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Estimate of eikonal scattering amplitudes via multiplicity distributions
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Methods for the use of measured high-energy multiplicities as input to elastic-scattering analyses are suggested, in

order to test the validity of a general, multiperipheral-type formula which correlates high-energy multiplicity and

scattering information. The discussion is based on the assumption of simple, theoretically based ansatzes for the

absorptive eikonal function, used as a vehicle for the input of multiplicity information, and also on the use of
multiplicity data to determine, in part, the appropriate form of the ansatz adopted.

Six years ago, a method was described for the
construction of particle multiplicities resulting
from high-energy hadronic collisions, when the
corresponding elastic amplitude is specified in
eikonal approximation. ' The main prop of that
analysis, Eq. (1) below, was derived' for a pair
of Abelian field theories, and rested on two essent-
ial assumptions: (A) The phase space of each
emitted particle increases with rapidity y= 1ns, .

where s is the total c.m. (energy)'. (B) The most
important s dependence of each inelastic ~ampli-
tude ~' is due to all possible rescattering graphs
(evaluated in eikonal approximation) of each ampli-
tude, together with the phase-space factors of (A).
These assumptions are general enough to encom-
pass a wide class of models, including all "tower
graphs" of arbitrary complexity; and they lead to
the formula
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where

c'„($)=Q ("c„, o„(1)=a„,—a„

and p(s, b) is the (assumed) purely absorptive
eikonal function. The o„represent topological
cross sections'for the production of n identical
bosons in the reaction p, + p, -p,'+ p,'+Q.»

Following recent work of several groups, 3 one
expects the eikonal representation to remain a
valid and useful formalism when the underlying
theory is non-Abelian quantum chromodynamics
(QCD). Binding effects, turning the initial and
final quark-antiquark lines into hadrons of zero
color, are expected to involve relatively low-energy
phenomena, which will not generate significant
energy dependence to high-energy reactions beyond
that given by the eikonal estimates for the scat-
tering and production of pairs and/or triplets of
color-singlet quark-antiquark lines. Hence one
expects a more complete theory to reproduce the

the essential impact-parameter forms of the
Abelian theories, modulo some isotopic complica-
tions;4 and in particular, one may imagine that
Eq. (1) remains approximately valid even when
the underlying field theory is QCD. Some four
years after the last compilation of multiplicity
data, ' and hopefully not too soon before multiplicity
experiments are contemplated at CEHN ISH ener-
gies, it may be worthwhile to comment on the
relation between particle multiplicities and the
elastic eikonal, as expressed by Eq. (1). The
purpose of this paper is to point to the inverse
process of Bef. 1, as a way of empirically cal-
culating the eikonal function in terms of the energy
dependence of three multiplicity moments and the
differential cross section, thereby providing ex-
perimental tests of the general multiperipheral
analysis (GMA) which underlies the construction
of Eq. (1).

Of course, one may simply Fourier transform
the square root of the measured differential cross
section de„/dt (s, t), —f = q', to obtain estimates
of p(s, b),

dv
dt 4~

a procedure that has been described by many
authors, for example Miettinen, ' who included a
real as well as an imaginary part of T. One is
left with a set of curves for p, typically run at a
few values of energy over a range of impact para-
meters. The method described here contains the
additional input information of energy-dependent
multiplicities, which with certain reservations
permits the prediction of pat one energy if it is
known at another. By comparison with the corres-
ponding p values measured from the differential
cross section, one can then test the validity of the
GMA assumptions (A) and (B) above.

The information obtained from multiplicities can
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be used in essentially two different ways: (I) to
suggest the form of impact parameter b and rapidity
y = ln(s/s, ) dependence of p(s, 5) = L-(y, 5), expect-
ing on the basis of many previous theoretical an-
alyses that the eikonal can be written in the form
L(y, b)= U(y) W(b'f(y)), where U, f, and Ware
functions to be determined; and (11) having selected
the form of f(y), to make an independent deter-
mination of U(y). Here s, denotes a constant of
dimension GeV, typically chosen near the lower
end of the measured CM (energy)' values; for
simplicity it is suppressed below, where every
function of s is understood to be given in terms of
the dimensionless ratio s/s, . In both cases, an
initial specification of p for all b at fixed y, is
needed, and the multiplicity data then generates
the variable y dependence. The aim of the analysis
is to provide functions of U and/or fwhich can be
compared with those given by scattering data at
different energies.

It is simplest to begin by first treating case (II),
assuming prior knowledge of—or theoretical pre-
judices for —f(y), using the measured L at some

y, to determine W, and then applyirig multiplicity
data to fix the form of U(y). Perhaps the simplest
possible situation occurs when the ansatz L(y, b) =

U(y) W(b'), f= 1, is chos-en, as suggested by the
old Cheng-%u analysis. ' This choice of ansatz can
be experimentally tested by determining L(y, 5) at
two. different values of y, and of b, so that the
quantity L(y, 5,)/L(y, b,) is reasonably independent
of y, while L(y„b)/L(y„b) is independent of b

If this test is not successful, then a better ansatz
is needed, as described below. Since only the
imaginary part of the scattering amplitude is
considered in this discussion, "successfgl" would
presumably mean accuracy to within 10%.

From Eq. (1) and the definitions

0 Q&= " -=R(y)
s~ (h)

ia

For any x, (2) can be solved by quadratures,

U(y) = U(y, )+ —ln 1+ 2~U (y,)
1

f ""dx
x dy' exp) —q(~)

~x ] (3)

in terms of two independent integration constants
U(y, ) and U'(y, ), defined at some specified y, . We
expect that U(y) & U(y, ), for y )y, ; but in general,
both y, and r are arbitrary. In fact, both z and
U (y, ) will be fixed in terms of initial scattering
data, and multiplicity moments, at y, .

To do this, one observes from the definitions of
(n& and r that

=1 fd'I W'
2«'(yo) = —(ii(yo) & oin(yo) (fd25 t W)2 I

1o
(4)

an expression independent of the normalization of
W(b'). Reference to the scattering data, which in
principle generates L(y, b) from the differential
cross section, then permits the replacement of
(4) by

1 r
—= U(y) d'bL(y, b) d b'L'(y, b') (6)

The most useful form results when (6} is evaluated
at y„ for the substitution of (5) and (6) into (3)
yields

U(y) = U(y. )

ry
x 1+ u, ln 1+ vp

0 yo
dy' exp — x

(I)

where u„v„are constants determined from data
at yo,

2«'(y. ) = —( (y.& ~„(y.) . , ", , (5)

Similarly, the constant z may be evaluated directly
from the scattering data, at any value of y,

u, = — ' d'I L(y„5) gb i L2(y 5 r)
'there follows the differential equation

U" + 2r U' = —Q(y) U',2 1

where

(2)

@b~ gr b~2

In the breakup of L into the product U(y) W(b')
there is clearly the freedom to choose the overall
normalization of either U or W, and the normli-
zation of the latter is determined, in part, by z.

and v, =2«'(yo) of (5). Hence, U(y) is determined,
to within the constant U(yo}, in terms of scattering
and multiplicity data. The function W(b') is then
given, to within the same normalization constant
U(y, ), by the experimentally measured L(y„b):
W(b') = (L„yb) /(Uy).

This analysis requires the measurement of
L(y, b) at just one value of rapidity y„and uses
the multiplicity data to interpolate to large values
of y. Other forms are possible, but they depend
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on knowing I (y, b), or its impact-parameter in-
tegrals, as a function of y. For example, evalu-
ating (6) at variable y generates

U(y) = U(y.)

xW(b'f(y)) will be adopted, leaving until the very
end the question of testing the validity of that
ansatz. It will be convenient to set U(y) =f(y)Z(y),
and to rescale the impact-parameter dependence
b f c', so that

~1-
x 1-u y ln I+ up dy'exp — x )

Lo Vp »»Z(y) = d b L(y, b), (12)

with

1
N(y)=

2 I
d'bL(y, b) d'b'I '(y, b') .

(6)
where o. denotes the constant »»=- fd'c W(c). Dif-
ferentiating with respect to y, and substituting into
Eq. (9), Eq. (12) canbe rewritten as

"' dy'
o.Z(y) = nZ, + — —,Il(y'),

4
Vp

A somewhat simpler, first-order formalism is
available if one is willing to specify the rapidity
dependence of o„as well as that of (n), rather
than the y dependence of (n'. ) and (n), . as above.
From the relation

2y „d'b —I.(y, b) = (n) o„, (9)

it easily follows that

P„—,R(y')
U(y)=U(y, ) 1+-

f
—,y (10)

and W(b/c, + c,y, ) = I (yo, b)/W(yo). This choice
f(y) = (c,+ c,y) ', "based on familiar theoretical
forms, may or may not agree with .the scattering
data to within 10% as the rapidity values grow;
but if constants c, 2 can be found which do provide
such agreement, Eq. (11)will then generate U(y)/
f(y), in terms of the constant U(yo)/f(yo) and the
multiplicity data over the range from yp to

Turning to the more complicated aspect of de-
termining f as well as U from the multiplicity
data, the rather general ansatz I (y, b) = U(y)

Within the context of this simplest choice for I,
Eqs. (10)and (7) are equivalent, and this equivalence
provides a consistency check for the validity of the
ansatz and/or the validity of Eq. (1). It should
be noted that, independently of any choice of ansatz,
Eq. (9) provides a direct test of the GMA multi-
plicities, within the eikonal context.

A first-order formalism based on Eq. (9) pro-
vides perhaps the simplest way of incorporating
multiplicity information if a more complicated
ansatz for p is necessary. For example, if the
choice L(y, b) = U(y) W(b'/c, + c,y) is made, with
specified constants c», the same form of analysis
that leads to Eq. (10) will generate

d 1

C&+ C2y yo,

(13)

(
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~
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where P and y are the independent constants

(14)

2

P= J d'c W'(c'), y= J' d'c ——W(c')
~

2 ec

P Zl Q
A(y) = ——,C(y) = —(2y n'Z') ' (c»Z'Q —o.yZ").yg' y

In this relatively complicated equation, the func-
tions A(y} and C(y) are known in terms of nZ and

Q, while the constants appearing in them are also
measurable quantities at some yp,

b Q 2

y 2 eh
fd'b ——L(y„b)

P fd'b'L'(y. , b')

[fd 2b I.(y„b)]'

fd'b'
2 b, I (yo, b')

~1

with the exception of the parameter f, =f(y, ) enter-

where Z, = Z(yo). [It is the function»»Z(y) which
corresponds, in this more general situation, to
Eqs. (10) and (11}.j If y, is taken to be one of the
rapidities at which L(y, b} has been constructed
from the scattering data, then fd'bl (y„b) speci-
fies aZp; as in the case above, the combination
nZ(y) = eU(y)/f(y) is completely specified by the
differential cross section at yp and the multiplicity
data between yp and y.

In order to find an independent equation which
will determine f (rather than U/f, as above), it is
necessary to consider higher-multiplicity moments,
obtained by calculating higher derivatives of o, (t)
with respect to $. The complexity rapidly
becomes formidable, and only the least compli-
cated equation, derived from d'o„($)/d$' ~» „ is
illustrated here by the relation
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ing into n'/y. Since C(y) is then proportional to
f„ it follows that Eq. (14) can only determine the
ratio f/f„' there will be (at least) one constant,
call it fo, not fixed by this nonlinear analysis.

The actual solution of Eq. (14) is by no means
trivial (to this author), and an approximate de-
velopment will surely be needed. But this depends
critically on the nature of the input functions
A(y), C(y), and on the moment properties of W,
and cannot be specified in advance. There may
well be special circumstances for which a simple
quadrature can be effected; e.g. , upon the variable
change

y

f(S)=g(3) exp --
'~~ d3'A(y')

2 4

there results the corresponding equation for g,

I

—I+ I

—-- IA'= exp + — yd'A( y}
fg "l'

i.g & iP 4& g'(S)

(16)

(18)

and a solution can be written (or developed) for
(or near) the special case y/P = 4. Whether or not
this condition is even approximately satisfied can
be determined, at some y„ from the first of Eqs.
(15). Alternately, the vanishing of C(y), or the
approximate constancy of A(y), would be sufficient
to generate a solution. Once f is known, to within
the constant factor f„ the function U can be ex-
pressed as

U(y) =I—' ( " (1I)

and is given to within the constant (f,/n). At any

y, say y„W can then be inferred from the scatter-
ing data,

~b'f}-(if. & («.)
but in order to specify W(x}, a choice must be
made for f, as well as the parameter n/fo.

Knowledge of L(y, b) at two nearby values of
rapidity. would permit a differential equation to be
constructed for W(x), in terms of the known de-
pendence of f/f, and o.Z; but, again, one will find
W(x) dependent upon two constants which must be
specified independently. Of course, an alternate
way of extracting the b dependence of W is to cal-
culate the ratio W(b'f)/W(b, 'f), where b, denotes
some fixed-impact parameter, so that

W(b'f) = W(b, 'f) L(y, b)/L(y bo) .
At a fixed y, say y„one then has an expression
for W(b'f, ) given in terms of the constant W(b, 'fo),
which again means that W(x} is known only if the
two constants f, and W(fI,'f )0are specified.

If the scattering data is given as a continuous
function of rapidity, then an independent way of
approaching the problem is to write

~
lln-I jd2b Ln(y b) 1/n-1

f~X) ~P&l [aZ(y)]" (20)

with P„= Jd'C W"(C') and n constant. For each
value of n, the f(y} of Eq. (20) is given as a con-
stant multiplying an experimentally determined
function of rapidity; and the validity of the general
ansatz L(y, b) = U(y) W(b'f(y)) demands that, to
within a multiplicative, n-. dependent constant, the
functional form of the rapidity dependence must be
independent of n.

In summary, the situation is somewhat compli-
cated when experimental data is used to determine
the functions U(y) and f(y}; but nevertheless, with-
in certain constraints dictated by approximate
solutions to Eq. (16) or to the experimental know-
ledge of the scattering eikonal as a continuous
function of rapidity, comparisons can be made be-
tween measured, differential-cross-section deter-
minations of L(y, b} at different energies, and the
predictions made by the QMA of Eq. (1), which
correlates multiplicity and scattering information
in a very definite way.
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f(y) ( o'Z, il
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with c.Z(y) given by the multiplicity data. To with-
in f„Eq. (19) fixes f(y); but, as expressed by
Eq. (18), W(x) still requires the specification of
two parameters.

ln fact, if L(y, b) is known as a continuous func-
tion of y, as assumed for Eq. (19), then a test of
the ansatz itself is given by the formula
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