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Considering scattering amplitudes as integral operators, the formal summation of their perturbation expansions
can be done using operator Padé approximants. The lowest-order approximant can be considered a natural
improvement of the Bethe-Salpeter equation in ladder approximation if one includes one-loop diagrams other than
the direct box graph. The problem of how to evaluate the approximants arises. Variational principles for their
calculation have been proposed earlier but yielded ambiguous results. A new variational technique, the method of
the variational gradient, is presented which provides a unique though elaborate procedure. The applicability of the
method is demonstrated in two cases: a simple potential model and the Bethe-Salpeter equation in ladder

approximation for nucleon-nucleon scattering.

I. INTRODUCTION

Various forms of Padé approximants have been
introduced as tools for the summation of divergent
power series.! Their applicability to the summa-
tion of perturbation theory for two-particle-scat-
tering problems has been tested in the Schrédinger
potential theory®~® and in the framework of the
Bethe-Salpeter equation (BSE).®~1° In the present
work we are particularly concerned with the sum-
mation of perturbation expansions in lowest possi-
ble order, i.e., using only the first two terms of
the (in general strongly divergent) expansion.
These correspond in field theory to one-loop ap-
proximations and only these can be calculated
with a manageable amount of (computer) time.

The method introduced here was first proposed
in Ref. 11. It is based on a variational principle
for a non-negative functional, which yields opti-
mal values of the off-shell momenta for an oper-
ator Padé approximation (OPA).*** Since one is
looking for the absolute minimum of the above
functional, the method does not have the ambigui-
ties usually involved in variational operator Padé
approximants (VOPA),0.13.14

This new technique, called the method of the
variational gradient (MVG) is presented in detail
in Sec. II. Basically, it is a method to find (ap-
proximate) matrix elements of the inverse of a
linear operator. Therefore the method may have
wider applicability than the description of scatter-
ing processes.

In Sec. III we show how the method works for
potential scattering. We numerically calculate
1=0 phase shifts for a two-step potential and com-
pare our results with those of Benofy, Gammel,
and Mery."

In Sec. IV we apply the method to the BSE for
NN scattering with one-boson exchange.!® Our
results for the 'S, and ®P, phase shifts are excel -
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lent. For the ®S, we were unable to perform the
search for a minimum of our functional since
some integrands were changing more rapidly than
in the above two cases and the computer time for
their integration became so large that a variation
was impossible. Although this is not in principle
an obstacle it is clear that the MVG cannot be
considered as a substitute for solving the BSE
with scalar Padé approximants. It was our aim
to find a general method which provides as much
information as possible from a one-loop approxi-
mation.

II. THE METHOD OF THE VARIATIONAL GRADIENT

We consider a linear operator T in a Hilbert
space 3¢, which has a formal power-series expan-
sion (with the expansion parameter set equal to 1)

T=To+T +Ty++++ . (1)

For convenience we assume that T and the T,
(:=0,1,...) are symmetric. The following con-
siderations apply also with minor modifications
to the case when T is nonsymmetric. In later ap-
plications, however, we consider only the pertur-
bation expansion for the (symmetric) K matrix.
From the first two terms we can form the follow-
ing operator Padé approximant!:

1
Tora=Tog—, To- )

Here, as in the following, we do not consider
existence problems. We shall assume that all
operations we perform can be defined in a strict
mathematical sense. More general conditions
will be discussed at the end of this section. Our
task will be to develop an approximation method
for the calculation of certain matrix elements of
T opa- The starting point for this is the Schwinger
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variational principle,'® which states that the unique
stationary value of the functional

Rop@, ") =@’ Tol BY +{al Tol ¥)
@ To=Til ¥, 3)

with respect to any variations of the states | )
and | ), is given by the matrix element of Tgp,
between the states | o) and | g):

TSI’BA =(a| Tops| B) - 4)

Varying R ,5(, ¥’) with respect to | ) and | y’)
independently gives for their values at which R,
becomes stationary the following expressions:

| ¢>m=——1—To| B) and
To-T, ®)

1
97 STo_T, Tol @).
Inserting these into R ,4(y, y’) yields T gE,.

In actual calculations the variations with re-
spect to  and y’ are usually performed in two
steps. At first one confines oneself, for practical
reasons, to a finite-dimensional subspace of 3C,
given by some projection operator P,:

3, =P, Pi=P, (6)

and spanned by some states | ¢,)=| a), | ¢2)=|8),
| @g)s---5] @r). It has been shown'® that the sta-
tionary value of R ., obtained with | ¢) and | ")
varying in 3C; only is given by the OPA evaluated
on this subspace, i.e.,

1
_ stat value R 5@, ") ={a| ToP; m P.T,|B)

19>, lune s
=RGs (@3-, 01)" @)
The second step is to vary for a given L
the [¢;)’s and look for stationary values of
RLg(@sy ..., 0,) (seeRefs. 13 and 17). This is

called the “variational” OPA (VOPA). It has been
shown? that if the | ¢;)’s are chosen such that

ever, is that RL; may have, in general, many
stationary points and one has to select the proper
one. To investigate this problem, we analyze
R%; in detail. )

The | ¢;)’s are varied as follows:

loy=lod +edylx) G=1,...,L; k=3,...,L) (8)
with € an infinitesimal parameter, §,;, the Kronec-
ker symbol and | x) an arbitrary vector, |x)<3cC.
Then
@) =RGs @3 -+, 01)

+€rqp x(x)+0(?). 9)

Rep(@ss - - -

RLg is stationary for | ;) =| ¢?) if
7ap () =0 h (10)

for all |y)e3. To evaluate 7,5 »» we need the
expansion for P;:

Po(@yeer0L)=Pr@3, ..., 07) +em(x). (11)

The operator 7(y) is calculated starting from the
following explicit representation of P, :

L
Py = .;ll POF el (12)
i

where F~1;, is the (i, ) element of the inverse
matrix of

Fzm=<§0z|¢m>- i (13)

Here we assume the | ¢,)’s to be linearly inde-
pendent for F~! to exist but not necessarily ortho-
normal. We obtain, dropping the superscript
zero in | p):

L
m(x) = §[U_PL)|X>F-1M<¢:‘| +ep

X F~ x| €= Pp)], (14)

I being the unity operator in3¢. Inserting (11) with
(14) into (7) finally yields

| 9}« and | 37y of (5) belong to 5, then R%, is Tas,x(X)= (k[ X0+ Cx|8R), (15)
stationary and equal to T&f,. The problem, how- with
|
= 1 1
akl| = F-1 I —_— - -
( ‘ I iZl k{<‘p£| PLzTo_Tl)PL PLTOIB) <alTo[ PL PL(TO_TJ.)PL PL(TO Tl)](I PL) (16)
' r

and (B%| obtained from {a%| by exchanging (| ) 1
and (8 |. Since (10) is required for any |x)< e, (e|T, [I‘PL P,(T,-T,P, PL(TO'Tl)] (I-Pp)=0

this implies
(ak|=(Br|=0for £=3,4,...,L, a7

and since (@k| factorizes, (17) is fulfilled when
either

(17a)

) =0.

(17p)

or

L
CpB= Z F, <‘I’¢
i=1

1
T, - TP, LT
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For convenience we introduce the vector

ol (a1 -Pu L Patta- 1]

(18)
Since (Yo |P;=0, we see that in (17a) the factor

(I-Pp) is superfluous and (17a) is equivalent to
(Yo |=0o0r

1 1
77, = TP e, Fo
(19)

i.e., according to (5) and analogous considerations
for (B%|,

RG] IR RS N (20)

We thus obtain the result that the stationary
point of RZ,, achieved when ¥, |=0 and {¥,| =0,
coincides with the stationary point of the Schwinger
functional and we have

R3a=Tg%a, @1)

what we are looking for. Indeed, this latter rela-
tion is obviously true if only (¥4 |=0 o7 {vs| =0.
The second equation (17b), is explored as fol-
lows. Since
1
P,(T,~T)P,

(a|T,

P,T,|B)e,. (22)

We can write

L
1
prr—rgp Pelel®)= L bsle) . @3)
\do=1)5, et

Insertion into (17b) yields
L
S F T Fyyby=3 dyby=b,=0fork=3,...,L.
i3 3

(24)
Thus we have
PLT,|8)=P(To— T ba|a)+bs]B)], 25)
which means
[95)= (To= To)lba | @) +5]8)] - To[8) (26)

is orthogonal to I L.\" Since then it is also ortho-
gonal to |a@) and |8), the coefficients b, and bg are
determined by a system of two linear equations
(provided its determinant is #0). |¢) being a fixed
vector, we see that it is easy to fulfill (17b): for
all |@,)’s L |ys) we have a stationary point of RL,
and it can be shown that the value of RZ; at this
stationary point is in general different from T, .
Owing to (23) and (24),

RL,=b,(@| To| @)+ byl |To| B) @7)

and from (26) we obtain

Pl
18 - {a|r, 1T B>
OPA = 0 T,-T, 0
=bo @ |T0|Ot)+bﬂ(0llT0|3)
1 .

A =ADE 2
Equations (27) and (28) do only agree if ,,@"| ¥y
=0, which can never be checked and will not be
true in general.

It is interesting to note that, evaluating (27) a
bit further, one obtains
R:{;B:Riﬂ ’ (29)

i.e., the matrix Padé approximation in the space
(@], ¢8| and in the case {@|=(B| it is just the
ordinary scalar approximant. This has been found
numerically in Ref. 13.

From the above discussion we have seen that
RZ, has two stationary values if we perform the
variation over the full ¥ and only one of them is
what we are looking for. In any practical calcula-
tion, however, one will parametrize the basis
states somehow and do the variation by changing
the parameters over a finite region. Varying p,
e.g., the infinitesimal change of the |¢,) s will be

|0, (0= |9, + (B =po) 8] @i (Do),  (30)

i.e., in (8) |X) is to be replaced by |?%(p,)). As a
result, Eq. (15) reads now

Vag =@k [@L(p)) +{@h(bo) |BR) . (31)

In contrast to (15), where |X) varies over the
full 3¢, in (31) the variations are restricted to cer-
tain trajectories. Owing to this restriction we find
stationary points which can be different from those
obtained for |7,)=0 or |7;)=0. One possibility is
that for a particular p =p, the above two terms
cancel if (Otl* (B I , another that both terms vanish.
For (& |=(B8| we may have

(@i(po)]7a)=0, 32)

which can be obtained if we are close to the cor-
rect stationary point where (7a|=0. Since (Y,,,| is
[apart from the coefficient ¢, ; defined in (17b)]
the “gradient” of the functional RL, its direction
-changes rapidly near the correct stationary point.
Considering |<p,’,(1) )) as nearly constant for p ~p,
then (32) can be easily fulfilled and this explains
the success of the VOPA’s so far. Of course, this
condition can accidentally be fulfilled in other re-
gions of the parameters, where the values of R,
may have no relation to T85,.

According to the above, the only accurate pro-
cedure for finding the proper value of T¢3, is to
evaluate the OPA for such (¢, I's € 3¢ which yield
(¥4 |=0 or (¥4]=0. Since in practice the variation



24 EVALUATION OF OPERATOR PADE APPROXIMANTS FOR... 1981

performed by changing the parameters of some
|@,)’s will in general not yield these vectors, we
propose as best approximation to minimize .
(g |74). This will be superior compared to the
search for stationary points of RZ, itself but also
more elaborate. We then have a positive function-
al, the absolute minimum of which yields the best
possible values for the parameters in the OPA,

A further interesting relation can be derived by
some simple algebra:

1
Ris—To%al= <7’a T,-T, "VB>|
< lyall X lvgl % || 2
0~ +1 U-pPp) %
1
<y ll Xll, ||><| . @3
fa B To—Tl *

Although we have no knowledge of [[1/7,- T,ll, we
see that minimizing ll7,ll X[l can give us rea-
sonable approximations to T%PA independently of
being close to a stationary point of the functional
RL,.

The mathematical condition for the applicability
of Eq. (33) is the existence of l7,ll and ll¥4l, i.e.,
(a| and (B| belonging to the domain of

1

~ (Ty=T)P 5
0 t L PL(TO_ Tl)PL

P,T,. (34)
This is much less stringent than what was needed
for the study of the variational properties of RZ,.
The existence of |7, ll requu-es only the existence
of the matrix elements (@, T2 0w, (@,|T(T,
-T))|e,) and (¢, | (T, - T,)?| ¢,) and these can
have meaning even if the |¢p,)’s do not belong to
the domains of 7%, T,T,, and T,>.

)i |7a) or |73) are not normalizable, there is
still the possibility of introducing an operator O
into the right-hand side of (33), such that O Iya' 8

belongs to € and that O-Y[1/(T,—T,)]0* is bounded.

We shall not discuss this case here but refer to
Ref. 11, where this trick was used.

Finally, we mention how the method can be ex-
tended to higher orders. For all OPA’s which can
be put in the form AB™'C, where only positive
powers of the T,’s appear in A, B, and C, the
Schwinger functional reads

Ras(,9))=0Q'|C|8)+(|A[p) - (¥’ Bly) (35)
and the method for calculating corresponding ma-
trix elements works as before. For the next high-
er order, e.g., the OPA reads

TOPA = _To +T T, (36)

1
1T,-T,
and the method has to be applied to the second
term only.

Similar considerations could be applied to the
computation of eigenvalues of symmetric opera-
tors. Since, however, there is no ambiguity in a
variational solution of the problem (Ref. 17, theo-
rem XII; also Ref. 18), they do not seem neces-
sary.

Finally we mention that a relation analogous to
(33) has been proven earlier, though under much
more stringent conditions, both for scattering and
for bound-state problems.!*?°

III. APPLICATION TO POTENTIAL SCATTERING

Let us consider the scattering of particles de-
scribed by the Schrédinger equation with a central
potential V(»). The phase shifts can be found from
the K matrix:

(o> UK(E) | Pp, =5 — tanéz(E) (37)

with py=ps=p and E=p*/2m. K is the solution of
K(E)=V+VGEI(E)K(E) (38)

and GF the principal-value Green’s function
GU(E)=3[E-H,+i€)" +(E-H,-i€)"'].  (39)

The full solution of (38), |

; 1

K(E)= VV—_V—G:";V, (40)
is the [1/1] OPA to the Born series corresponding
to (38). The MVG allows us to eévaluate matrix
elements of this approximant by exploiting infor-
mation contained in the off-shell matrix elements
of the perturbation terms.
~ As in Ref. 13, we calculate S-wave scattering
from the potential

V(r)= V1s(7’1 -7)+ V2\9(’}’2 -7) ’ (41)

where V, and V, are constants and 9 is the step
function.

Using one off-shell momentum as variational
parameter, the above authors have shown (for
many values of V, , and 7, ,) that one stationary
point of the phase shift agreed very accurately
with its exact value (Fig. 1 of Ref. 13). They also
observed that the phase shift had many other sta-
tionary points at the value of the ordinary (scalar)
Padé approximant, which property was explained
in Sec. I of the present work. The problem with
sign changing potentials, however, is that one has
no a priovi reason to choose one stationary point
or another and the results are ambiguous.

The situation changes basically if we minimize
Il 1l, though we have to calculate terms such as
VGEV2GEV which corresponds to one more it-
eration. For the same case as discussed above,
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" FIG. 1. Dependence of the phaseshift 6 on the off-shell momentum at E,,,=140 MeV. For the potential [see (41)] the

parameters are as in Ref. 13 (V;=170.05 MeV, V,=-34.

01 MeV, 7;=0.68 fm, and 79=1.92 fm). Only three points

(see dots) of the || v || 2 curve (in arbitrary normalization) appear in this figure and are connected by straight lines.
The minimum of ||y || 2 is obtained at the off-shell momentum %, =3.758 fm™.. The value of the phase shift at this point
is 14.9156° to be compared with the exact value of 14.9174° and the value at the first maximum of 14.9167°.

the minimum of || v || points very close to the
first maximum as is shown in Fig. 1. For a much
stronger potential, however, there is no station-
ary point of the phase shift near the correct value
though the minimum of || y|| points at a quite rea-
sonable value [see Fig. 2; p=0 is an artificial
stationary point independent of the energy because
we took (7 |p, 1= 0) = sinpr/p and therefore 5(p, E)
and || ¥(p, E) |l are even in p]. More details about
the results for this potential are given in Table I
As one could expect, increasing the number of the
off-shell momenta (i.e., the number of variational

Elab =

360

344

328

312

296

PHASE SHIFT IN DEGREES

vectors |¢;)) decreases the achieved minimal val-
ue of || v|| and increases the accuracy of the phase
shift.

For energies close to values where the phase
shift goes through odd multiples of 7/2 (for the
above potential this is the case for E=18.8) our
method does not work very well with only one off-
shell momentum as variational parameter. Al-
though there is 2 minimum of ||y || pointing to a
quite accurate value of the phase shift, there is in
general another, comparable or even deeper,
minimum at some wrong place and the value of

10 MeV

1 i 1 1 1 1 1 1 1 1 1 1 . 1 1

6 8 10 12

OFF - SHELL MOMENTUM IN fm-!

FIG.2. Sameas Fig.1 for V{= 1000 MeV, Vy=-100 MeV,

7y=1fm, ,=2fm, and E; ;=10 MeV. For these values

of the parameters there exist two bound states, i.e., 6(Ep=0)=360°. The minimum of ||y ||2 is obtained at &, =1.928

fm™.

The value of the phase shift at this point is 287.05°, to be compared with the exact value of 289.34°. For two

off-shell momenta the phase shift at the minimum of ||y |P is 289.26°.
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TABLE I. Rate of convergence for the values of the phaseshifts 6,,, obtained at the minimal values of ||y [|2=7%,
with increasing number of off-shell momenta (L —1). L —1 =« stands for the exact solution and L -1=0 for the scalar

Padé approximation. E is the energy. The values of the phase shifts are taken within (—n/2, +r/2). The potential
parameters are the same as for Fig. 2.
E (MeV) 145 100 200 1000
L-1 Om vk Om Yh O Y Om Yo
1 -83.7 89 000 19.3369 319 -20.1400 230 40,7145 510
2 —81.776 2850 21.2234 21 -18.2820 15 50.3111 46
3 —81.7136 435 21.2772 3.1 -18.2250 2.1 50.6031 5.3
4 —81.7033 103 21.2845 0.76 -18.2186 0.52 50.6111 1.6
5 —81.7022 38 21.2854 0.27 -18.2175 0.18 50.6177 0.46
6 -18.2171 0.074
© —81.7013 21.2860 -18.2169 50.6190
0 ~3.498 -26.84 -52.76 81.57
[l 7|l at the absolute minimum is extraordinariiy very promising and in the next section we apply
large. As is also shown in Table I, increasing the method to a realistic physical model which
the number of off-shell points improves the situ- reproduces the experimental phase shifts.
ation considerably. .
It is interesting to note that the values of the off- IV. APPLICATION TO THE BETHE-SALPETER
shell momenta at which [y || achieves a minimum EQUATION FOR NN SCATTERING
cixantgt; Yer%r ll:tlenwﬂ{‘t;hthe enelrgslr{. deh 1: ;: de}xlz ::_ The Bethe-Salpeter equation (BSE) for NN scat-
8 I,‘a edin %a ? : en we fooxed for the p tering was treated extensively in Refs. 8-10. The
shift as a function of the energy, we could there- “ 15
NN force (“potential”’) was taken as exchange of
fore use the values of the off-shell momenta found 5 .
for one energy as a very good first guess for the ", P, @, € 7, and O mesons. A cut off was in-
R ‘troduced as a form factor at the vertices in order
minimizing of [|v|| at the next energy. An excep- . R . .
. . ep to suppress high-momentum divergences. Taking
tion occurs again when the phase shift is close to . . . . :
. . into account couplings of various spin states and
a multiple of 7/2 (see E=20 in Table II). s . X
. . X . positive and negative energy states, the BSE in
Finally we present in Fig. 3 the comparison of .. .
X momentum space is in general a system of eight
the energy dependence of the exact phase shift X . . R
. : . coupled integral equations in two variables (rela-
with phase shifts obtained from the scalar Padé .
R PR tive energy and modulus of three-momentum). It
approximant and through [|v]| minimization with reads
one and two off-shell momenta. The results are
- |
&(p, p,, @)= G(p, p,, @; ,0, K)l-# qu dq, az: G(p, boy @3 4, 4oy B)S(4, 4oy B, VI(4, 40, V) (42)
Y

with p=(E? —=m?)¥2 (m the nucleon mass) and
a,B,v=1,2,..
1,...,8 see Ref. 21. In Eq. (42) G is the kernel
and S the two-nucleon propagator. This equation
can be solved by iteration and the application of

,8; k=1,2. Forthe meaning of labels

Iordinary scalar Padé approximants (up to [5/5],
see Refs. 8-10).

Beyond that, various forms of Padé approxi-
mants were tested to obtain the solution in a lower
order. As one of these methods, the variational

TABLE II. Dependence of the values of the off-shell momenta at the minimum of ||y |12 for
one (L =2) and two (L =3) off-shell momenta, respectively. p, is the on-shell momentum.
The unit for the momenta is fm™!. The potential parameters are the same as for Fig. 2.

E (MeV) Po va 2 by Yo 2 p2

10 0.347 1.410 x 104 1.928 6.376 x 102 2.792 4.872

20 0.431 1.137 x10° 1.660 3.354 x10* 2.745 4.909

50 0.776 1.150 x 103 1.851 7.828 x 10t 2.747 4.912

100 1.098 3.190 x 102 1.854 2.087 x 10 2.701 4.953
200 1.552 2.260 x 102 1.850 1.476 x 10! 2.623 5.026
500 2.454 2,372 x 10 1.843 7.075 x10% 2.445 5.219
1000 3.471 5.096 x 102 1.596 4,621 x 10! 2.267 5.596
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PHASE - SHIFT IN DEGREES

ENERGY IN MeV

FIG. 3. Energy dependence of the phase shift for various approximants. Curve 1 was obtained with only one off-shell
momentum, curve 2 with two and is indistinguishable from the exact curve. Finally, curve 3 is found by using ordinary

Padé approximants.

operator Padé approximants (VOPA’s),!3:* were
applied, which worked here in a very similar
manner as in potential theory. The important
problem, however, the question of uniqueness of
the variational solution, could not be answered
either and only the statement, that the first mini-
mum gives good results in general, could be de-
duced from the numerical results. The MVG
representing a unique procedure, it is worthwhile
to investigate its applicability to this case as well.
Since the calculation of |y |? requires now a two-
dimensional integration (and summation over spin
indices) of a complicated function, it is clear at
the outset that a search for Iy |2, will be very
time consuming.

For the calculation of ||y || we have adopted two
different types of integrations: the first for the
calculation of y(q,, q) involves essentially the
evaluation of the box graph, for which the same
integration procedure was applied as described
in Ref. 8. For the integration of

Myir= f dqodqv*(do, 4) 5 (43)

because no singularity is present in the area of
integration, this integration is simpler and in
general does not need as many integration points
as the inner integration.

Finally, Iy II? depends on the arbitrarily chosen
off-shell momenta as variational parameters.
Again, each of them is now represented by the
relative energy and the modulus of the three-
momentum, i.e., we have two variational parame-
ters for each off-shell momentum. This is a
further complication. Since, however, the phase
shifts are not very sensitive to variations in the

relative energy (at least in the case of pseudo-
scalar pion-nucleon coupling as considered here,
cf. also Ref. 10), it is justified to keep it fixed at
a small value, as in'Ref. 12 for the VOPA. 1t is
taken to be /8.

In Tables III and IV we present our results for
the 'S, and ®P, partial waves. The results were
obtained by varying the modulus of the three-
momentum. From Table III we see that the 'S,
phase shift is obtained with very high precision
using only one off-shell momentum as variational
parameter. Similarly the situation is for the °P,
as long as the phase shift is positive. The nega-
tive values of the phase shifts are only badly re-
produced with one off-shell momentum. Taking
into account a second off-shell momentum, how-
ever, improves the situation drastically: the

TABLE III. 130 NN phase shift for various energies E
calculated from one-boson exchange in terms of the
Bethe-Salpeter equation (Ogg) in comparison with the
value of the phase shift §,,, obtained at the off-shell mo-
mentum p, (in units of the nucleon mass), where ||v||?
takes its minimal value yL=2. Since this off-shell mo-
mentum is surprisingly energy independent, we have also
calculated the OPA at some energies (indicated by an
asterisk) without performing a search for a minimum of
llv1I%. p, is the on-shell momentum.

E MeV) pog=p  Opg L
10* 0.073  58.59 57.38 2.403 1.24
25% 0.115 49.37 49.55 0.777 1.24
50 0.163 39.13 39.47 0.327 1.24

100 0.231 2495 25.38 0.157 1.24
150* 0.283 14.74 1492 0.114 1.24
200 0.326 6.47 6.45 0.098 1.24
250 0.365 —0.51 —0.75, 0.092 1.25
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TABLE IV. Same as Table III for 3PO. For energies where the phase shift is negative (200
and 250 MeV), it is necessary to use two off-shell momenta as variational parameters (L =3)
in order to obtain a good approximation. With the same off-shell moments also the low-ener-
gy phase shifts (10 and 25 MeV) are reproduced properly without searching for a minimum of

2.

E MeV) po=p  Opx Om yL? b1 yL=3 P4 P2
10* 0.073 4.10 4.06 0.002 0.633 1.44
25* 0.115 8.89 8.80 0.005 0.633 1.44
50 0.163 11.32 11.31 0.011 0.949

100 0.231 8.33 8.32 0.018 0.859
150 0.283 2.65 2.46 0.025 0.804
200 0.326 -3.39 -6.63 0.024 1.14
) 200 0.326 -3.39 -3.70 0.011 0.633 1.44
250 0.365 -9.27 -12.62 0.024 1.10
250 0.365 -9.27 -9.64 0.013 0.639 1.44

value of |y |2mn drops by a factor of ~2 and the
phase shift is obtained with good precision.

Concerning the values of p; and p, where the
minimal value of |ly II? is found, they change sur-
prisingly little with the energy—even less than in
the previous case of a strong potential (Table II).
For some values of the energy (those with an
asterisk in Tables III and IV) we therefore present
results obtained by merely evaluating the OPA at
the indicated off-shell momenta p, and p,, obtained
for other energies. The momenta were not varied
to minimize Il Il but the results for the phase
shifts are excellent. This means that the off-shell
momenta can be considered to a very good approx-
imation as independent of the energy. Thus, once
the off-shell momenta are known, one has a simple
representation of the phase shifts for NN scatter-
ing in the energy range of elastic scattering.

The most difficult problem, numerically, is the
38, phase shift, It turned out that a proper adjust-
ment of the integration mesh in (43) is of extreme
importance in this case. The integrand is quite
bumpy and therefore a high number of integration
points is needed for this integration as well.
Therefore the necessary computer time became
so large that we were unable to perform a search
for lly [IPmn. For other (renormalizable) field-
theoretical models?? the fast computer code FORMF
(Ref. 23) is available for the numerical integration
of one-loop integrals and it is our hope that one
will be able to perform the necessary integrations
in that case with a reasonable amount of computer
time. In any case, the obtained results are very
promising for the relativistic field theory and the
numerical obstacle met in the case of the 3S, do
not appear to be a matter of principle.

V. CONCLUSIONS
The formal summation of a ladder series in
terms of an OPA [see Typ, in (2)] is a simple

matter. The problem, however, remains how to
evaluate this approximant. The straightforward
thing to do, namely, to put in more and more off-
shell states and observe convergence, works in
some cases of the BSE for NN scattering but the
method becomes unstable when one includes, e.g.,
the crossed box graph with pseudoscalar TNN
coupling.!’® From the VOPA one can obtain rea-
sonable results also in this case, though not quite
unambiguous.'® The MVG introduced in the pres-
ent work has no such ambiguities. Since we could
show that the method works very well in potential
theory and in the case of the BSE, we conclude
that we have actually found a proper method to
evaluate the OPA, though this method is quite
involved. '

The approximation (2) is, however, not limited
to the case of a ladder series andthus the MVG
represents a technique to sum any operator ser-
ies. Therefore one can proceed and evaluate any
field-theoretical model in a complete one-loop
approximation with the help of the OPA. The hope
is that in such a manner one can achieve a good
approximation also in the case of strong interac-
tions. At least the procedure can be considered
a natural improvement of the BSE in ladder ap-
proximation if one includes one-loop diagrams
other than the direct box graphs.
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