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. The small limits of discrepancy between experimental and theoretical values of (g — 2),, are shown to eliminate
any chance of seeing single excited e*’s or u*s in colliding-beam or inelastic electro- or muoproduction
experiments. On the other hand, visible /* tracks in very-high-energy (E > 10'° V) cosmic-ray events are possible
for m; ~1 TeV. The results presuppose a new dynamics, disjoint from QED, underlying the /* excitations.

The close agreement between the experimental
values of the anomalous magnetic moments (a,, a,)
of the electron! and muon,? and the best theoretical
estimates® using “known” dynamics places severe
constraints?’® on the mass scales associated with
any subconstituents of the electron and muon.t As
shown in Refs. 4 and 5, a variety of considerations
lead to the result

| aa;.on-QED | “‘0(7}1,1 /Mconst) ’ (1)

where 6a}°*QED (] =¢, ) is the contribution to a,
=3(g; -2) from a dynamical structure associated
with a constituent of mass M .yps, in the limit agy
-~ 0. The bounds placed on da}°™QED by the com-
bined theoretical and experimental uncertainty in
a, (about 5x107!%) or @, (about 2 x10-%) requires
(in both cases) that

Mconst = 106 Gev .- (2)

In this note we will implement a version of this
analysis, using the Drell-Hearn-Gerasimov (DHG)
sum rule,7 to extract severe bounds on the single
I* production processes e*e- ~I¥] +1I* and p~-1*X,
where I* is an excited state of I associated with
compositeness. The result, in essence, is that
such processes will never be observed, regardless
of the energy of the interaction, as long as m ;*
<10% TeV. We will also comment on the feasibility
of obtaining visible emulsion tracks due to I*’s
produced in high-energy (>10'° eV) cosmic-ray
events.

Consider the matrix element for the photo- or
electroexcitation of a lepton resonance of mass
mx. For the present, we consider only parity-
conserving dipole excitations of a spin-3 reso-
nance, and choose®:

@rledulty =g U(p +q,A>ou,qv( '
N Y5

)u(p,x) ,
(3)

where the mass M is a measure of the strength of
the excitation. (In a composite model, M ! may be
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very small, but it is formally of zero order in a.)
From Eq. (3), the contribution of I* to dg}°™QED,
as obtained through the DHG sum rule, is easily
calculated

2 ©
on- m dv
(éa’l' QED)2 -_——2‘"__2_1‘1 ’/0‘ -—l;— [0‘3 /2(1/) -0y /z(V)],*

=—(m,; /M) (4)

and hence®
| 6a3omQED | (1, /M) . (5)

This is in agreement with the results of Refs. 4
and 5, if M is taken to be the mass of the constitu-
ent. However, we do not demand this identification
of M. The lower limit on M is then fixed by the un-
certainties ina, ,, just as was the limit on M cope

M=10°GeV. " (2"

However, we now have an additional piece of in-
formation since, independent of the interpretation
of M inEq. (2'), the matrix element (3) is now
bounded. Since this matrix element controls the
processes e*e- —1*1 (+17*) and Ip ~1*X, and the
radiative decay rate I*—1y, we can apply our
bound (2’) directly to these processes.

(1) Consider the one-photon annihilation process

ete-—~1¥1 (+171%).
N
ly

It is a straightforward algebraic exercise to evalu-
ate the contribution to R from the /1y final state,
using the matrix element (4) (properly crossed).
It is

OR(11y)=0"onQED /o

e*te--1Tr ' Vete--ptp-
__l(m,* 2( s 3m A +Zm,*4
Ta\M ) \m, 2 s st
Ix
<P (®)
ot

where F(s) is a form factor (|F(s)|<1). It is
clear, in comparing Eqs. (6) and (2’), that
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OR(11y) < 3(m*/10° GeV)?, (M

assuming that F decreases fast enough with s to
tame the kinematic factor. Hence this channel
will not be seen at any s if m] is of the order of
10° TeV or less [since R%EP(I7y)~0.2].10

(2) An analogous exercise shows that

do s f_m*x ' do
Tp/E =) (10" GeV)) T /B

(tp~1X) (8)

and the same conclusions hold as in (1) above.
These results also carry over to the case of spin-
% resonances. Hence, it is fair to conclude that
lower-mass I*’s (in the TeV range) are best sought
in experiments designed for associated production
(e.g.,
e*e-~1*T* or pp-I1*1*+X).
(3) Finally, there is an optimistic aspect follow-

ing from the bound (2’) established on M: From
the matrix element (4) we may calculate the proper

lifetime for the radiative decay of the I* to be 7;x
=4M?%/am;*3. A bit of arithmetic then shows that
if the radiative mode dominates the decay channels
of the I*, then an I* carrying energy E in the labo-
ratory has a mean free path of

5 X -19
Ayap(in mm) ZE[E:; (‘;X)Tei;’)] . (9)
Hence if m;x~1 TeV, cosmic-ray events in the
energy range >10'%V could give rise to visible I*
paths in emulsions.
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8The most general gauge-invariant transition matrix
element in an orthogonal basis is

(T*(p)led |1 (p))=e U(P) Gy (@) (P q) gy — a2 P,]

+5(my+m*)G p(q?) €40 PP a* Y Vs
1

X u(p)
Y5

[J. D. Bjorken and J. D. Walecka, Ann. Phys. (N.Y.)
38, 35 (1966)]. The DHG sum rule places a restric-
tion only on the transverse piece G 5(0). The choice
(3) in the text for the matrix element corresponds to
the symmetric constraint GCoul(q2)=GT(q2). The re-
sults in part (3) of the text (pertaining to the decay I *
—1v) are independent of the assumed form (3), since
this parametrization is completely general for real
photons. The conclusions of parts (1) and (2) depend
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only on G, not being grossly larger than G5. Since
most reasonable models of transition form factors of
composite objects will give (for |g% ~m *? or less)
Gcou =G 1, each being proportional to an overlap inte-
gral of parton wave functions of 7 and 1*, it is simplest
for an order-of-magnitude estimate, to use the form
(3) which (as stated above) enforces Gp, ;=G .

*The minus sign in Eq. (4) is not troublesome, since we
are obtaining the contribution of a single I* to
(6a™°nQED)2 (It is analogous to the negative contribu-
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tion of the P;{(1450) to @nuccon?). A complete theory
would presumably give rise to enough helicity % scat-
tering to correctly give a positive (5a2]°"2P)2, We do,
however, take the absolute contribution in Eq. (4) as
indicative of the magnitude of (5q "°™QED)2,

10The converse of this statement is that if an I* of mass

<10% TeV is observed in e*e”—1*T, then the separa-
tion 64QEP + 6gnom-CQED jg not valid, and the dynamics of

the 7* involves a coupling related to ap,,.



