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Slowly rotating fluid spheres in general relativity with and without radiation
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We introduce slow rotation to some of the solutions given by Vaidya, which correspond to radiating fluid spheres
in general relativity. We give several new analytic solutions, some of which correspond to uniform rotation and
others to differentially rotating fluid spheres. We also study the stationary, field equations for slowly rotating and
nonradiating fluid spheres, and present a new analytic solution and also generalize the solution corresponding to the
P = ap equation of state. Some of the solutions mentioned above could be physically reasonable throughout the star
while the rest could be used to represent portions of it. We discuss the physical properties of these solutions and the
boundary conditions in detail.

I. INTRODUCTION

In some of my recent papers' ' I have discussed
static and radiating fluid spheres in general rela-
tivity and constructed several analytic models that
could be used to represent some of the compact
objects observed in nature. It is interesting that
almost every object in the sky exhibits some form
of rotation, and today there is even the possibility
of the Universe itself being endowed with a slight
rotation. In this regard we have recently studied
slowly rotating Friedmann universes in detail. '
Now we will extend our previous work by studying
slowly rotating and nonradiating fluid spheres.

During the last 15 years rotating objects have
been studied quite extensively. Among these
Butterworth and Ipser' have numerically studied
the structure and stability of rapidly rotating fluid
spheres with various amounts of uniform and dif-
ferential rotation. Hartle and Thorne' have studied
uniformly rotating white dwarfs and neutron stars
up to second order in angular velocity by using
Harrison-Wheeler and the Tsuruta-Cameron Vy

equation of state. Other papers related to the nu-
merical approach on this subject can be found in
Abramovicz and Wagoner, ' where they have pre-
sented the analytic theory of slowly and uniformly
rotating general-relativistic bodies and discussed
conditions of stability.

It is well known that all known pulsars satisfy
conditions of slow rotation, i.e. , tangential velocity
of all fluid elements are much less than the speed
of light and the centrifugal force is much less than
the gravitational force. In this approximation
when we write the field equations to first order in

angular momentum, they reduce to the original
unperturbed equations with spherical symmetry,
plus two additional equations to be solved for
Q(r, t), which represents the dragging of inertial
frames.

In Sec. III we present several new analytic solu-

tions corresponding to slowly rotating and radiating
fluid spheres. These solutions are found for the
radiating models given by Vaidyae (solutions III,
IV, and IX), and some of them correspond to uni-
form rotation while the others to differential rota-
tion. Previously time-dependent and rotating sys-
tems have been studied by Silk and Wright. ' Also
Chandrasekhar and Friedman' have studied the
stability of axisymmetric systems to axisymmetric
perturbations in general relativity. However, to
the best of my knowledge there are no published
exact analytic solutions corresponding to slowly
rotating and radiating fluid spheres.

Next we consider nonradiating and slowly rotating
fluid spheres. So far the only analytic solutions are
given by Adams et al. ,

"where they have considered
the I' =np equation of state, and the two recent
solutions found by Whitman, "which correspond to
the generalization of Tolman's sixth solution and
to incompressible matter with the equation of state
p = const. All these solutions were found for uni-
form rotation. In Sec. IV we present a new solution
for uniform rotation, corresponding to the poly-
tropelike equation of state given by us. ' This solu-
tion is given in terms of Bessel functions and
could be used to represent portions of stars. We
also reconsider for I' = up and give the general
solution for 0 with the proper number of integration
constants. We discuss the physical properties of
these solutions and the boundary conditions in de-
tail. For the exterior of the radiating and slowly
rotating fluid spheres we take the Kerr-Vaidya"'"
metric to first order in angular velocity.

Physical effects of the dragging of inertial frames
could in principle be observed. These include the
modification of planetary orbits, "effects on the
spin axis of gyroscopes, rotation of the plane of
polarization of polarized light, and modification
of the phase" and the bending of light by the rotat-
ing object. Also an observer at infinity will ob-
serve a rotating and radiating star slightly dis-
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placed from its true position. " Even though this
is inconsequential for single stars, for binary
systems it has a net effect of giving the wrong
semimajor axis, and hence will affect the calcula-
tion of mass from Kepler's third law. Even though
these effects are expected to be small for normal
stars they could be important in binary systems,
where one or both of the stars are pulsars. "

II. THE FIELD EQUATIONS

—f (r)'m (t)'(r'd8' +r' sin'8 dg2)

+ 2l(r)'m(t)2Q(r, t)r' sin'8 dQ dt. (2 1)

To establish the metric consider a general per-
turbation k& of a given solution for radiating fluid
spheres as

(p)
~gk ~5k jk &

where (x', x', x, x') =(t, r, 8, $)." With the assump-
tion of axial symmetry we can choose hpp Ayy &22,

833 and hp3 to be the only nonv ani shing com ponents
of h, k. The perturbations h», h», and h» of the
diagonal components come into play in the case of
distortion, which is not the subject of the present
study, and hence they are set to zero. Also in the
case of rotational perturbations hpp will be of sec-
ond order relative to hp3. This is because the ef-
fect of rotation is to take dP - dQ -Qdt. More-
over to first order in 0 deviations from spherical
symmetry can be neglected. Hence the perturbed
metric can be written as

ds' =f(r)'g(t)'dt' —h(r) 2m (t)'dr'

RP3 &7l'(TPg 2 g33 T)

R„=-Sn'Tj3.

(2 3)

(2.4)

We take the energy-momentum tensor to be the
perfect-fluid energy-momentum tensor plus the
energy-momentum tensor for expanding radiation.
The second part of this tensor can be used to rep-
resent either photons or neutrinos. ' Hence,

T'3= (P+p)U~U» Pg3" +—o V~V2

where

U~U. = 1 U'~ O U'= U'=O U'=—(d
y y

(2.5)

V~V =0 V'10 V'10, V'40, and V'=0.

We define the null vector V' as dx~/dr, where
d7'=f(r)g(t) dt. " This gives

V3-fg,
1

(2.6)

and

(u
V

l'm2r' sin'8
( )

fg, ' ' fg
where ~ =dP/dt. With these equations (2.3) and
(2.4) become

(2.V)

R„=-Sv[(P+p)l' mr' sin'8(Q —u)

The first four components do not involve Q(r, t) and
their solution gives g,.". This determines the pres-
sure and density distributions, which are not per-
turbed to first order in A.' '" The remaining field
equations related to Rp and R', can be written as

Since we are going to take Vaidya's solutions as
our base metric we have taken g&" as separable.

To first order in Q(r, t) only the following com-
ponents of the Hicci tensor are nonzero: R,3= 0,

+ 2(P —p)l'm'r' sin'8Q +o V3V3], (2.8)

(2.9)

(2.2)
I

where R„and R» are

&f'f'tr' 4ll'r l "r' f'l'r l' h'l'tr' h'Pr tl "r' l'mmgr'
03 l~ fh2 h2 h2

'

fh2 h2 h3 h3 h2 f2 3

2l' 'rml2mmy' l t h 'l'r' 1fif'r' 2ll 'r' 2l2r 1 l'r2
f' ' f'' / &

2h' 2 fh' h' h' 2 h'

&m'l'r', &3m g &

&m g)

(2.10)

(2.11)

Finally the equations to be solved for Q(r, t) can
be given as

h' f' 4t' 4& ,Q" + ————+ +—lQ'
h f l r)

=16vh2m2(P+p+o)(Q —&u) (2.12).

~ ~

Q' -- l+Q'=0.
m gi

(2.13)

As we can easily see (2.13) will give the time de-
pendence of Q(r, t), while (2.12) will determine the
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r dependence. Equation (2.13) can be integrated
immediately to give

&(~ t)=C(~) m'(t) ' (2.14)

where C(r) is an arbitrary function of r which will
be determined from Eq. (2.12). Before we pro-
ceed we will summarize the general properties of
the solutions given by Vaidya as '

comes

t4l' 4 htc-+I +--———ic(l r h fj
's, &

= 16''~ P +p +,'„((1 a,b-, )C, (2.19)

where a(r) = a,c(r) and m'b(t) = b, . When the con-
stants a, and b, are unity, we have perfect drag-
ging.

P(~, t)=P(~) . , p(~, t)=p(~) . ),
1

m't' ' m't ' (2.15) III. SOLUTIONS FOR RADIATING FLUID SPHERES

1 f'(m 1
o = ——,

~
—,, where m = -som, (2.16)

4v f'h j,m m''
1

and s, is a separation constant. Note that since
we are using comoving coordinates along the radial
direction the boundary of the star has to be inde-
pendent of time. This requires m(t) =g(t)." Fi-
nally using Eqs. (2.15) and (2.16), and substituting
(2.14) into (2.12) we obtain

C "/C +(4l'/l+4/r —h'/h -f'/f)C'/C
16''[P(r) +p(r) +f's,/4' 'h]

(u(~, t)m'(t)
(2 17)

C(~)

&u(r, t) is the rotation function of the star, which
has to be supplied to the field equations, like an
equation of state. However, from (2. 17) it is seen
that its functional form is restricted by the field
equations. ' Since the left-hand side of (2.17) is only
a function of r the right-hand side shouM also be
either a function of x or a function of t alone (and
hence should be equal to a constant). From this it
follows that ar(x, t) has to be a separable function.
Let &u(x, t) =a(r)b(t) and consider the following pos-
sibilities:

(a) The right-hand side is only a function of x.
This includes uniform rotation and (2.17) is given
as

4l' 4 h' f'C"+ +--———C'
l r h f

First we consider case (a) with uniform rotation.
We take

+(r, t) = C,m(t) ', where Co = const.

With this substitution Eq. (2.18) becomes

4l 4C" + —+—————~cl r h f&
gl= 'C16vh' P(r)+p(y)+ J

4' 'h. '

where C=C —C,. We now consider Vaidya's third
solution which is given as

(3.1)

ra+1f" Ac, (B ..")-
r'

h(+) =A (B +Pq)n y

lr =
r'

AD(B+r")" '

(3.2)

and m(t)=e 'o . Among s, A, C„B, q, n, D, s„
which are constants, the following relations exist:

s + 1 = q(2n' —1)/n,

C,so
=' 2nqI3,

and

n'D' = 2q'(1 —2n') .

(3.3)

We then have

1 q'(1 —2n) (1 —2n)r" + (1+2n)B8vP r t =
h2m2 y 2n2 r q+&

3.4

P

= 16vh' P+p+, ' [C —b,a(x)], (2.18)
1 q' (1 —4n')r" + (1+4n')B

8w &r t&= r2a+g (3.5)

where b(t) = b,/m'(t).
(b) The right-hand side is only a function of t and

hence equal to a constant. For this case (2.17) be-
I

4C,Bq (2n —l)t ~+(2n2 —1)B
Bm (~"+ B)'

For the above solution Eq. (3.1) becomes

(3.6)

2s +3C" + =+, 2q(-2n —1) C'
r2a

22 f4 2 2 2 4 2

q, (2 —4n)r4'+I q, B+ q, (2 —4n)Bi4s, c,(s+1)-8qs,c,(n —1) r"+,B'+4s,C,(s+1)B r'(B+r")' C.
Ln n2 n2 n

(3 7)
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From E(l. (3.7), which in general could be given as

C" +X,(r)C'+X, (r)C = 0,
we can eliminate the first-order derivative by substituting

1
C = v(t) exp —— X, dr ~,2 ]

where

v" = -(X, —BX,
' —BX,')v.

For Eq. (3.7) this gives

C(&) v(&)&-(Bs+B) /~(B + QB)( ~ns'). ) /&

The function v(r) comes from the solution of (3.10), where

2g
2xy +Xy' —= x'~ — 2 2 -4n + & 2s + 3 +q 2n+ 1 2q —1 —2q' 2n+ 1 ——,

' 2s + 3

(3.8)

(3.9)

(3.10)

(3.11)

+ (2s + 3)(2n+ 1)q —q'(2n+ 1)'

+y" —,B —,B(2 —4n) —4soC, (s+ 1)+8qsoC, (n —1)+B(2s+3)
4q2 2q2

sss

B
+ q(2n+ 1)(2q —1)B ——(2s + 3)'+ (2s + 3)(2n+ 1)qB

2

2 Q2
B —4s C,(sst)B+ B (tss—)4'-

4 (ts+4)'I s'(Bst ) (3.12)

This in general cannot be solved analytically. However, if we assume

X, ——,'X,' --,'X,'=~ (D, = constant), (3.13)

we c'an obtain the following solution":

v(r) = K~ (/t, y, +a,y, ),
(i) D, ——,'=r, ')0; y, =cosr, lnr, y, =sinr, in',

(ii) ro &0 yt =so yB=X

(iii} r,'=0; D, = —,'; y, =1, y, =lnr.

(3.14)

For the assumption (3.13) we have the following three relations in addition to (3.3) to be satisfied by the
nine arbitrary parameters in the solution":

2

, (2 —4n}+ B(2s + 3) +q(2n+ 1)(2q —1) —2q'(2n+ 1) —«(2s + 3)'+ (2s + 3)(2n+ 1)q -q'(2n+ 1)' =D (3.15)

-4soC, (s + 1) + 8qs, C, (n -1)+B(2s + 3)+q(2n+ 1)(2q —l)B
4q'B 2q'(2 —4n)B

2

, B' -4s,C, (s + 1)B+ —,'B'(2s + 3) —,'B'(2s + 3)' =Dg-'.n'

——(2s + 3)B+(2s + 3)(2n+ 1)qB = 2DQ, (3.16)

(3.17)

Next we consider solution IV in Vaidya's paper, which is given as

(B+r")' "

AC,

and m(t) = & '(), where

1 (B + ~2(t)1tt-
A (B+r")"' WDH" (3.18)
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C,s, =B(3 -4n)q/(n —1), D'=4q'(2n' —1).
We then have

(3.19)

8wP(r, f) =, »» I(n —1)'r"+Br"-B'(2n —l)(6n —5)/4(n —I)'j,h'm' r' B +r" '
2

8vp(r, I)=, »» [(n' —1)r"+Br"(1—6n) + SB'(2n —1)(6n —5)/4(n —I)'],h'm' r'(B + r")'

(3.20)

(3.21)

(3.22)

For this solution E(I. (3.1) can be given as

(1 —8q y" ' 6q -4nqC"+ + C'= 8q'(2n' —2n)y" +l8q (2B —6Bn)+8s,C,q(l -n)jy'«r (B +y")

4B (2n —1)(6n —5)q2

(n —1)'

We could again eliminate the first-order derivative by the substitution (3.9), which gives

C(r) = v(r)r" ' '(r" +B)" ' '

where v(r) satisfies (3.10) and X, —xX,' ——,'X,' is given as

(S.23)

(3.24)

X,——,X,' ——,'X, '= q"(-20q'q'+120'q —2'+-,'4q" (-20q'+20qq' — ' 'q(1 —q)+-',)0
la

4B'q'(2n —1)(6n —5) B'(8q —1) B'(1 —8q)'
(n -1)' 2 4

(3.25)

Again if we assume

X, ——,X,' —0X,'=~ (D, = constant),

and m(f) =e '&', where

C,s, = (1 —2n)q, D' = 4q'B . — (3.30)

we can obtain the solution given in (3.14). Besides
(3.19) we also have the following relations to be
satisfied by the arbitrary parameters in the solu-
tion:

We then have

1 1 4q'B
(3.31)

-20q'n'+12q'n -q'+
&

=D

30q + 36%q as pC]q + 2 2Dp
(1-n)

(3.26)

(3.27)

1 4qB
8m (y f)=- 6'm' r'(r" +B) ' (3.32)

4
2(2n-1)

(6 —5) — 8q —1) (1 —8q)'
D, . (3.28)

(n —1)'

1 4C,q'(1 —2n) nr" +B
8nT =

h'm' r' " (r"+B)'
For this solution E(I. (3.1) becomes

(3.33)

1
Et'yl =

gDr(B + y~q)n-2 1'& 2

y 20

f(r ) =g C (B + ~q) n-2 2

(3.29)

These two solutions corresponding to the solutions
III and IV given by Vaidya could be physically
reasonable throughout the star.

Finally in this section we are going to consider
solution IX given by Vaidya as

hr = 1
' ) =~.(B..")

C(y) p(r)yq 212(B + y20)-&-2 6 (3.35)

where v(r) satisfies (3.10) and X, ——,'X,' ——,'X,' is
given as

1+2qC" + + „(2q -4qn) C'
'V +I

++ ' ', , (2qnr" +2qB)C=O. (3.34)
4s,Cp '

The first-order derivative can again be eliminated
by the substitution (3.9), which gives
i
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X, ——,'X,' ——,'X,' = r"(8s,C,qn+ —,
' -4q'+ 8q'n -4q'n') +r"(8s,C+q+ — 6—B.q'+ 8Bq'n)

B2 B2
+—(1+2q) ——(1+2q)'

2 4
r'(B+r")'. (3.36)

Again if we assume

(3.37)

comes

Dv"(r) +~v=&(r)exp —tX dr ~.y' 2 1 (3.42)

we can obtain the solution given in (3.14). This
gives the following relations besides (3.30) to be
satisfied among seven parameters":

For D, = —,', and & (r) exp( ,fX—,dr) = ,'r '/' w—e can
give the following solution for v(r):

8~,q++ —,
' —4q'+ 8q'+ —4q'g' = Do,

Ss0+,qB +——68q + BBq n = 2BDo
B

B2 B—(1+2q) ——(1+2q)' =B'Do .

(3.38)

(3.39)

(3.40)

v(r) = Wx(t/l, +A, lnr) + (lnr)',

where

& (r ) = -16vh'
~

&+p+ 2'„~a (r) .

(3.43)

~ (3.44)

t/"(r)+~v =0.D (3.41)

For differentially rotating fluid spheres, where
cu(r, f) =a(r)m(t) ' the corresponding equation be-

The equation of state for this solution is P+p=O.
Ih this respect it is not suitable to represent in-
teriors of radiating and slowly rotating fluid
spheres. However, with the inclusion of the cos-
mological constant it could be useful in cosmology.
%'e would like to point out that inclusion of the cos-
mological constant does not alter the equations to
be solved for O(r, t).

In all these solutions the differential equation to
be solved for v(r) in (3.9) was of the form

Note that in general a differential equation of the
form

v" +~v =f(r)r 'D
(3.45)

r'y" + bry'+ cy =f(r),
with the substitution

&(r)r-s/2

(3.46)

(3.47)

In this respect we are going to present various
solutions to (3.46) which correspond to different
forms of differential rotation and could be used in
some of the cases given above:

where we define D, = c+5/2 —b'/4, can be obtained
from

1 ar'
(i) r'y" +ry' —y =ar'; y =-(c,+ c,r') +

(ii) r'y" -ry'+y =r'(3+r); y= c,r+c,r lnr+3r'+r'/4,

(iii) r'y" —ry'+y=3r; y=cp+c, rlnr+3r'/4,

(iv) r'y" +ry'+y=lnr; y=c, coslnr+c, sinlnr+lnr,

(v) r'y" —2ry'+ 2y = r' sinr; y =r(c, + c,r) rsinr, —

(vi) r'y" —2ry'+ 2y = 2r lnr; y = r(c, + c,r) —2r lnr —r(lnr)',

(3.48)

(vii) r'y" —2ry'+2y =r'

(viii) r'y" +2ry' —6y =2

(ix) r'y" +4ry'+2y=e";

lnr; y =r(c, +c,r)+1 (lnr —~),7

-r; y = , (c,+c,r')+—
1

y =p(c, +c,r) +p,
(x) r'y" —2ary' a(a+1)y+= e"r'"; y = c,r' c +"2're"+r'.



2062 SKI /UK S. BAYIN

Also note that when f(r) = 0 (3.46) has the following
general solution:

&0)'(r)-~ (( ~ )
" ' +O ) (3.49)

1 1
) (r) =~ C, In —+ C,) . (3.50)

These could be used for homogeneous rotation
where we redefine D, as

where k' —(b —1)k+c =0, A, =2k+2 —b, and A, o 1.
ForA. , =1 we have

again consider uniform rotation where ((l(r) = const.
For this case equation (2.13) vanishes identically
and (2.12) reduces to

Q" + ——+ +—Q' = 16llh'(P+ p)Q,
f' 3h' 4 —,
f h

where Q =0 —~„and the line element is
ds' =f(r)'dt' —h(r)'[(dr '+ r 'd8'

(4.2)

+r sill 8(dp —Qdt) j. (4.3)

The static solution that we will use is given as

Q2
D =c+——— and v=yx S/24'

f(r)2 g(c r&)-al(~-c&

h(r)'=B(c r')'~" " (4.4)

C(r) Co 4 4 dr
A,

l4r4 (3.52)

Finally we wouM like to point out that for perfect
dragging, Eq. (2.19) could be easily integrated
to give

8)lp(r) = —c,""(1 n')r—'",1 n+y 2 2n (4.5)

where 1 —cW 0.
The pressure and density distributions are given

as

Note that in all these solutions the range of x is
from 0 to A, where 8 is the radius of the star de-
fined by P(R) = 0, and the range of t is from 0 to

Since the solutions we give for Q(s, I) corres-
pond to slow rotation, the parameters have to be
chosen such that the slow-rotation condition is
satisfied; otherwise one has to consider higher-
order terms and deviations from spherical sym-
metry. "

Finally the conditions for physical reasonable-
ness are that L (luminosity), p, and P should be
positive definite throughout the star, and P and p
should be monotonic decreasing functions of x.'

O (1 + )2rltl+2
b

where

and

P 2a
o, =~= -1+

p, b(1 n) '-
1 2 12b' —2a' -ah+a -ac= 5-a

1 „„t b'(n —1) + 2ab](n+ 1)
8)lP r = —c,""

Ls

(4.6)

(4.7)

P =E~'" +O,p,
where a, Pgp„Ko=, and n are constants. We

(4.1)

IV. SOLUTIONS FOR NONRADIATING
FLUID SPHERES

Nonradiating and slowly rotating fluid spheres
have been studied quite extensively. ' ' However,
the only analytic solutions we have found in the
literature were given by Adams et al. ,

"where they
have considered the isothermal equation of state
which corresponds to P = up, and the two recent
solutions found by %hitman, "which correspond to
the generalization of Tolman's sixth solution and
to incompressible matter with the equation of state
p =const. All these solutions were found for
+ = const. The problem with the solution corres-
ponding to P = np is that the pressure distribution
does not vanish at finite radius. Hence it has to be
joined to a shell over which pressure drops to
zero. In this section we introduce rotation to the
special case of the solution VI given by us, ' which
has the following equation of state,

The equation of state obtained by eliminating x
among P and p is given as

( -0/( I - e) -( I - e) / ( e-I-&)a Co
I

Co

(1 —c)2b+b' (, (1 —c)'

)( p1+( y» e) /( e"l-b) ++o (4.8)

In order to have positive p we need -1& n g 1, also
for p to be a monotonic decreasing function of r
we need n& 0, otherwise this solution can only be
used to represent portions of stars where density
inversion takes place. The radius of the star is
defined by P(r) =0. This gives

b'(n —1) + 2ab
2ac, (1+n)

(4.9)

Note that for n&0 pressure also vanishes at the
center. Hence this solution is physically reason-
able over an envelope over which pressure drops
to zero monotonically. This solution could be used
as the envelope for the solution with P = np. " Fi-
nally the rotation equation to be solved for 0 be-
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comes

2a 1 2a bc, — 1 3b a
—c ' (1-c)' r 1 — 1-c

(4.1o)

The result is

Jq(z) =&„(z)cosz + Q„(z) sinz,
We define constants a„a„b,by

r'A +ay'A„+ (a, +b,r')A = 0,
and substitute

A=r U(z), z =rv b, , 2k=1 -a, .

Then Eq. (4.11) becomes

z'v" +zv' -(p'-z')v=o,
(a+3b)(n+1) ' 16a(n+1)

(4.11)

(4.12)

(4.13)

This. is the Bessel equation of order P and can be
expressed in terms of elementary functions for
various values of P. The properties of Bessel
functions are well known so we will just summarize
the possible solutions for (4.13), which could be
written as

Z(r) = u'(2~Dr') ',
p(r) =n(2mDr') ',

(4.16)

(4.16)

where D = (1+o.)'+4n. The differential equation
in canonical coordinates for A(r) becomes

where P„(z) and Q„(z) are polynomials in 1/z.
Next we are going to reconsider the solution for

I' = np equation of state. Even though a stellar
model with this equation of state will not have
finite radius, this solution is important in putting
bounds on neutron star masses, since it repre-
sents the asymptotic form of the equation of state
at ultrahigh densities. " Physically reasonable
models can be obtained by matching this solution
to an envelope over which pressure drops to zero.
For this solution pressure and density distribu-
tions are given as

U(z) = C,Z, (z) + C,Z, (z) . (4.14)

(i) p4 integer. Then Z, and Z, are one of the
following pair s: where

—,(4 —2nN) 8o,„A
(4.17)

J~, J ~; J~, 1'~; H'p", H~", n~ = n(1+ n) ' and A = A —const. (4.18)
where The general solution of this equation is given as

F~(z) = cospw(J~ cospn —J ~),

1 ( y&E-~
A(r) =ml 0(1 ~ )+Ci]l

where

(4.19)

H~" (z) =J~+i&, ,

HP'(z) = Jp —il'p.

(ii) P = n (integer). Then J „=(-1)"J„. Hence the
general solution could be taken as

U(z) = C,J„(z)+ C,F„(z) .

(iii) p=n+2, n=integer (positve, negative, or
zero). Then

U(z) = C,j~(z) + C,J' ~(z),

where

k'+ k(2n~ —3) —8m~ = 0 and A, = 2k —2+ 2o,„41 .

(4.20)

When C, = 0 this reduces to the solution given by
Adams et al

V. BOUNDARY CONDITIONS

In 1963 Kerr'4 gave the following solution which
is commonly accepted to represent the gravitation-
al field exterior to rotating fluid spheres:

' =Z(d6'+sin'8d@') +2(du+a sin'8dg)(dr+a sin'Hdg) —(1 —2mrZ ')(du+a sin'ed/)', (5.1)

wher e Z =R'+ a' cos'6, u = t+R, and m and a are
constants. Here m represents mass and a is a
measure of the angular velocity. " One of the un-
solved problems of theoretical physics is to find a
source that generates the Kerr fluid. "'" How-
ever, it is well known that a slowly rotating perfect

fluid sphere can be a source for the Kerr exterior
solution with small a." In this respect we are
going to use metric (5.1) to first order in a as the
exterior field to the nonradiating solution given in
Sec. IV.

After a coordinate transformation and to first
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4
ds' = (1 +—

~

(dr' +r' d 8' +2 sin'6 dQ')
2~j

(r —m/2)', 4mn sin'8
(r+ m/2)' r(1+m/2x)' (5 2)

This will be matched to the line element for the
interior which is given as

order in a (5.1) can be written as" [in Eqs. (5.1)-
(5.3) the signature of the metric is (-;+++)j

q —vvT (5,8)

In this observer's local Lorentz frame we take k'

k& = (1;1,0, 0) . (5.9)

From v'v, =1, one can obtain v' in terms of v', and
v' where. we take v = 0.

With (5.8) and (5.6) we can write

ds' =B(c,r')'~' '(dH +r'd8'+r' sin'8 d(f)')

-dt(c, r') ~' "df' B(c,-r')'I' '2r'sin'80dpdf.
and

q = ——v'v'R
8~

(5.10)

R»= ~ and R» = -3m'asin'8/r'.r (5.5)

If we require this metric to be a solution to the
field equations

j.
R]~ —~ g]~R = -8nT]~, (5.6)

we see that T&& corresponds to an energy-moment-
um tensor for a flowing null fluid with

T&&
= qk&k&, where k&k& = 0. (5.7)

(5 3)

Three of the constants in h(r), and f(r) will be de-
termined by matching them to the Schwarzschild
exterior solution at the surface [this is evident
from Eq. (5.2)].' The remaining two integration
constants in A(r) will be chosen such that 0 and
its first derivatives are continuous throughout the
star. "

For the exterior of the solutions given in Sec. III
we use the approximate solution given by Muren-
beeld and Trollope, which represents radiating
and slowly rotating fluid spheres. '"" This metric
is given as

ds' =
~

1 — du'+ 2 dr du+ 2~ sin'8 d&P du
( 2m , 2ma

I r
—2a sin'8 dr dP —Pd8' -P sin'6 dP'. (5.4)

Where we have considered only the first-order
terms in a, and a is a constant while m is a func-
tion of the retarded time u= t-r. The only non-
vanishing components of the Bicci tensor are

( Q)Q
2m Q 3( )

3m'a sin'8
(5.11)

From here we see that luminosity measured by an
observer at rest at infinity is

-2 — dmL = 4mr2q=-
cfu

(5.12)

Similarly one can show that at infinity radiated
angular momentum per unit time is"'"

dJ dm
cfu cpu

(5.13)

y(d, t)df= dt —
( +a)dd, (5.14)

where y(F', ~) is an integrating factor. This puts
the exterior metric into the form

~d'

4m'a' ( F a ( 8 4m's

7''d6' i'-sin'8dp—'+ 2 sin'6ydp dt. (5.15)

The interior metric (2.1) can be cast into this
form most easily by defining a new radial marker
as

Finally we will close this section by discussing
the coordinate transformations that put the interior
and the exterior metrics into the same form.
First we consider metric (5.4), and replace u by
t-r, a,nd then define

We normalize k& such that q is the energy density
of the radiati, on measured by an observer with
four-velocity v', so that'

F = l(r)m(l)r.

This gives the metric

(5.16)

ds = —, ,(dF) -F (d8 +sin 8dp )+ f g'- —, , df'+ — dr'df+2y'@sin'6dy dt.
—2 —2 2 ~ 2 2 2 ~ ~'r'm'

2 2h'Erm
(l'r+l) (1'r+l)' (l'+r+l)' (5.17)

VI. SUMMARY AND CONCLUSIONS

We have considered the field equations for ra-
diating and slowly rotating fluid spheres. We saw

1

that the field equations reduce to the regular un-
perturbed equations for P, p, and o, plus two ad-
ditional equations to be solved for Q(r, f), which
represents the dragging of inertial frames. Equa-
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hm l'r sin 87'"dr d d6 (6.1)

tion (2.13) determines the time dependence of Q
as Q = G(r)e''0', while C(r) comes from Eq. (2.12).
We have considered Vaidya's solutions III, IV,
and IX and presented three analytic solutions for
Q(r, f) corresponding to uniform rotation. The
first two of these solutions could be physically
reasonable throughout the star, while the third
could either be used to represent portions of stars
or could be use in cosmology with the inclusion
of the co ological constant. We have also con-
sidered Eq. (2.12) for differential rotation and pre-
sented several solutions. These could be used for
all the three solutions given- by Vaidya. Next we
considered nonradiating and slowly rotating fluid
spheres in general relativity and presented a solu-
tion for the polytropelike equation of state. This
solution is given in terms of Bessel functions and
could be used to represent portions of stars. We
have also reconsider ed the solution for P = np
equation of state and gave the general solution for
Q(r, t) so that it has the proper number of integra-
tion constants.

Once Q(r, t) is found we can evaluate the rotation-
al energy and the angular momentum J by using

with m(t)=g(f) and Eq. (2.5), we obtainJ'=, [(P+p+a)(o —2PQ] dr d8 dP,
m'hl r' Sin 6

(6.2)

Ero& = -2so.
Erot

(6.4)

For a typical pulsar E„t-10"erg/sec, also taking
10 yr as a typical age for pulsars"" we find
E„,-10"erg. This gives s,- -10 "sec '.
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(6.3)

Equation (6.3) allows us to roughly estimate the
value of the parameter s, that appears in m(f)
= e 'o'. Notice that the ratio of the luminosity due
to the loss of rotational energy to the total rota-
tional energy is
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