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Charged spheres in general relativity
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The coupled Einstein-Maxwell field equations are solved by quadratures for spherically symmetric static systems

containing charge. In particular, we show how interior metrics can be derived which reduce to classical solutions for
neutral distributions of matter when the charge becomes vanishingly small. A number of simple analytic solutions

are expressed in order to indicate how charge can change the overall character of these objects. The stability of
charged systems is considered. We find the stability of the Schwarzschild interior solution is enhanced by the

inclusion of charge, and that an, increase in the charge further reduces the critical radius for which instability sets in.
The application of this analysis to the solution of Pant and Sah indicates their model is unstable'.

I. INTRODUCTION

A number of papers have recently appeared deal-
ing with both equilibrium solutions for charged
fluid spheres and the stability criteria for such
models. Bonner' ' showed it was possible to have
equilibrium solutions with a vanishing pressure.
He maintained that if a cloud of hydrogen gas were
to have a charge equivalent to the loss of one elec-
tron in 10", the Coulombic repulsion by itself
could hold the cloud in equilibrium without the aid
of an isotropic particle pressure. Glazer, 4 by an
analysis of the pulsation equation for small oscil-
lations of a charged fluid sphere, showed that
Bonner's solution is unstable to such radial pulsa-
tions.

A model such as this is of course also unstable
to a change in the net charge, as was pointed out
by Bonner himself. ' If the charge is increased,
the cloud must expand due to an increase in the
Coulombic repulsion, and a reduction in the net
charge reduces the interparticle repulsion so that
it can no longer prevent collapse of the cloud. The
collapse of such spheres of charged dust was in-
vestigated by Novikov' and Bardeen. '

Glazer' presented an approximate solution re-
presenting a charged interior for which he inves-
tigated the properties with respect to small radial
pulsations. His results indicate that charge con-
tained in the interior may increase the stability
of the solution.

The problem of the stability of a homogeneous
distribution of matter containing a net surface
charge was considered by Stettner. ' He showed
that a fluid sphere of uniform density with a mod-
est surface charge is more stable than the same
system without charge. His solution is also stable
towards an increase in the net surface charge.

In this paper we present a solution by quadratures
for arbitrary charge and mass distributions in the
form of static spheres, and show how charged

II. FIELD EQUATIONS

A useful coordinate system for metrics with
spherical symmetry is that of Schwarzschild. In
these coordinates the line element can be written

ds' = y'(r) (c'dt)' —r '(r)dr' —y'dQ',

where

d02 = d|II)2 + sjn2g d (2.1')

In terms of the contracted Riemann tensor R"„and
Ricci scalar R, the combined Einstein-Maxwell
equations can be expressed as

R~ ——5"R = -8m' —T„".~4

The energy-momentum tensor 7„" can be decom-
posed into a part pertaining to the matter contribu-
tion M„" and a part expressing the contribution from
the electromagnetic field:

= M"+E" (2.3)

analogs to neutral solutions can be derived. We
express a number of simple solutions to indicate
how the incorporation of charge can alter the over-
all character of the solution. Two of these are
considered in detail.

The stability of charged metrics is considered.
We express Glazer's pulsation equation in a more
convenient form and obtain the variational base
compatible with Chandrasekhar's analysis for
uncharged spheres"" and apply it to one of the
solutions presented here. We show the inclusion
of charge increases the stability of )his model.
The pulsation equation in differential form is ap-
plied to the charged solution of Pant and Sah." We
find satisfaction of the boundary condition on the
Lagrangian displacement at the origin is incom-
patible with densities and pressures that are every-
wher e positive definite.

2049 'f981 The American Physical Society



2050 PATRICK G. %HITMAN AND RICHARD C. BURCH

If the interior can be described by' an isotropic
pressure and mass-energy density &, then I„"
takes the form

Equation (2.10d) is the only nontrivial Bianchi
identity for this system of equations.

M„"= (P+E)u~" -P6"„, (2.4)
III. SOLUTION BY QUADRATURES

where

u'= (y ', 0, 0, 0) (2.4')

E„"= (F—„~—F" —
6,6"„F 2F 2).

7r

The electromagnetic field tensor E„„satisfies
Maxwell's equations

(2.5)

is the four-velocity of the fluid element at the point
x within the interior.

The electromagnetic contribution to the stress-
energy tensor can be written as

I

Equation (2.10c) can be immediately integrated.
Letting xp refer to any point wuhan the sphere up

to and including the boundary defined by xp 1 we
find

G xp

r(x, ) =I -4'' —,x, '" (e+k)x'"dx.
0

(3.1)

As in the uncharged case, the function 7 depends
only on the fluid content lying below the coordinate
value x=x,.

Forming the difference between Eqs. (2.10a)
and (2.10b), we obtain an expression which does
not depend on I' or E. After simplification the re-
sulting differential equation becomes

gPv JP
c

(2.6) d y g jd7 dy ~
dT' G—,+ 2r ' — +(—4x—'r) ' 1+x——162 —,R'kx

~
y = 0 .

dx2 ' dxdx dx c' )
where J" is the current density. If the object is
both static and spherically symmetric, Eq. (2.6)
reduces to

(r2yr-2/2Fol) 4+pr2 (2.7)

The charge density p defined in Eq. (2.7) is related
to the proper charge density p* by

(3.2)

hen k =0, Eq. (3.2) reduces to the usual equation
expressirig pressure isotropy discussed by Matese

. and Whitman. " In like fashion we consider two
transformations on Eq. (3.2) which will a,liow a
solution by quadratur es.

We define a pair of functions g and 6tk such that

pg p~ i/2 (2.8) y(x) =g'"0, (3 3)

Equation (2.7) can be immediately integrated. If
we define

where g is considered arbitrary, and introduce
this definition into Eq. (3.2), simplifying results in

rp

Q(r, ) = 4m pr'dr,
0

then Eq. (2.7) implies that

(2.9a) +p(x) —+q(x)6tk = 0,d'P d(f)

where

(3.4)

F„F"= Q'(r)r '= --8mk(r) . (2.9b)

82 —4(P —k)R'x= v'jl +4xy ' ——1,, dy
c4 I, dxG, xdy, d'y

8w —,(P + k)R'x = 4&x y
'—+ xy '

c dx dx

(2.10a)

We see that Eq. (2.9a) expresses the total charge
(in esu) contained in the interior below the coordin-
ate point r =xp.

In terms of the quantities defined above, the field
equations can be expressed as a function of the co-
ordinate x= (r/R)2 as

p(x) =
2
—ln )g'r

~

d (3.4a)

+6'l k —16~2' —,kx) ., G
c' (3.4b)

The prime refers to differentiation with respect
to the coordinate x. If we now make the change of
independent variable

and the function q(x) is defined through the relation

4x'rg'q = (g'+ xgg')&' —[g' x(g')' —2xgg" ]&

dr I', dy.x—~1+2xy '—
dx ~G, d7'

82 —,(e +k)R2x = 1 —r —2x—,
c dx

(2.10b)

(2.10c)

s(x) = j) lq(x) I'"dx,

Equation (3.4} becomes

d26t
, +sgn(q)P+= —In ig'rq

i
=0,

(3.5)

(3.6)

(2.10d)x (P —k) = -x(P+&)y—' +2k. —d dy
dx dx where
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sgn(q) =q/!q! . (3.6')

Since g is an arbitrary function, there is no loss
of generality if we further require g to satisfy the
integrability condition on Eq. (3.6):

g 2' = ——'g —= constant.

Introducing this into Eq. (3.6) we find

!!
«4 slnz+B cosg p(0

p =
~

A. sinhe+B coshe, p& 0,

(l g '& '~'dx+B P=0
J

(3.7)

where

(3.8)

3G
r(x) = -e ~ D + Px+g' x ' —16vR' —,k

0 C

«(«'+«««') 'e'«I,
where

(3.9)

& = —
J

(g'+x'g" —2x'gg")x '(g'+xgg') 'dx

=»l(«+««'(«'«'I+f «« («e«(( V"«''(3.9')

We observe that for every integrable choice of
functions g(x) and k(x) Eq. (3.9) yieMs r(x) Equa-.
tion (3.8) gives e(x) and P(z) which in turn gives
us p(x). The pressure and density distributions
throughout the interior can then be obtained by
virtue of Eq. (2.10).

IV. CHARGED ANALOGS

An examination of Eq. (3.9) indicates that if
k=Q, ~ must satisfy

(
e —= « = -««(g+ «e('( 'e e(«T+ (Tf (( 'ee«

Equation (3.7) is viewed as a differential equation
for the function r(x) in terms of the as yet unspeci-
fied generator g(x). Since this is a first-order lin-
ear equation, a quadratures solution is easily ob-
tained. We find

the associated y from Eqs. (3.8) and (3.3) represent
static neutral, solutions. Hence if we take

g= g-=P(x) (4.2)

(4.3)

We can use Eq. (4.3) to obtain charged interiors
which reduce to specific uncharged solutions. We
introduce into Eq. (4.3) the functions Z and i from
a classical neutral model and obtain the resultant
i(x, k). Further specifications as to how the charge
is distributed within the sphere lead to a specific
i (x) Int.roducing this along with the generator g
into Eq. (3.8) will give us p(x) by virtue of Eq.
(3 3)

The structure of Eq. (4.1), however, indicates
that even in the limit of vanishing charge, the re-
sulting solution r(x, 0) can be considerably more
general than the original. " The input classical
solution will, however, be contained in the results.

V. EXAMPLE SOLUTIONS

We note that the incorporation of charge has in-
'troduced a degree of arbitrariness, and in order
to obtain specific solutions, we must specify in
some manner how the chagge is to be distributed
throughout the interior. The simplest choice is
to assume it to be uniform. If we restrict ourselves
in this fashion, Eq. (2.9) yields

c'A '
16mGA

(5.1)

With this assumption we consider a number of
solutions using the analysis of the previous section.

A. Flat space

An examination of Eq. (4.3) will show that

(5.2)

results in simple integrals. Performing the in-
dicated operations l'eads to

as the solution generator, Eq. (3.9) can be decom-
posed in terms of Eq. (4.1). We find

i -7'= -xg(g+xg') 'e (D -D)+(p 0)-Jl g e~dx

2G—16''— x 'e~k dx
C

+ x 'e&dx (4.1) 7'(x) = 1 —Dx+ (k,' —P)x'. (5.3)

where

f = f «(r"(e(+«e(')'«. (4.1a)

We have used the integration by parts expressed by
Eq. (3.9'). The bar above the functions in Eq. (4.1)
indicates uncharged quantities. Obviously w and

A glance at Eq. (3.8) indicates that six different
solutions can be derived from this expression. We
now consider these.

Case (i): D = 0. If we take the matter content of
the space to be zero and consider a fluid of zero
mass and nonvanishing charge, Eq. (2.10c) indi-
cates that D=0. From Eqs. (5.1), (5.3), and
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(2.10c), we find

g ilk 2
T5 0 (5.4)

y(x) =A sinh(z) +B cosh(z), (5.5)

yields the charged analog to flat space. Upon in-
troducing this information into Eqs. (3.8) and (3.3)
we find

2 (x) = (I + ax) (I + 2ax) '

&& [I -Dx+a 'gx(1+ax) '+k, 'x']. (5.11)

This particular solution is'a charged analog for
the Tolman type-IV solution. ' Reasonable forms
for y(x) can be obtained under the conditions

where

g —gl/2 stn-1(gl/2x) (5.5a)

D=k 0 (5.12)

(5.13)

This solution corresponds to the classical Poin-
card-Lorentz fluid particle. "

Case (ii): g=k, '. If this condition holds we find

x(x)- D-lk rl/2 (5.6)

and y(z) is a hyperbolic function with this argu-
ment.

Case (iii): g&0. When this inequality holds, the
function x(x) takes the form

z(x)=(k' —g) ' 'in~2(k ' g)' T'"

+2(k,' —g)x —D
i
. (5.7)

Equation (3.8) then requires y(x) to involve trigo-
nometric functions with a logarithmic argument.

Case (iv): 0&g&ko'. For the parameter g in this
range, the solution is nontranscendental. We find

y(x) =Au "+Bu",
where

I3=0, D=ko'. (5.14)

C. Charged Adler solution

.A solution which is a charged analog to Adler's"
solution can also be obtained. If we let

y= 1+ax, T=1 -Dx(1+Sax) '/' (5.15)

a solution can be derived provided we choose g= 0
in Eq. (4.3). We find

2 (x) = I -Dx(1+3ax) ' '+ qk, 'x(2+ax) . (5.16a)

A simple form for y(x) can be obtained if we re-
quire A =0 in Eq. (3.8). For this case

These three charged solutions have the same
mathematical structure as the generalized Tolman
type-IV solutions of Matese and Whitman. " They
differ only in the interpretation of the solution
parameters and equations of state obtainable from
Eq. (2.10).

~' = rg(ko' g)- y(x) =B(1+ax). (5.16b)

2(k 2 g)1/2rl/2+ 2(k 2 g)x D (5.8)

Case (v): g&k,2. We now find y(x) is in the form
of a hyperbolic function of an inverse sine. The
Poincare-Lorentz fluid is contained in this solution

as a limiting case.
Case (vi): g =0. The sixth solution occurs when

the parameter g vanishes. In this case y(x) takes
the form

All of the above solutions for charged systems
are nonsingular and well behaved within some
range of various parameters. As a final example
of charged analog solutions we consider a specific
singular solution.

D. A singular solution

If we let y and 7' be defined by

y =x"/2(I+ax' "),
y(x)=k, 1AIn~2k, r-'/2+2k, 2x-D~+B. (5.9) (5.17)

This is a particularly interesting solution. We will
show that in the limit of vanishing charge, it re-
duces to the SchwarzschiM interior solution.

where

-2m/( m+2)
-1 D m/(n+ &~1+1& 1 n

1+n "

B. Tolman type-IV solution

If we let

y
—(1 +gx)1/2

r = (I+ax)(l —cx)(1+2ax) ', (5.10)

we again find Eq. (4.3) can be integrated. The re-
sult is

m =1+2n —n',

we find that Eq. (4.3) ca,n be integrated with the
restriction g= 0. To be compatible with the singu-
lar nature of this solution, we will consider a
charge density which is inverse square in the co-
ordinate r Inspection o.f Eq. (2.9) shows the re-
sulting k is inversely proportional to x. Hence for
g =0, k~ x ' we find
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r=(1 —k02)m '

3 ~ -2m /( m+2)

D m/(f1+1) 1+
1 +Pl

(5.18)

of Schwarzschild was more adiabatically stable
with the inclusion of charge confined to its surface.

From Eq. (3.8), we see y(x) is again complicated
unless we take& =0. For this choice

y=Bx"~'(1+ax' "). (5.18')

This solution reduces to one by Whitman" in the
limit of vanishing charge, and to the charged solu-
tion of Pant and Sah" for D=a=0.

E. Surface charge

In conclusion we consider conducting spheres for
which the charge resides entirely on the surface.
An examination of Eq. (3.1}shows that the function
r(x) involves only the content of the sphere below
the coordinate point x = go - 1. This being the case,
&(x) is completely unaltered at every interior point
if the charge density is of the form

p(x) = p &(1 —x) . (5.19)

lt then follows that Eq. (3.8) also remains unchanged
at every interior point of the fluid. The only dif-
ference between systems with surface charge and
their neutral counterparts then resides in the eval-
uation of the constants of integration at the bound-
ary where the charge discontinuity resides. This
however is an effect of some consequence. Stet-
tner' showed that the homogeneous interior solution

I

VI. STABILITY

-&~~2y —
yacc yPr ' —(r y ()d

dr d

(6.1)

The function y in Eq. (6.1) is the "ratio of specific
Equation (6.1) is subject to the boundary

conditions

( =0 at r=0, (6.1a)

—(r'y 't')2 -i
dt'

i g

Multiplying through by rye '
$ and integrating

over all x leads to the desired result. We find

(6.11)

Following a line of reasoning similar to that of
Chandrasekhar"" for a neutral system undergoing

small radial pulsations, we can obtain a variational

base to test the adiabatic stability for charged in-

teriors. The pulsation equation for the character-
istic eigenfrequencies o associated with the La-
grangian displacement g(r} is

(T T 'y ' (P + e )$ = 4r ' —g + 8v —,(P + e )(P + k }rdP -1

C

r ' 'y '(P+e)r'5'dr=4 y& ' 'r —('dr+ c r»'y(p+e)(p+k)p$'dr
0 0 dg

y(P+s)~ y
' —

(
r'$'dr+ y'r '~'y P-r—( 2y-~g) (6.2)

& = 1 -Dx+ A'0'x',

y(x) = y, +k, 'A ln
~
(D —2k 'x -2k r'~') (6.3a)

where

x (D —2k ' -2k y, ) 'i,

(6.3b)

What is usually done is to determine the condi-
tions on y for which g is positive for a given dis-
placement g(r) satisfying the above boundary con-
ditions. It is assumed the fluid moves along an
adiabat and y is taken to be constant throughout
the sphere.

As a particular application of Eq. (6.2) we con-
sider the stability of the solution expressed by
Eqs. (5.9) and (5.3) with P =0. The solution can be
written as

t

The boundary conditions requir e

D =——R e A = 8 (2D —Sk ')8w G

3 c

(1 D +k 2)l/2 (6.3c)

The density and pressure within the interior are
given by

e =&O-11k(x),
4

P =3k(x) -~e,+, ~'~'y ',0 2' aG

(6.Sd)

(6.Se)

where, as before, x= (r/R)'. The constants in
Eq. (6.3}were determined so that y, 7', and P are
continuous across the boundary.

In order to simplify the calculations, we consider
these solutions in the limit kp«1. Introducing
this condition into Eq. (6.3) leads to the approxi-
mate solutions valid for small charge:
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r =I -Dz y=2[(3+a)y. -(1+a)r"'],
where

1+a =—(1 —2k,y+ ') '= 1+2k,y+ '.

(6.4)

(6.4a)

We note in passing that Eq. (6.4) is precisely the
uniform density solution in the limit kp 0.

Introducing these expressions into Eq. (6.2) re-
sults in

ZS ZS
R'g'D '

y 'z'[(3+a)y, —ay]dz =
& y 'z'[-2ay'+2(3+a)y y +27ay& y+ay

0 0

—(3+a)y, —27(1+a)y, ']dz
Z S

+ Iy y '(y -y,)z'[27(1+a)y,' —6(3+5a)y, y+(3+7a)y']dz.
. 0

(6.5)

Inthe above equation, y'=—7 =1 —Dg and z =D' 'zR '.
The subscript s again refers to surface values.

We observe that Eq. (6.5) contains only elemen-
tary functions and can be integrated exactly. The
result however, is transcendental in D. We choose
instead to consider Eq. (6.5) in the small mass
limit. In this limit we find

R'&'D ' = ~2[Sy —4+ ay —m2'. '(19+ ~ a)]. (6.6)

Instability will arise when o'& 0. Requiring o'
to be non-negative or zero we find for y close to
4

u(r) =r'y (6.12)

and introduce this into Eq. (6.1), we find after
some simplification

r'u'+r[3ry 'y' —,'rr 'r' ——2+r(ln ~yP ~)']u'

We now show the singular solution given by Eq.
(5.18) is unstable near the origin. We do this by
expressing the pulsation equation for this model
and show that the associated boundary conditions
are incompatible with non-negative pressures and
densities. If we define

y —3+ 9a& 1+8 (1+sa) y (6.7)
c

+ -4rP (P+z) +(r'Y y )
V

or, to this level of approximation

I (GM/c')(1+ ga)
(y —g) + -,'a (6 8)

If we define R, to be the critical radius for insta-
bility in the charged case and R, the corresponding
quantity for a neutral sphere, then

4

R,/R, =,. 4,
'

~ (1+pa)(l.
()' —g) + g&

(6.9)

We observe the critical radius before adiabatic
instability sets in is not only smaller than for a
neutral sphere, but an increase in the charge re-
sults in its further reductjon. Written in terms
of M and Q, the stability criteria can be expressed
as

"(GM/c') [1 + (8/9G)'I'Q/M]
(y ——,) + (32/81G)' 'Q/M

(6.10)

19GM" 283 Q
'

(„
21 c' 114G M

(6.11)

expressed in our notation. We note a surface
charge of the same magnitude does not affect sta-
bility until the next higher order of approximation.

If, instead of being uniformly distributed through-
out the interior, the same charge were to reside
on the surface of the sphere of mass I, the sta-
bility criteria would be'

8'
4 (P+k)r i u=0. (6.13)

The quantity v,' in (6.13) is the square of the sound
speed. The ratio of specific heats j is expressible
as

yP= (P+z)—-=(P+z)~ ~dP t'v

d& IC
(6.14)

Near the origin, the solution in question takes
the limiting form"

P =
G~ [D(1+n)' —1],

c4
k =1 G+ [1+D(n' —2n —1)].

(6.15)

which is a Cauchy equation for the function u(r).
The indicial equation requires

8 '/
2m = 5 —Sn + (5 —Sn)' — (n —1)' . (6.17)

Dn

By virtue of the relation between t' and u, the
boundary condition at r = 0 for Eq. (6.16) is

Introducing these expressions into Eq. (6.13) and

simplifying we find

r'u" —(4 —Sn)u'+ [1 -D(1 -n)']u =0, (6.16)2
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(6.18)

Introducing this condition into (6.17) leads to

D '~ n' -3n2+n+ j.. (6.19)

Positivity of the pressure requires that

(6.20)

A comparison of the two inequalities indicates they
cannot be simultaneously satisfied unless n&0.
This is incompatible with both the pressure and
density being positive definite, as can be seen
from Eq. (6.15). The approximate solution dis-
cussed here is the charged solution of Pant and
Bah"

VII. CONCLUSION

We presented a solution by quadratures for
charged systems and gave a number of new solu-
tions to the coupled Einstein-Maxwell equations.
Most of these interiors reduce to known solutions
when appropriate limits are taken.

Six solutions were derived based on the r(x) de-
fined by Eq. (5.3). Of these case (i) is a general-
ization of the Poincard-Lorentz fluid, "s"gpss
(v) reduces to a neutral solution presented by
Baylin, "case (iii) becomes a Tolman type-VII solu-

tion in the limit of vanishing charge, '4 and case
(vi) tends to the uniform density solution of
Schwarzschild in this limit. The solutions defined

by case (ii) and case (iv) do not reduce to known

solutions. We also presented three charged me-
trics based on the Tolman type-IV solution which
reduce to interiors given by Matese and Whitman"
for vanishing charge —a solution which is an analog
to the Adler solution"; and we presented a metric
which contains the charged solution of Pant and
Sah" as a special case and reduces to a solution
by Whitman" in the neutral limit. Our analysis
indicates that there is no change in the mathema-
tical structure of solutions if the charge is main-
tained at the boundary.

We considered the stability of systems contain-
ing an interior charge, and applied our analysis
to two of the solutions presented here. We found

the charged analog to the uniform-density solution
was more stable then the neutral interior and fur-
ther that stability was enhanced by an increase in
the charge. The singular solution which is a
generalization of that given by Pant and Sah was
found to be unstable. Though an interior charge
seems to have a stabilizing effect, even a singular
charge distribution appears to be insufficient to
stabilize a singular neutral solution.
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