows as V"'.
Then dE = (E/3 V)d V = —p d V, E = a V, and p =-&/3.

Let q, be the initial energy density of strings at
the pha, se transition (t =t,) and p, the total matter
density at the same time. We shall assume that
the matter equation of state is p = &/3. If &o «po,
then the universe expands as a(t) t" ' and &(t)-
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=&oto/t& p(t) =po(to/t) . At t, -topol&0 the universe
becomes string dominated. The following expan-
sion is governed by the equation'

da't 4m
G&a' = const

2 dt) 3
(4.3)

and thus a(t)-t (t &t,).
This scenario remains unchanged if the strings

are not exactly straight but have small perturba-
tions. The energy of the perturbations decreases
as a '-t "'when their wavelength becomes smal-
ler than the horizon. Thus the strings tend to
straighten out and are practically straight on
scales smaller than t. At t & t, the stx'ings are
conformally stretched, since then A. -t.

-2
~o p&o (4.4)

As the universe expands, the strings tend to
straighten out. However, Brownian strings can
never become straight: the rate of growth of the
persistence length is limited by causality. The
persistence length at time t cannot be greater than

t, since that would require superluminal velocit-
ies. Thus, we can write

B. Brownian strings

Although simple, the case of straight strings is
unrealistic. If the correlation length at t=t, is
$0, we cannot expect the directions of a string to
be correlated over distances much greater than

We thus expect the strings to form as some-
thing like Brownian traj ectories with a persis-
tence length of order $0. The energy density of
strings at formation is

v, (A.)dk, (4.6)

(4 7)

The power-law form of the spectrum (4.7) is due
to the fact that Brownian curves are self-similar
and do not have any intrinsic scale. $0 serves only
as a lower cutoff of the wavelengths. (If oscilla-
tions on scales smaller than / are smoothed out
then we get a system of Brownian strings with
persistence length l and with e -

p, l '.)
At t&t0 we can write

e(t) = Jr v(X)dX.

We shall find v(X) assuming that the behavior of
the waves is not very different from that of small
perturbations on straight strings, i.e., we shall
assume that the waves are conformally stretched
if X &t and that the energy of the wave decreases
as a(t) ' if A &t. In both cases the wavelength
changes as

(4.8)

a
0

(4.9)

where. a, =g(to), A., =A(to).
Let us concentrate on waves with initial wave-

length -Xo in the interval dXO. The wavelength be-
comes of order t at t =t, :

The system of Brownian strings at formation can
be thought of as a superposition'of standing waves
with wavelengths )os X& ~ and with spectral den-
sity vo(X):

e(t)z pt 2. (4.5) t =~
1 a 0

0
(4.10)

This inequality means simply that there should be
at least one string within the horizon.

The evolution of cosmic strings depends on their
interaction with the surrounding matter. In the
present paper this interaction is neglected, i.e. ,
we assume that the strings move without friction.
This assumption is probably justified for suffic-
iently late time when the density of matter is suf-
ficiently low. We note also that if the strings in-
teract only with massive particles of mass great-
er than m, then friction can be neglected at T &m.

Another important factor is the interaction of
strings with each other. When two strings cross
they may be apt to change part:ners. Here we as-
sume that this does not happen and the strings go
through each other without interaction. Finally,
we disregard the possibibty that some of the
strings can be in the form of closed loops.

The effects of friction and of changing partners
are briefly discussed in Sec. IV C. .closed loops
are considered in the next section.

For t0 &t &fy the energy of waves grows as a and
the energy density decreases as a '. Thus,

. v(X)dX = (ao/a)'vo(xo)dAO,

v(x) = (a,/a)'v, (g) (t, & t & t, ) .
(4.11)

For t &t, the energy density decreases as a ' and

v(x) = (a,/a)'v, (x,) (t &t,), (4.12)

a(t) - t

then

(4.14)

where the index "1"denotes quantities at time t, .
Combining Eqs. (4.9), (4.11), and (4.12) we obtain
the spectral density at time t:

v(A.)» px ' (x & t), (4.13)
v(x)-(g, /a)'px ' (x&t) .

If the expansion law is



2086 ALEXANDER VILEN KIN

and Eqs. (4.8) and (4.13) give

(4.15)
to the energy of strings is given by short wave-
lengths, and the mass density of the strings can
become comparable to that of matter.

C. Effects of friction and of changing partners

q(t) = v(X)dA+ v(A)dh

Here

1
-pt ' dxx " '"' "+pt '

"4/ 0

(4.16)

c(t) —
p,t ' (o&& —,').

For n=»1

g(t)- pt 'ln(t/]) (o.'= —,') .
For (x ( 2y

g(t) —
t&t 2(t/()2 & & 2~~& & o'&

(c& (—
)

(4.18)

(4.19)

(4.20)

The expansion law (4.14) corresponds to the
equation of state p =yp with y= 2/3n —l. Equation
(4.18) then means that for y( —,

' the straightening
of the strings is complete: the contribution of
waves with A. «t to the energy density is neglig-
ible, the persistence length at time t is of order
t and there are only a few strings within the hori-
zon. In particular, this is the case in a matter-
dominated universe (p=0). The ratio of string
and matter energy densities is [see Eq. (2.1)j

e p/- G,p-n 'Gm'«1. (4.21)

(In this equation o. -10 ' is the coupling constant. )
In a radiation-dominated universe (y =-,', o& = —,')

the straightening of strings is almost complete.
The contribution of short waves to the energy den-
sity is greater than that of waves with X&t, but
only by a logarithmic factor. In this case

(4.17)

is the minimum wavelength at time t.
For u & —,

' the power of x in the integrand of
(4.16) is greater than -1 and

We have discussed the evolution of strings neg-
lecting their interaction with each other and with
the surrounding matter. The straightening of the
strings in this case is due only to red-shifting of
short- wavelength perturbation s.

Friction due to interaction with particles gives
an additional damping mechanism. Depending on
its strength, friction can speed up or slow down
the straightening process. If the friction is so
strong that the strings cannot move with relativ-
istic speeds, then it slows down the straightening.
In this case Eq. (4.5) is replaced by e(t) & p, (vt) ',
where v(t) is the characteristic velocity of the
strings at time t.

If the friction force is small enough, so that the
strings can be relativistic, then it can only speed
up the straightening. However, comparing Eqs.
(4.5), (4.18), and (4.19), we see that, in the stan-
dard cosmological model, the maximum the fric-
tion can do is to remove the logarithmic factor in
Eq. (4.19). We thus see that in this case the re-
sults of subsection B remain practically un-
changed in the presence of friction. A quantitat-
ive analysis of the role of friction will be given
elsewhere.

Another straightening mechanism has been dis-
cussed by Kibble. ' As the strings cross, they may
be apt to change partners. This leads to the form-
ation of closed loops which then collapse. As a
result, the overall length of the strings decreases.
As in the case of small friction, this mechanism
can only speed up the straightening, but the maxi-
mum it can do is to remove the logarithmic fa,ctor
in Eq. (4.19). The loop formation, however, can
be very important for production of black holes.
This is discussed in Sec. V.

e/p- G p, ln(t/to) . (4.22)
V. CLOSED LOOPS AND BLACK-HOLE FORMATION

In the standard cosmological model the radiation
era ends at t-t„,-5 x 10" sec. The grand unifi-
cation phase transition occurs" at to-10 "sec and
the electroweak phase transition at to-10 "sec.
Therefore, the logarithmic factor in Eq. (4.22)
does not exceed 10' and &/p«1. At t)t„, the
universe is matter dominated and c/p is given by
(4.21). Thus, in the standard model the energy
density of strings is always much smaller than
that of matter.

If the equation of state, during a certain period,
is harder than p = p/3, then the straightening of
strings is incomplete, the dominant contribution

A certain number of closed loops are formed
during the phase transition at t- t, . Additional
loops are produced as. a result of the intersection
of the strings if changing partners is allowed. Let
us consider a loop with characteristic scale X

(the length of the loop l-A.'/$ is greater than &;
here $ is the peristence length). If X&t, then the
loop expands with the universe (A. -a) while small
scale irregularities are smoothed out. When A.

becomes of order t, the loop collapses during
time -t. The mass of the loop at this time is of
order p,t. The important question is: What does
the loop collapse to? There are several pos-
sibilities: (i) the energy of the loop is completely
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dissipated, as a result of friction or of gravita-
tional radiation; (ii) the loop decays into relativ-
istic particles; and (iii) the loop collapses to a
black hole.

In the present paper we do not attempt an es-
timation of the density or scale distribution of the
loops formed during the phase transition. We
shall only estimate the black-hole production due
to loops formed by intersecting strings and dis-
cuss its cosmological consequences.

Let us first consider the simplest case of a
circular loop assuming that friction can be neg-
lected. It seems reasonable to assume that decay
into particles becomes possible when the radius
of the loop becomes comparable to the width of
the string, so that different parts of the loop can
interact with each other. This has to happen be-
fore the loop falls inside its Schwarzschild
sphere, so that

G34-Gp, t&m '

or

t&t, -+G 'm '.
(5.1)

Here I used the fact that the width of the strings
is comparable to the Higgs wavelength m '. For
grand unification strings t, -10"sec and for
electroweak strings t, -10' sec. Circular loops
collapsing at t &t, collapse to black holes.

In the general case of an irregular loop with a
complicated initial velocity distribution, the loop
will violently oscillate losing its energy to friction
and gravitational radiation. Important que stions
here are as follows. (i) What is the lifetime of an
oscillating loop? (ii) What is the probability of
black-hole formation? (iii) How much energy does
the loop loose before a black hole is-formed?
These problems will not be tackled in the present
paper. I hope to return to them in later publica-
tions.

In this section we shall estimate the black-hole
production assuming that friction can be neglected
and that the behavior of irregular loops is not
much different from that of circular loops. (The
latter assumption means that the probability of
black-hole formation is of order 1, the collapse
time is of the order of initial loop size, and the
mass of the resulting black hole is not much dif-
ferent from the initial energy of the loop. ) Ob-
viously, such an estimation will give an upper lim-
it for the black-hole production.

At time t the typical curvature radius of the
strings is -t, the minimum distance from a point
on one string to another string is also t, the mo-
tion of the strings on scales smaller than t is rela-
tivistic, and it is clear from dimensionality that
the number density of closed loops formed during

the interval b, t -t cannot be much different from
t ', so that

dn—-t 4

dt
(5.2)

The right-hand side of Eq. (5.2) can be multiplied
by a small numerical factor, but it can do no
more than take off a few orders of magnitude. If
t & t, [see Eq. (5.1)], then the loops collapse to
black holes of mass

t -t,„-Pv-'G2M ' (5.4)

where v is the number of particle species contri-
buting to the black-hole radiation (for estimations
below we take v-10') and" p-2x 10' is a numer-
ical coefficient. In Eq. (5.4) I assume that tea is
much greater than the time of formation of black
holes (t-M/tl). It is easily checked that this con-
dition is satisfied for black holes formed at t &t, .

The number density of black holes with masses
from M to M+dM at time t can be written as

a' ' dt'
dn(t) = o, (M)dM =— (5.5)

where t' =M/tl is the time of formation of the
black holes, a—= a(t) and a' =a(t') The tota.l mass
density of black holes equals

where

t = max jt, t2) (5.7)

(t) p-l/3Vl/3G-2/ 3p-lt l/3 (5.8)

is the time of formation of black holes evaporating
at time t.

In a radiation-dominated univer se a - t "' and

(t) ~t -3/ 2t -l/ 2

P/3„/P - Gtl (t/t) i ' .

Now, from Eqs. (5.1) and (5.8) we get

t /t Vl/3p-3/3Gl/3mtl/3
2

(5.9)

(5.10) .

(5.11)

For grand unification strings t becomes greater
than t, at t-10 ' sec and the mass density of
black holes becomes comparable to that of radi-
ation at t-t, -10 "sec. The maximum contribu-

(5.3)

(Here it is essential that we neglect friction: if
friction is strong, the loop can loose most of its
energy as it collapses. )

Black holes of mass M evaporate" at
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tion to p~„ is given by the bl.ack holes of smallest
mass, M,.„-p, t . These smallest bla. ck holes
evaporate and contribute to the radiation density
py) and we expect p~H and py to remain roughly of
the same order. If we assume that at t &t, the
universe becomes bl.ack hole dominated so that
the radiation pressure can be neglected and
a(t &t, ) =a(t, )(t/t, )"', then Eq. (5.6) gives

] t ) /
p, t 1

+ —, ln —(Gt' t ) t t Gt
(5.12)

VI. CONCLUSIONS AND DISCUSSION

We have discussed the evolution of cosmic
strings in the hot big-bang cosmological model.
In most of the paper we have assumed that friction
due to interaction of strings with particles can be
neglected.

Shortly after the phase transition the strings
are expected to have the form of Brownian trajec-
tories with the persistence length of order $ .
($, is the correlation length at t - t, .) As the uni-
verse expands, the strings straighten out and the
persistence length at time t &to is of order t. The
straightening is a result of red-shifting of short-
wavelength perturbations (Sec. IV). Friction and
loop formation can also be important, ' but they
cannot substantially increase the rate of straight-

This contradicts the assumption that p~„&p at
t &t, . Thus, at t &t, the universe is dominated by
mini-black holes and their high-energy radiation.

We shall not attempt to calculate the expansion
law at t &t, and to discuss the further evolution in
any detail. At this point it can already be shown
that the model just described contradicts obser-
vations. The radiation of evaporating black holes
can be thermalized only if" it is emitted before
the thermalization time, t,„„-1sec. It is there-
fore clear that in our model the radiation spectrum
can never become Planckian. We conclude that,
with the assumptions made, the existence of grand
unification strings is incompatible with standard
cosmology. (We stress again that the actual den-
sity of black holes may be much smaller than es-
timated here if the probability of black-hole form-
ation by irregular loops is very small. )

A similar analysis shows that the density of
black holes produced by electroweak strings is al-
ways negligible. At the end of the radiation era
(t-5 x10" sec)pss/p ~10 26 and at present (t
—5 x 10" sec)p»/p ~ 10 ".

ening: persistence length greater than t is for-
bidden by causality. (If friction is very strong, it
can slow down the straightening. See Sec. IV C.)

As the strings cross, they may be apt to change
partners. This leads to formation of closed loops
which then collapse. Additional loops are pro-
duced during the phase transition at t-to. Suffi-
ciently large circular loops collapse to black
holes. I oops of irregular shape undergo violent
oscillations losing their energy to friction and
gravitational radiation.

To estimate the potential importance of black-
hole formation, we have found an upper limit for
the black-hole density assuming that changing
partners is possible and that the behavior of ir-
regular loops is not much different from that of
circular loops (so that the probability of black-
hole formation is of order 1). The estimations
have been made for strings of electroweak (m-10
GeV) and grand unification (m-10' GeV) mass
scale. For electroweak strings, the black-hole
density is negligible; it never exceeds 10 ' of the
total mass density of the universe. For grand
unification strings, the (maximum) number of
black holes produced is unacceptably large. In
particular, the spectrum of cosmic radiation be-
comes essentially nonequilibrium as a, result of
high-energy radiation of mini-black holes. We
stress that the actual density of black holes may
be much smaller if the probability of black-hole
formation by irregular loops is very small.

In our estimations we assume that friction can
be neglected. If friction is strong, then collapsing
loops can lose most of their energy and the black-
hole production can be substantially reduced. A
detailed analysis of the role of friction will be
given elsewhere. Since the force of friction de-
creases with temperature, one can expect that it
becomes small at sufficiently late times, so that
the collapse of large loops is not affected. Mas-
sive black holes and large oscillating loops can
serve as seeds for galaxy formation.

In some models the phase transition can be of
the first order (see, e.g. , Linde, ' and Guth and

Tye, ). In this case, a considerable supercooling
is possible and the strings can form at a, temper-
ature much lower than that suggested by the mass
scale of the theory. Then the horizon and the
correlation length at the phase transition increase
correspondingly and the black-hole mass spectrum
starts at a higher value of M.

We note also that 'the string formation is possi-
ble only if the manifold M of the degenerate
vacuums of the theory is not simply connected.
A discussion of the conditions for the existence
of vacuum strings can be found in Refs. 3, 15,
and 16. If subsequent research shows that grand
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unification strings are incompatible with the big-
bang cosmology, then we shall have another
criterion for selecting the models. On the other
hand, if overproduction of black holes can be
avoided and no other contradictions arise, then
grand unified models with strings may be pre-
ferred since they can give a natural explanation
for the galaxy formation.

Note added in proof

After this paper was submitted, I noticed a
recent paper by Zel'dovich" in which a possible
role of grand unification strings in the galaxy
formation is discussed.

Dr. F. Klinkhammer has pointed out to me that
my estimation of the radius of the loop at which
particle creation becomes important may be in-
correct. Particle creation by moving strings re-
quires a special analysis. and a conclusive answer
to the question cannot be given at this point. A. E.
Everett [Phys. Rev. D 24, 858 (1981)]has given a
plausible argument suggesting that particle crea-

tion becomes important when the proper accelera-
tion of the loop becomes comparable to the sym-
metry-breaking mass m. In this case Eq. (5.1)
should be replaced by t, - (Gp) 'm ', t, & t„ for
t& 10 "sec, and the universe becomes black-hole
dominated at t-10 " sec. All the conclusions of
the paper remain unchanged.

An analysis of the density perturbations produced
by the strings has been published. [A. Vilenkin,
Phys. Rev. Lett. 46, 1169 (1981). Because of
typographic errors, this paper is incomprehen-
sible without the erratum, Phys. Rev. Lett. 46,
1496(E) (1981).] It is shown that the probability of
black-hole formation by closed loops is very small
and that the density fluctuations produced by the
strings of grand unification mass scale are large
enough to explain the galaxy formation.
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