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Magnetic monopole in variations on Einstein's nonsyinmetric unified field theory
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The Einstein-Kuryunoglu and the Einstein-Bonnor unified-field-theory equations for the time-independent,

spherically symmetric electric and magnetic fields are reduced to an ordinary integrodifferential equation of the type
previously solved by numerical methods. It is found that specifying the mass and charge of the electric monopole
along with using Dirac's value for the magnetic charge is sufficient to determine the mass of the magnetic monopole
in the Einstein-Kuryunoglu and the Einstein-Bonnor theories. The observed mass of the electron and the large
(unobserved) mass of the magnetic monopole do not disagree with these unified field theories.

I. INTRODUCTION
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In recent papers the authors have obtained solu-
tions for two variations of Einstein's unified field
theory. '" In each case only the electric field
term of the metric (g»} was assumed to be pre-
sent. This paper generalizes the above solutions
to the case where both electric and magnetic fields
are included. The nonsymmetric metric for this
case has been written by Kursunoglu' as

X =p'(2e' sing cosp —4Q sing) —2 cosp, (1.8)

Y —=p'[e'(cos'Q —sinh'I ) —4Q cosIp]+2 sin&[& .

(1.9)

Q is the constant of integration related to charge
and X is the constant of integration related to the
magnetic monopole. We have the five variables
u, v, &f&, I', and p to be determined by the four
equations ['(1.2)-(1.5)] plus the free choice of p as
a function of r.

Kurgunoglu includes one additional equation,
but shows that as a result of the Bianchi relation-
ships one of the equations is redundant. We have
therefore omitted it. Using the method of Huerta
and Parker we will now proceed to reduce the
equations.

where e' and 8 are spherical radial and angular
coordinates (the second angular coordinate does
not appear). Q and I create the torsions which are
related to the radial electric and magnetic fields.

Derivation of the appropriate field equations can
be found in Kuryunoglu's paper. ' They are as fol-
lows:

II. ANALYSIS

Starting with Eq. (1.4) we write

vp" + p'v'+ —[p"(1—2tanh'I }+&f& "]=0.
2

This can be rewritten as
I2

(v p') ' = — 1 —2 tanh'I'+ —, p' .
2 p

(2.1)

(2.2)

v(ve""Q') '+ v'Q'p' e""tanh'I' =X,

v(ve""p') '+ v'p'2e ' tanh'I' = Y,

(1.2)

(1.3)

Integrating and solving for v then gives
A.v= —e '

I (2.3)

p" + p' + .'(p" + y")—p"—tmhmr = 0-,
v

(1.4)
where the constant of integration is chosen so that
v-1 as p-~ (I'-0, P'-0):

e' sinhI" = ~2,

where in the case of Kuryunoglu's theory

(1.5) 2

y =-,' 1 —2 tanh'I" +
~

—, p'dr .
0 (p

(2.4)

X =—«'(e' cosQ coshl —2Q sing) —2 cosQ, (1.6)

Y —= «2[e'(I —sing coshl") —2Q cos&f ]+2 sing

We now proceed to formally integrate Eqs. (1.2)
and (1.3). Writing (1.2) as

(ve""p'}'+ ve""(j)'(p' tanh'1"} =—X
v

and for Bonnor's theory and using an integrating factor we obtain
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ee
(ve""Q'ee) '=—X.

V

In a similar manner Eq. (1.3) becomes

(2.5)
ii I dP 2

0+y= —' 1+ —dp.
dp

(2.9)

The term in the exponential simplifies to the form

ee
(ve""p'e )

' =—Y',
V

(2.6)

where 8'=—p' tanh'E'.
The variable u is eliminated by formally inte-

grating (2.5) and (2.6) then forming the ratio

„ee
J " Xdr+—B

p f"' I—dr+C
0

(2.7)

d p J20 ee'rX dp+ B
dp Pe'"F dp+C

P0

(2 8)

Finally, Eq. (2.3) is used to eliminate v and Eq.
(1.5) to eliminate I' which leaves an ordinary
integrodifferential equation in P as s, function of
p:

The integration constants B and C depend upon
the choice of the lower limit of integration. Equa-
tion (2.8) represents the formal solution when Q is
not identically zero. When the charge (Q) is
chosen t0 and the constants B and C are speci-
fied, Eq. (2.8) may be integrated numerically.
When Q is zero only the magnetic field remains,
Eq. (2.8) vanishes and the solutions found by

- Kuryunoglu' and Pant are obtained. If ~ is chosen
to be zero, Eq. (2.8) reduces to the pure charge
problem treated in the nonsingular case by Huerta
and Parker' for B=C =0. If the lower limit is
chosen such that the integral can cover "all
space, " then setting B and C equal to zero is con-
sistent with defining the mass as the volume inte-
gral of the generalized field energy density de-
fined in the next section.

III. ENERGY DENSITY

We now wish to find the term corresponding to the field energy density and see what happens when a non-
zero X is introduced. We start from Kuryunoglu's form of the equation for R»..
2v[ve""(p' sing —P' cosQ)]'- 2 P'v'e '(&f&' sing+ p' cosQ)

2- —,'v'e""(p' sing —@'cosg)I"' tanhI' = 1+—e'(sing —coshI') . (3.l)

Introducing the integrating factor e~, where

P' sin&]&+ p' cosQ
p' sing —Q' cosQ

gives

(
ve""(p' sing —rf&' cosQ}e~ ' 2e~ (

~

1 ——e'(coshI' —sing)
~

.
cosh' )

Integrating, solving for e, and splitting the integral into three parts gives

coshI'e ~ ' r ez, ee"=—, , 2 „dr+g' (sing —coshI')dr
v p' sin — 'cos, v coshl, v coshI'

oo eg +P

(sing —cnsiii')drr c) .
v coshl"

(3.2)

(3.3)

(3.4)

First, examine the case of vanishing electric
and magnetic fields specified by the conditions
Q=w/2, I'=0, r =—e'. We get

e-P/~
vo=2, =1, coshI'=1, sing=1, A=O

and Eq. (3.4) becomes

Q0 C

2r'

Note that when we set the integration constant

(3.5) e~ -1 v-1
and using these in (3.4} we get

(3.6)

I
c = -4M, where M is the point mass of the Schwarz-
schild solution, our solution, for the case of
vanishing electromagnetic fields, includes the
Schwarzschild solution as an exact solution.

Second, let us examine the case of small electric
and magnetic fields specified by the conditions
sing-I —g2/2, cosP- g, coshI'-1+ I"'/2, e'-H.

We find for large x
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2 eA+Pe"-1+— (sing —coshI')Ck
2r , v cosh1

(3.12) or (3.13)]. Far from the origin this general-
ized energy density goes to

(g'+ I')r'dr+
4x „2z' (3.7)

K—(1+1 )4 (4.1)

(3.8)

go is the constant of integration which determines
the total electric charge as seen far from the
origin, then Eq. (3.7) becomes the Reissner-
Nord strum solution

2M Q'+PQ~
y

(3.9)

The second integral is not approximated because
we can only require that the coshI' term be -1 out-
side a sphere around the origin. If we now assume
the electromagnetic fields fall off as inverse
squares far from the origin,

from Eq. (3.7). If we assume z has the form
K = K e', then p and I' must have the forms

p e ' and I'= ~I'~e '~ when we require the
asymptotic contributions to the mass be real and
posi. tive.

We now choose to investigate the case where
p, v, g, and I' are pure imaginary. Let z ik=,

p=iq, 4'=if, and G =iI'.

A. Electric monopole

When X'=0 and Q e0 the integrodifferential equa-
tion (2.8) may be linearized' when 4 is small to
give

where

e~"
-2M =——+- (sing —coshl')dr (3.10)

2 2, v coshI"

and

d4 2 " k+—~'4 d~
0

(4.2)

for both the Bonnor and Kurgunoglu forms of the
theory when 2p' = K'. This has the solution

(3.11) 4'-2(1 —e ""—kre "")@,/(kr)', (4.3)

At this point we choose to pursue not the most
general solution but the physically interesting
solution where the particle has no Schwarzschild-
type singularity. This is achieved by setting c =0.
Equation (3.5) shows for c w0 the solution retains
the Schwarzschild singularity even for vanishing
fields. If we choose c =0 the long-range mass is
the volume integral of the generalized energy dens-
ity (Hv'-+g

e"
H 4-gd'g =—— (coshl —sing)dr,

4 0 v coshI'

(3.12)

where

e' sin8
v coshI" '

In the case of Bonnor's theory this generalized
energy can be shown to be

f 2. ~ &+p
H v'-gd'x =— sing(cos'Q+ sinh'I')Ch.4, v coshI"

where 40 is the value of 4 at the origin. This solu-
tion has a finite rest mass since the singularity
present in the Heissner-Nordstr6m solution has
been eliminated. The solution retains a nonzero
derivative which forms a cusp about the origin.

In the weak-field approximation the mass of this
electric monopole can be found from Eq. (3.12) or
Eq. (3.13) to be

m- (1- e "—kre ~)—e.' " „,d~
2/2 y2

0

(4.4)

For a charge of the order of that of the electron,
this mass has been verified by numerical solution
of the integrodifferential equation. ' The constant
in Eq. (3.10) has been chosen to require that the
monopole mass be given by the integral of the
generalized energy density over a'll space. The
charge of the electric monopole is identified from
Eq. (3.11) as

IV. MONOPOLE MASSES

(3.13)
Q =q, /k. (4.5)

We will assume that the mass of the electric and
magnetic particles is given by the integral over
"all space" of the generalized energy density [Eq.

From this we observe that the integration constant
40 and fundamental constant k are sufficient to spe-
cify a particle with arbitrary (nonzero) charge and
a positive mass.
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B. Magnetic monopole

I. Kursunoglu s the'ory

When 40=0 and X2 =—i52 WO we find the lineariza-
tion fails since iI'—= G is not bounded near x=0.
In this case (q, =0) Eq. (3.10) may be integrated
exactly and we find for Kuryunoglu's theory

2 OO

M = —— e""[(I—5 e ")'~' —1]p' dr
8

PQ =nhc/2, n = integer, (4.11)

we may calculate the minimum mass on the mag-
netic monopole when we use the charge and mass
of the electron, set n=1 and use gravitational
units":

m = 4','/(4k) =m, = 6.764 x 10 "cm,

Q =40/k =e =1.381x 10 '4 cm,

introducing Dirac's' formula relating the charges
on the monopoles

k 5
12

(4.6) then k =4m, /e' and using Eq. (4.11) we obtain

(4.7)

where K(s/4) is the complete elliptic integrai' '
and we have used

cosh2I' = ].—&4e

k, e ~-'e'
P =—5' =Ic/(2e) =—o.'' — 5' =

2 2' 4m '
e

M~=& '~'v'm e ~ & 2K~ — —1 =1.32x 10-4' cm
(n

E4

e~~~ =(r+1)5. (4 8)
2 k2

M =—5'=—5 = —' 4m e=1.22' 10 42 cm.

The choice of form for the variable x is arbi-
trary but we have chosen a lower limit (r =0) where
the point has a finite surface area. We, in agree-
ment with Kunsth. tter and Moffat, ' exclude the in-
terior of this surface from the physical space.
If the mass integral is extended to include the con-
tents of this surface, the mass becomes complex
since g changes sign at x =0.

If we attempt to reverse the identification of the
electric and magnetic fields as has been suggested
by Kuryunoglu and by Moffat, we find

k 5
v2 K — —1 =0.135k'5'=m

12 4 8'

P=—5 =e, k=6.86m, '/e

2. Bonnor s theory

Setting the electric field to zero in Eq. (3.13)
leads to

Q =4,/k=c. ' 4=3-.43'e &m, '

nz '
nz= ' ~8047 -'- =2.66x 10 7' cm

4k e
p2 CO eP

~~ =
4 h~

sinh'I'Ch.
4 0 v coshI' (4.9)

V. CONCLUSIONS

Using Eq. (1.5) and e'" =(r+1)5 this simplifies
to

2 OO 2
g

4 (r+ 1)' 4
(4.10)

The point at r =0 has finite surface area as in
Kunyunoglu's theory but if we extend the integra-
tion to include the "space" inside this area the
mass integral for Bonnor's magnetic-monopole
diverges.

C. Numerical values

In a world with electric and magnetic mono-
poles, we have four value and only the universal
constant (k or v 2 q) along with two integration con-
stants (4, and 5) to fix them. If we ignore the
question of applicability and limit the choice by

Both the Einstein-Bonnor and the Einstein-
Kuryunoglu theories provide a classical theory
of electromagnetism and gravitation that is in
asymptotic agreement with Maxwell's equations. "'
They are also in agreement with general relativity
and predict electric and magnetic monopoles with
finite self-energies. When Dirac's theory of the
magnetic monopole is used to determine the mag-
netic charge, the mass of the magnetic monopole
is extremely high, well beyond the capabilities
of present accelerators.

If one attempts to interchange the roles of the
electric and magnetic fields as suggested by
Kuryunoglu and by Moffat one finds a magnetic
monopole mass much less than the mass of the
electron. We reject this interchange since the
resulting light monopole has not been observed.
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