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We consider the spectrum-generating algebra Sp(12,R) of the harmonic-oscillator quark model and&show'how it

may be used to label the oscillator eigenstates. We give a new and direct method of constructing wave functions of
definite symmetry type. %'e show that Sp(12,R) provides the most appropriate means of classifying the symmetry

breaking produced by an anharmonic perturbation and we derive an algebraic mass formula for the N = 2

rnultiplets of the model, and indicate how the method may be generalized to arbitrary N. Finally we extend the

present successful phenomenological analysis of the baryon spectrum performed by Isgur and Karl, and discuss the

possibility that the 3 D35(192S) resonance is evidence for a t'56, 1 ] multiplet corresponding to excitation of new

gluonic degrees of freedom within baryons.

I. INTRODUCTION

The group theory of the harmonic oscillator has
been discussed extensively, especially in connec-
tion with its application to nuclear many-body
problems ' and to quark models. In an earlier
paper, hereafter referred to as I, we indicated
briefly the relevance of the so-called spectrum-
generating algebra Sp(12, R) of the three-quark
harmonic-oscillator model to the problem of clas-
sifying and constructing the state vectors, and
also to the discussion of the matrix elements of
an anharmonic perturbation. Recall' that our
starting point was the form of the harmonic-oscil-
lator -model suggested by Isgur and Karl, ' in-
corporating anharmonic perturbation, quark mass
differences, and some effects of the nonrelativis-
tic reduction of colored-gluon exchange between
quarks. ' The relevant Hamiltonian is

H = nz) +HP +Hh„

with
3 2

(1.2)

where the confining potential V,",„f is written

Vg~f = ,'Kr(, +U(re), —. (1.3)

~&& being the magnitude of the separation of quarks
i and j, and U(r, ~) an unknown anharmonic poten-
tial. Treating U and the color hyperfine Hamil-
tonian H„~ perturbatively in the harmonic-oscilla-
tor basis, Isgur and Karl obtained a good descrip-
tion of baryon resonances up to about 2 GeV in

mass. In this paper we shall only be concerned
with the perturbative effect of U. It will again
prove convenient for us to introduce the standard
three-body coordinates

p =(r, —r2)/vY; &= (r, + r2 —2r, )/&6

and the corresponding creation and annihilation
operators a, (p), a, (X), a~(p), and a, (&) (i=x, y, z).
In a spherical basis we define

a,'(p) =~
2

[a„'(p) + ia'„(p)],

ao(P) = a,(P),

satisfying the commutation relations

[a„at,]=6„„, (p, , p. '=+, —,0;h=l)
with similar expressions for the X mode.

%e noted in I that in the S=O sector, in the ab-
sence of anharmonic perturbations, the general
excited state of Hp with given Ã, orbital angular
momentum L, and permutation symmetry P (=S,
&, M„or M~) may be written

IX=- l(f.'.&-=el" I0); I0)=- Io), I», (1.8)

with g&~ an Nth order mono-mial of creation op-
erators. In Sec. II of this paper, we show how

such excited states may be labeled using the
spectrum-generating algebra Sp(12, R). We give
details of how the monomials g may be construct-
ed by a novel and direct method, and we compare
our method with other prescriptions in the liter-
ature.""

In our previous paper we gave a brief outline
of models containing more than just quark degrees
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of freedom and we discussed the conjecture by
Cutkosky and collaborators that the nD35(1925)
resonance might be evidence for such gluonic
excitations. " Using the parametrization
adopted by Isgur arid Karl ' in their successful
description of baryons with ¹ 2, we showed that
the mean mass of the nonstrange sector of the
N= 3 [56, 1 ] multiplet, to which the nD35(1925)
is most plausibly assigned, is close to the most
recent quoted mass of 1930+20 MeV, thus sug-
gesting a conventional interpretation of the state
as a genuine three-quark excitation. In Sec. lII
we give details of our calculations, employing the
state vectors constructed in Sec. II, and we com-
pare our work with earlier papers on the sub-

ject ' ' in Sec. V, after having given, in Sec.
IV, a group-theoretical analysis of the problem.
This is based upon Sp(12, R), whose application to
the matrix elements of the anharmonic perturba-
tion U leads to an algebraic mass formula, in-
volving the quadratic Casimir operators of the
various subgroup chains, that reproduces the pat-
tern of splitting among the various N=2 multi-
plets first noted by Gromes and Stamatescu, and
later by Isgur and Karl, ' in calculations using
explicit oscillator wave functions. We indicate
how the method can be applied at higher N. De-
tails of some of the group theory involved in the
derivation of mass formulas are relegated to two
appendic es.

II. HARMONIC-OSCILLATOR STATE FUNCTIONS

In this section we develop the formalism leading,
for the three-body case, to the unitary degeneracy
group U(6) and to the symplectic spectrum-gen-
erating group Sp(12, R). These groups provide a
means of both labeling and constructing the oscil-
lator state functions of given total orbital angular
momentum, parity, and permutation symmetry.

In the case under consideration, involving an
SU(3)„„, singlet of three totally antisymmetrized
quarks, the SU(6)„,„., properties of the oscillator
states are completely determined by this permuta-
tion symmetry. For the time being, therefore,
the SU(6)„,„„and SU(3)„„, sectors are ignored.
The relevant oscillator modes are associated with
the creation and annihilation operators at(p), a (X),
a(p), and a(X) defined in Sec. I. These may be
viewed as components of the six-vectors:

with i=1, 2, 3, a=1, 2, and I=i, 2, . . . , 6. They
satisfy

[Qr, Qr] = [Qr, cr] = 0
q

[+I +r] —[+3 rr b] '—5rr5 5 —51r
(2.1)

for I, J=1,2, . . . , 6.
With this notation the oscillator Hamiltonian

takes the form

8o —(u z ar~ a (2.2)

all commute with this Hamiltonian and satisfy
the commutation relations. '

(2.4)

of the real Lie algebra of GL(6, C) whose com-
plex form is well known as the Lie algebra of
U(6). It follows that degenerate oscillator states
are associated with the unitary finite-dimensional
irreducible representations of U(6). In the canon-
ical labeling scheme based on the structure U(6)
-SU(6) &U(1), one of the state labels is of course
the principal quantum number N associated with
the U(l) subgroup whose generator E«5' is
proportional to the Hamiltonian (2.2).

The spectrum consists of the N =0 vacuum state
~
0}, transforming as the representation {0]=1

of U(6); the N=l states a, ~0), transforming as
(I]=6 of U(6), the N=2 states arVz ~0), trans-
forming as (2] =21 of U(6), and so on.

One way to generate this spectrum involves the
set of bilinear operators which can be formed
from the components a&. and a~ of the 12-vector

(aA)=(ar )=(ar )

with 1=1,2, . . . , 6, &=1,2, and4=1, 2, . . . , 12.
These satisfy the commutation rules

[aA +B][+I +ra] 51r'~
B ~AB

for A, 8=1,2, . . . , 12, with

(2.5)

0
and J—gxq.

0.i

The 78 bilinear operators

SAB = 2L+A~ +B]

satisfy the commutation relations

(2.6)

[SAB I SCD ] ~BCSAD + ~AD SBC + ~AC SBD +~BD SAC

(2.7)

of the real Lie algebra of Sp(12, R). The signi-
ficance of this enlarged group is that the com-

The degeneracy group. is revealed by noting that
the 36 bilinear operators

(2.3)
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Ske: a, -[SkB ac]= ~~caa +~acak (2.8)

piete Pock space of the oscillator spectrum de-
composes irito just two infinite-dimensional, uni-
tary, irreducible representations of Sp(12, R):
states of even or odd ¹ Thus the Lie algebra of
Sp(12, R) is referred to as a spectrum-generating
algebra, analogous for this three-quark case to
the algebra Sp(2N, R) introduced by Goshen and
I ipkin for the single N-dimensional oscillator.

In contrast to this, there exists another way in
which the physical oscillator states are made
manifest as basis states, ' this tj.me, of finite-
dimensional, nonunitary irreducible representa-
tions of Sp(12, R). This comes about because both
the creation and annihilation operators themselves
and, more generally, monomials of them form
the basis of such represenatioris. This follows
from the existence of the map

OIJ ——Sr0f J~& =~IJ —@JI

satisfying

(2.i3)

[Otz ~ O»1 ]= 5z» Otr. + 5a O~» —51»0~ —5«OI» .

(2.14)

The group O(6) contains as a subgroup O(3) xO(2),
whose constituents O(3) and O(2) are generated by

[1]=3, . . . , [N/2]=N+ 1, . . . with maximum third
component 0, —,', 1, . . . , N/2, . . . . The corres-
ponding Sp(2, R) multiplets are denoted by (0) =1,
(1) =2, (2) =3, . . . (N} =N+1, . . . .

Just as in the case of a single three-dimensional
oscillator, the physical states with fixed pseudo-
spin quantum numbers may be further classified
into multiplets of an orthogonal group. In the
case of three particles this is the subgroup O(6}
of Sp(12, R} with generators

and its generalizations

AB' ac+D [ AB ac&D] —~ACaB D +~BCaA D

+ ~macaa +~abaca

and

O)g
——O)~~5

O,q
—O]~q5 ' .$j

(2.16)

(2.16)

Si2 —Sn J2& —ErJ &
rJ (2.10)

acting as in (2.8) and (2.9), has the eigenvalue N.
This generator, besides being the U(1) genera-

tor encountered earlier, belongs to the algebra
of the subgroup Sp(2, R), with generators

IJ'
S z

—Sr~Je~ (2.1i)
This group is locally isomorphic to the pseudo-
orthogonal group SO(2, 1) as can be seen by noting
that,H=-,'( zS&+ »S), H, =(i/4)(S»-S»), and H,
= —,'Sg2 satisfy

[Hg& Hy] = leok "lkkHk y' (2.12)

(2.9)

and so on. It is clear, in particular, that the
operators 1, a„, a&a&+a&a„, a„a&a&+a~a(.-a„
+ ac aAaB + a& aAac + ac aB aA + aA aB ) ~ ~ . form
bases of the symmetric representations (0) =1,
(1}= 12, (2}= 78, . . . of Sp(12,R)." Since the vari-
ables 1, a„araJ, . . . belong to these bases, the
physical oscillator states are indeed associated
with finite-dimensional irreducible representa-
tions as claimed. The physical states of the rep-
resentation (N} are precisely those for which

The former serve to specify the total orbital angu-
lar momentum of the physical states through the
familiar generators

L] —ze0qO]q, (2.17)

while the latter is the generator of rotations in
the two-dimensional space associated with the p
and ~ modes of oscillation. Typically a rotation
through 0 is given in this space by

cos& -sin&'

~sin~ cos~ .
It should be stressed, however, that the full
group O(2) also includes the reflection

-1 0'

i0 1
This is particularly important because the permu-
tation group S3 is a subgroup of O(2) but not of
SO(2). This can be seen by noting that the permu-
tations P(123) and P(12) which generate S3 are
given in the two-dimensional, faithful irreducible
representation' (2, 1)=M by

P(123) = R(2m/3), P(12) = a.
where

1 0 0

01 0

Thus, to summarize, the subgroup chain to be
used in labeling oscillator states is

Sp(12, R) & Sp(2, R) x 0(6)

,0 0 —1.
The physical states are those components of the
SO(2, 1) multiplets of pseudospin [0]=1, [-,'] = 2,

a Sp(2, R) x O(3) x O(2)

D U(1) x SO(3) xSk. (2.18)

Its key labels N, L, and P are associated with
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the irreducible representations of U(1), SO(3), and

S3, respectively.
In order to enumerate at each level, specified

by N, the O(3) x S~ multiplets and hence the
SU(6)„„., xO(3) multiplets we require the branch-
ing rules for various subgroup embeddings. In
the case of the continuous groups these are given
by simple Young-diagram techniques collected
together in an earlier paper and summarized
here in Appendix A. The symmetric tensor rep-
resentation (N) of Sp(12, R) reduces on restriction
to Sp(2, R) ~O(6) to (l/8) && [i/D] summed over all
Young diagrams f of weight N, where the terms
f/& and f/D stand for all possible quotients of the
S function f, by S functions 8 and D corresponding
to Young diagrams with even column and even row
lengths, respectively.

Since it is required that the corresponding phy-
sical oscillator states have pseudospin N/2 and
are associated with the Sp(2, R} representation
(Q, it follows that the only relevant value of l' is

Hence, according to the above branching
rule, these states belong to the O(6) multiplets
[M] with M=N, N-2, N —4, . . . where the se-
quence terminates with either 1 or 0. This is in
accordance with the result expected through con-
sideration of the degeneracy group U(6), since the
totally symmetric tensor representation (N]- of
U(6) yields just these representations [M] of O(6)
on restriction to this subgroup.

The branching rule (A2) of Appendix A yields

S+A if m—= 0 (mod 3),
m

M if m=—1, 2 (mod 3).
(2.19)

This allows us to complete the reduction pro-
cedure and thereby determine the SU(6) „„„xO(3)
multiplets at each degeneracy level specified by

The results for N=O, 1, 2, 3, and 4 are dis-
played in Table I.

Making use of the variables

f=p+ jX; g=p- jA. , (2.20)

the physical states are now remarkably easy to
construct in terms of auxiliary creation opera-
tors ' ' which we define by

in the case of the representation [M] of O(6) the
appropriate multiplets of O(3) &&O(2) when used in
conjunction with the modification rules (A4).

The final reduction from O(2) to Q has been
discussed elsewhere. The scalar, [0]=1, and
pseudoscalar, [1 ] =[0]*=1*, representations of
O(2) are of course symmetric and antisymmetric,
respectively, under S3, and thus yield on restric-
tion to this subgroup (3) =S and (1') =A. The
remaining irreducible representations of O(2} are
the doublets [m]=2„, labeled by a quantum num-
ber m (integer or half-integer in general) such
that R(e) is mapped to R(me). Here only integer
values of m occur and it is easy to deduce that
under the restriction from O(2) to Ss

TABLE I SU(6)fj x O(3) multiplet structure of the harmonic-oscillator quark mode[. ~

levels N=o to N=4.

O(6) O(3) x O(2) [SU(6),L ]

20

1 x1

3 X2j

(5+1) x22
3 x1*
5x1
1 x1

[56,o']

[70,1 7

Evo, 2'],
E2o, 1']
[56, 2']

[56, o']

[vo, o'7

50 (7+ 3)
(7+ 5+ 3)

X~2

X2j
f56 3], [20 3], f56 1], [20 1]
[70, 3 ], [70,2 ], f70, 1 ]

3 x2i [vo, 1-]

105 (9+ 5+1)
(9+7+5+3)

(9+5+ 1)
(7+ 5)

X 24

X2)
X1
x1*

[vo, 4'],
[vo, 4 ],
[56,4'],
[2o, 3'],

[vo, 2'],
[Vo, 3'],
f56, 2'],
[2o, 2']

[70,0']
[70,2'], [70,1']
f56, o']

20 (5+1) x 22
3 x1*
5xl
1 x1

[vo, 2'7,
f2o, 1']
E56, 2 ]

E56, o']

fvo, o'7
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'(g) =a'(p) + 'i'()(.),
a'(q) =a '(p) —fa'(&) .

(2.21)

where

x["(~)"(n)]:, (2.23)

[a (K)a (7))],= a, (f)ao(q) —a~0(g)a~(q) .

The corresponding principal quantum number N

is clearly 2(a+b+c+ n) +(p+q), while it is a
stretched angular- momentum state with I-, = L

=P +q+ &. The factor

i (K) 'i (q) =a (p) a~(p)+a~(X) i~(X) (2.24)

is an O(6) invariant so that the monomial W(f, 7))

belongs to the representation [M] of O{6) with M
N~-2a. Furthermore, if m =2(b —c) +(P- q),

the corresponding O(2} representation [m] has
dimension two with basis W(f, 7)) and W(i, '0},
where W(F, q) W(7), l='), unless W(f, ~) =+W(7), 7) in
which case m = 0 and the corresponding represen-
tation [m] =[0] or [0]* is one-dimensional. From
these basis states W(f, g) and W(E, 7)) of irredu-
cible representations of R)(2), the basis states
of irreducible representations of S, are recovered
in the form

These are the basis states of two one-dimensional
irreducible representations of SO(2). The trans-
formation to this basis thus serves to diagonalize
all the rotation matrices R(()) including R(2w/3).
Under the action of the permutations of S3

P(12)i (f) =-i (r(), P(123)i~(g) = e ' "a (f),
(2.22)

P(12)i (g) =-a (f), P{123)at(q)= e' "a'(7)),

so it is trivial to determine the transformation
properties of monomials in these operators.

Consider the particular monomials

W(K, j)= (a '(t) a '
(q) )'(a ' (t) i '(t) ))'

x «'(n) a'(n) Fa'.(&)'a', (n)'

nify basis states of the representations (3) =S,
(1 ) =A, and (2, 1)=M of Ss, with M, and M~

transforming under permutations in exactly the
same manner as p and X.

The particular factor [a (f)a (7))], is antisym-
metric in the sense that P(12)[a (f)a ('I))],
=-[a (f)a (7))]. while P(123)[a (f)a (g)],
=[a (i)a ('())],. It is therefore a basis state of the

type A. . This factor, moreover, satisfies a
syzygy like identity

[a (f)a (q)].[a (f)a (q)]. = (a (f) ' i (f)}a.(q)

+ (a'(n) a'(q))a,'(K)'

-2{i'(g) a'(q))a.'(g)a'. (q) .
(2.26)

{2,2V }U(6) &U(3) x U(2) ~O(3) xO(2}~SO{3}x S~

and, more recently, in the work of Bohm using
the chain

U(6) o V(3) x S, &SO(3)xS, . (2.23)

This contrasts with the complexities associated
with the use of the (p, ~) basis which are apparent

The implication of this and the use of W' and 8'
in (2.25) is that in constructing all the indepen-
dent oscillator states for a given value of N it is
only necessary to consider those distinct mono-
mials W(f, 7)) of degree N with m~0 and @=0or l.

The N =2 and N = 3 states derived in this way are
given explicitly in Tables III and IV. The pro-
cedure used in constructing such states of definite
angular momentum, parity, and permutation sym-
metry is thus extremely simple and somewhat
more direct than previous procedures. The sim-
plification is in large measure due to the use of
the (f, 'I)) basis rather than the (p, ~) basis. The
merits of the (E, j) basis can also be seen in the
work of Kramers and Moshinsky, which is dis-
cussed further by Moshinsky, which involves the

subgroup chain

(RW(F, ~) = .'[W(r, ~)-+ W(F, ~)],

8W(~, 6) ==, [W(~, n) W(f, ~)]—.
(2.25)

TABLE III. State-function monomials at the N=2
level.

The results depend only upon m (mod 6} and are
given in Table II in which S, A, M„and I, sig-

m {mod 6) 0

S
A

M

M},
M}, A -M},
M 8 M

TABLE II. Monomials of definite permutation sym-
metry: $$'=&{R'+W) and 8W=(-i/2){W- W), where W

and R' are defined in the text.

[56,0']

[70,0+]

1x1
1 x22

[20,1']

[56,2']

[70,2']

3 x1*
5 x1
5 x22

[SU{6),1. ] O{3) x O{2) S3 Monomial

&{a (&) a'(n)}

8{a (t) .i (t)}

@{a "(t) .a'(&)}

8{[a (t)a (n)1,)
6((a,(L)a, (n) )

8{a.'(t )'}

(R{a.'(t )')
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TABLE IV. State-function monomials at the N= 3
level ~

U(6) & U(3) x«(2) D SO(3) x S (2.so)

[SU(6),L ] O(3) x O(2) SS Monomial

[56,3-j

[20,3-]

[70„3-]

[70,2-l

[56,1-]

[20,1

[7O, 1 -7

[7O, 1-l

7 X~2

7 X~2

7 x 2(

5X2(

3 x~2

3 x~2

3x2(

3 x2(

8(a,'(C)')

$(a.(t)')
8(a, (t)'a, (q))

8(a, (g)'a, (n))

(R(a, (f) [a (f)a (v1)),)

8(a,'(&) {a'(&)a (a) )')

8(a'(&) a'(&)at(&))

&(a '(&) a '(&)a'.(&))

N(a'(C) .a'(&)a', (q)}

8(a'g) .a. '(g)a,'(n)}

$(a (f) .a (U)a, {g))

8(a'(&) .a'(n)a,'(&))

in the construction procedure of Karl and Obryk'
based on the reduction

U(6) ~SO(3) x S„ (2.2g)

and even more strikingly apparent in that of Hor-
gan based on the subgroup chain

We shall make use of the subgroup chain

Sp(12, R) ~ U(6) ~O(6) &O(3) x O(2) ~SO(3) x S3

(2.sl)

which incorporates the group O(6), whose use has
been advocated and adopted in this context by
Cutkosky and Hendrick, and which appears natu-
rally in (2.18}by virtue of (2.13). However, our
scheme is not ideal in that the states obtained
directly from (2.33) are not all associated with a
unique irreducible representation of O(6). In
general, M can take on the values N —2a, N —2a
—2, N - 2a - 4, . . . and a more complete labeling
scheme involving the specification of M can be
obtained merely by orthogonalizing states com-
mencing with the state of lowest value of M which
corresponds to the largest value of a for a given
N in (2.23).

At the N = 2 level, there are no ambiguities and
this orthogonalization is not necessary, but at the
N= 3 level there are two L =1, P =M [70, 1 ]
states which may be distinguished by the O(6)
labels [3]= 50 and [1]=6, as can be seen from
Table I ~ The necessary orthogonal combinations
of the states given in Table IV are

[(a '(C) a '(C)} .'()) ——.'(a '(t) '())) '.(C)]
[3] [70, 1 ] 3x2,

8[(a'(f) a'(l) }a',(n) —l(a'(&) ' a'(n) } '(&)] ' (2.3 2)

e(a '(g) a '(n) 4'(K)]
[1] [7O, 1 ] Sxs&

8[a '(&) a'(n)) .'(C)] .
(2.33)

A similar orthogonalization procedure is required
at the N =4 level, to distinguish, for example,
the two L =2, P =S [56, 2 ] states labeled by M=4
and M =2 ~ This difficulty is also experienced in
making use of the states of Karl and Obryk which
in this particular case coincide with those given
directly by (2.23).

In contrast to this, in the case cited by Horgan
of the N=4, L =4, P =M [70, 4'] states, the two
pairs of states M, and M}t are again not mutually
orthogonal in the scheme of Karl and Obryk. Hor-
gan constructs orthogonal states by diagonalizing
a matrix K whose eigenvalues then serve. to label
the states. However, the mthod used here leads
unambiguously to the four states IN, M, L, L,
=L, m, P):

I4 4 4, 4, 4, M,) =
2

{[a',(p)]'a', (z) —a,'(p)[a,'(x)]'),
1

(2.34)

I4, 4, 4, 4, 4, M)) = ~(—[g,(p)]4 + 6[a,(p}]2[at(A)]2

—[a.'(&)]']',

I4, 4i 4, 4, 2, M,) = ~mfa'(p)]'a'. (~) + a'(p)[a', (~)]'j,

(2.s5)

I4, 4, 4, 4, 2, M ) = ([a,(p)] —[a,()()] ],
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where, as in the next section, (2.21) has been
used to express the states in terms of a~(p) and
a'(». In this case it is the label m of the O(2)
representation [m] =2 which distinguishes the
states and guarantees their orthogonality.

For higher values of N, branching multiplicities
in the chain (2.31) lead to other labeling ambigui-
ties and the need to further orthogonalize states.
For X~ 4, the chain (2.31) does, however, pro-
vide a complete labeling scheme.

~ {[a (p)l + [a (x)]) [5s, o ]

q
hf

( ) ~ (g)

( )]' —[ (~]]9

[70,0 ]

'TABLE V. 'The correctly orthonormalized monomials
for the N =2 states. Note that only operators with max-
imal L~ are given.

III. SOME PHENOMENOLOGICAL CONSIDERATIONS

Q &e I U(~(, ) I y& = 3&y I
U(v 2p)

I y& . (3.1)

The p-oscillator matrix elements may of course
be evaluated by using explicit oscillator wave
functions ' ' or, more elegantly, by an alge-
braic procedure which exploits the commutation

In the absence of hyperfine interactions and
neglecting quark-mass differences, the calcula-
tion of the first-order energy shift induced by the
anharmonic perturbation U is straightforward.
We exploit the permutation symmetry of the (fla-
vor-spin) SU(6) XO(3) three-quark states lg& to
reduce the problem to a calculation for the p os-
cillator alone.'

]t f f ~ [a,(p)ao(&) —a (~)ao(p)]

t]&2' ——2([a,[p]] + [a,(X)]') [56,2']

[20, X']

It22 p =a, (P)a, (~)

relations of the creation and annihilation opera-
tors. As this latter method does not appear to be
widely used we give an example from the N =2
level. Table V gives the correctly normalized
monomials, constructed by the procedure given in
Sec. II, for the five X=2 multiplets of the har-
monic-oscillator model. The energy shift for the
[66, 0'] multiplet is given by

~&[.....]=-'[,&0 IGa'(»]']'U(~&~)la'(p)]'
I o&„&o I o&, +,&o l([a'(p)]'}'U(~&~)

I 0&,.«I [a'(»]'
I 0&.

+,(o I
U(nap)[a'(p)]'

I o&„&ol([a'(»]']'
I o&, +,&o I U(~~~)

I o&,.&o IGa '(~}]']'[a'(»]'I 0&.] . (3.2)

Clearly,

.(0 I
[a'(»]2

I 0&. =.&016a'(»]2]' I 0&. = 0

and

,(o I o&, =1,
while by repeated use of the commutation rela-
tion [a„a,.]=5,& we readily find that

,(ol'l '(»]')'[ '(»]'lo&, =6,
so that

~z„..., = —.',(o I U(wp) I o&,

+-'.&olu '(»]] «~p}[ '(p)]'Io&, .
(3.3)

Q
,(0 U(v 2p) lo&, = „, d p U(&2p}e ', (3.4)

where as usual o.'= (3Km) ', while, with just a
little more work,

—.'.«Iua'(p)1'&'U(~2p)[a'(p)]' Io&,

Q 3 4 2 27

d pp U(W2p)e

3~' 22
d'p p'U(v 2p)e

+ „, d p U(W2p)e
9 @3

(3.6)

Isgur and Karl ' define parameters a, b, c as fol-
lows.'

The right-hand side can be expressed in terms
of the Gaussian moments of the potential as noted

by Gromes and Stamatescu and by Isgur and
Karl. ' Thus, trivially,

3 2 2

a= „, d'p U(v 2p}e

I =,spaz
d'p p'U(~&p)e" ',3A 3 2 ~22

(3.6)

(3.'I)
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3cP 3 4 pc=,«d p p U(v 2p)e~ '

yielding the result

(3.8)
[56e1 ) 0 + SQ 11

3
I 56e3") 0 + SQ

Et:70,2-) =Ep+ SQ —
5 ~.

(3.i 8)

(3.ie)

(3.20)

bE(56,0+~
—ga- b+ 3c .5

Thus we may write

(3.8) The remaining five N = 3 multiplets depend on a
new parameter d, where

E„,0-) =E, +2Q- ~, (3.io) SQS
2 2d= „, d pp V(W2p)e (3.2i)

Ep = SBz + 3(d + a )

1Q=e ——,'a+ 3b,

6 = —~a+3 b - 3c.5 5 1

(3.ii)
(3.12)

(3.i3)

If we define the quantity

5= 2b —5C+~d~ (3.22)

the remaining perturbed energy levels at N= 3
may be written

The remainder of the N=2 results are readily
obtained:

E) +)
—Ep+2Q ——b, ,

E)56,2+~
—Ep + 2Q —gA,2

E„,,+ E, +2Q —,n,

E&20 z+&
—Ep+2Q,

(3.i4)

(3.15)

(3.i6)

(3.i V)

2.2—

L7oz ]

I56,s ]

~ z.o-
CD

t.zo, ~+]

f56, I ]
E70,Z+]

CAa
& I.B-

Lsez ]
t 70,0

[~e,o+]

FIG. 1. Spl.itting pattern caused by the anharmonie
perturbation U for the M= 2 multiplets and some of the
N= 3 multiplets using the parameters of Ref. 7.

giving the pattern shown in Fig. 1. We shall show

in Sec. IV that this simple splitting pattern has a
group-theoretic explanation.

We now consider the corresponding calculation
for the eight N =3 multiplets. The orthonormal-
ized monomials are given in Table VI. Note that
for the two degenerate [VO, 1 ] multiplets we have
taken the particular o&hogonal combinations of
the monomials that are given by (2.32} and (2.33).
As has been noted earlier, ' ' three of the per-
turbed X=S multiplets depend only on the param-
eters of the N& 2 levels. Thus

E„.. .=E,+ SQ-~7~+-,'5,
1p+SQ 6+ 35

E(20 i- =Ep+SQ- 5&+a&~

E(70 g ) =Ep + SQ ~h+y629 7

+Br(5 —k&)]'+4&']'"

(3.23)

(3.24)

(3.25)

(3.26)

with the two (previously degenerate) [VO, 1 ] multi-
plets mixed and split by the perturbation.

After inclusion of the hyperfine interactions,
calculated perturbatively to lowest order in &„~,
Isgur and Karl' were able to obtain a reasonable
phenomenological description of the ~= 0, 1, and
2 levels with E,=1150 MeV and g =Q =440 MeV,
in the notation of Ref. V (rather than Ref. 6). Us-
ing these values, we noted in I that the mean
mass of the nonstrange sector of the [56, 1 ],
given here by Eq. (3.18), is around 1985 MeV
close to the mass of the gD35 at 1930+ 20 MeV.
It remains to be seen what effect inclusion of
the hyperfine interactions for this multiplet
has on the prediction, and this is under investiga-
tion, but given the simplicity of the model, the
result is remarkably good. Note also that, of the
three levels given by Eqs. (3.18)-(3.20), the
[56, 1 ] multiplet necessarily lies lowest, as indi-
cated in Fig. 1.

IV. ANHARMONIC SYMMETRY BREAKING

The introduction of anharmonic two-body poten-
tials into the harmonic-oscillator model of the
baryons represents a breaking of the symmetry in
the U(6} degeneracy group sector. The aim in
this section is to amplify this assertion. In par-
ticular, we shall show how the first-order mass
splittings (3.10)-(3.1V) for the N=2 level, derived
in Sec. III by explicit state-function and operator
techniques, can be understood both qualitatively
and quantitatively as a mass formula of the Gell-
Mann-Okubo type. We also show how these tech-
niques can be usefully applied at the N =3 level.



ROLE OF Sp(12,R) IN THE HARMONIC-OSCILLATOR QUARK. . . 205

TABLE VI. The correct orthonormalize(I monomials for the X=3 states.

{fa,(&)]3 —3[a,(p)Pa, ()t)) [56,3 ]

{[a,(p)] —3[a,()t-)] a,(p)) f20, 3 ]

~ {[at(p)] + [a+()))] at(p)j

422 ~ ~ {a (~)at(p) a (p)at( t)) a ()t)

42 =
~&

{a+()()ao(p)—a (p)ao()))) a, (p)

E70, 2-]

t])I,"=
~10

{([a'(p)] —fi'(~)1')a,'()()+2[a'(p) s. '()t)]a,'(p)) [55,1-]

~1( =
2~]Q {(f& (P)] [a (~)] )a+(P) —2[a (P) ' a (&)]a,()())

~ {[a (p) a (p) —3a ()() ' at(&)]a, (p)+4[at(p) a~(X)]at()t))
f70, 1"]

~ {[a {)t) a (X) —3a (p) a~{p)]at{)t)+4[at{p) a~(X)]at(p))

+U — p —2 (4.1)

where

~(v 2 p) =g P2, (p ' p)" (4.2)

and P2„are arbitrary coefficients independent of
p.

The justification for this form, quite apart from
the requirement that it be totally symmetric and
composed of two-body contributions, is twofold.
Firstly, a very large class of potentials may be
expected to have an expansion of the form (4.2),
which is consistent with a perturbation scheme
based on the dominant harmonic term having n=1.

To bring about this understanding it is necessary
to consider not just the degeneracy group U(6) but
the spectrum-generating group Sp(12, R). This
follows from the fact that the anharmonic pertur-
bation is a function of all twelve components of
the vector (a„) through the dependence of the po-
tential upon j and )t. and hence upon a(p), a (p),
a()t.), and a ()t). It is assumed that this potential
may be cast in the form

v(p, x)=tt(&2p)+U(- ~2 p+( ) x)

Secondly, without involving nonlinear realizations,
the Sp(12, R) algebra (2.7) of the operators (2.6)
is associated with, a Fock space in which only
multinomials, bilinear in aA, have a well-defined
action.

It follows that

(4.3)

where at each order n, the perturbation V' "' is
realized as a homogeneous polynomial in p and &,

and hence in a„, of degree 2n. The strengths of
each order are governed by the values of the dis-
tinct coupling constants P2„The sym. metry of
(4.1) and the form of.(4.2) ensure, furthermore,
that each term V " transforms as a component of
the totally symmetric tensor representation (2n)
of Sp(12, R).

It is necessary, in order to achieve a quantita-
tive understanding of the level splitting, to deter-
mine the transformation properties of the various
terms V "', with respect to the subgroups of
Sp(12, R) discussed in the previous sections. By
construction, V '" is both an O(3) and anS, singlet,
transforming as [0]=1 and (3) = S, respectively.
With regard to its O(2) properties, it is conven-
ient to make use once more of the (F, 7]) basis
(2.20). In terms of these vectors,
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= 4. [(F &'+2&'a+R'6)" +(~F r. '+2&'6+~ '6'6)" +(~ 'f'8+2''i+~a'i)"], (4.4)

where v = e ' "". Hence,

(4.5)

(4.6)

(4.7)

etc.
The first of these terms is just the familiar

harmonic term

V = —,(p p+ X. X), (4.8)

which is both an O(2) and an O(6) singlet. How-

ever V' is not an O(6) singlet, although it is a
linear combination of O(2) singlets. It is in fact
a linear combination of terms transforming as
O(3) xO(2)-singlet membe'rs of the O(6) represen-
tations [4]=105 and [0]=1. The term V' is not
even an O(2) singlet, involving as it does a term
transforming as the S3-singlet S state of the O(2)
representation [6]=26.

In order to identify the Sp(2, R) content of V "'

it is merely necessary to expand f and p, in
terms of the annihilation and creation operators
a„=a&„distinguished by &=1 and 2, respectively.
Since p =(I/v 2o'.)[a(p) + a (p)] and &= (I/~2o')[a(&)
+ a '(X)] the expansion of V

" yields a monomial
of degree 2n which is totally symmetric under
permutations of the indices n. It follows that V "
transforms under Sp(2, R) as a sum of components
of the symmetric representation (2n). In the
terminology appropriate to the locally isomorphic
group SO(2, 1) this corresponds to the statement
that V

" has pseudospin [n] =2n + 1.
It should be noted that not every component of

V " contributes to the values of the energy levels.
Quite apart from the requirement used in con-
structing V' " that it be an O(3) x S~ singlet, the
only effective component must also be a U(1) sing-
let. This ensures that the third component of the
pseudospin-of the operator is zero. Any other
value merely gives a vanishing contribution to the
matrix elements (N~ V' " iN). In terms of the
monomial constituting V' " this condition corre-
sponds to the fact that the effective component,
besides being symmetric under the interchange of
creation and annihilation operators, is of the same

degree in these operators taken separately. In
the case n=1, for example, this implies that the
effective part of V', given in (4.8), is simply
proportional to the Hamiltonian (2.2).

The fact that the operators V " are not, for
each value of n, associated with a single irredu-
cible representation of O(6) makes it convenient
to consider other subgroups of Sp(12, R). These
include the group Sp(6, R) with generators:

ab ab
&Q S)N e jg PaQ5 Sfew 'bg (4.9)

which, thanks to the Wigner-Eckart theorem, fac-
torizes into the product of a reduced matrix ele-
ment, signified by (ii2n i (), and an appropriate
Clebsch-Gordan coefficient. There are many ap-
proaches to such calculations. Here we outline
a method discussed in detail elsewhere which
leads to an algebraic formula of the Gell-Mann
Okubo-type, together with a very simple method
of checking the results.

At each level N the relevant operators are those
coupling to the Sp(12, R) product:

(N) x(N) —(2N) +(2N 2) +(2N 4)

+(2N-1, 1) +(2N- 3, 1) + ' ' '.
(4.11)

with I', Q =1, 2, . . . , 6. This appears in the label-
ing chain.

Sp(12, R) &Sp(6, R) xO(2) DSp(2, R) xO(3) xO(2)

3 U(l) x SO(3) x S~ (4.10)

which is an alternative to the chain (2.18) of Sec.
II. That (4.10) is useful in dealing with V "' is a
consequence of this operator transforming as an
S3 symmetric, O(3) singlet, pseudospin 2n+ I,
component of the Sp(12, R) representation (2n).
The branching rules of Appendix A then ensure
that this component necessarily belongs to the
irreducible representation (2n) of Sp(6, R).

Having established the transformation proper-
ties of the terms in the perturbation expansion
(4.3) of the potential, it is necessary to discuss
their role in determining the breaking of the de-
generacy at each level Ã. This involves calculat-
ing
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The operators transforming as (0) =1 and (2) =78,
corresponding to n=0 and n=1, produce no split-
ting, since the former gives an overall shift in
energy bE''=(IIOIr), and the latter is just a har-
monic term giving bE =Cabal)& I

I2 I I)» where
C&/lj, the first-order Casimir of U(1), is equal
to +. At the N= 0 and 1 levels there are no fur-
ther contributions as can be seen from (4.11).
However, the M=2 level is split by the single
operator V', transforming as (4) = 1365 of
Sp(12, R), while the N= 3 level is split by the
operators V' and V, transforming as (4) =1365
and (6) =12 376 of Sp(12, R).

Concentrating on the n =2, lowest-order anhar-
monic term, this is labeled with respect to the
groups Sp(12, R), Sp(6, R), Sp(2, R), U(1), O(3),
O(2), SB by

(4}, (4&, (01, (0}, )01, (3)

=1365, 126, 5, 1, 1, 1, S. (4.12)

+ABcD —1 AB& cD) +( Ac& BDj+L AD& Bc }' (4.13)

The projection onto the (126, 5, 1, 1, 1) state is
described in Appendix B. The resulting operator
can be expanded in terms of the set of quadratic
Casimir operators of Sp(12, R) and its subgroups.
The algebraic formula involves several different
labeling chains including those containing O(6),
U(6), and Sp(2, R) already mentioned. The em-
bedding diagram required is given in Fig. 2.

It is a straightforward task to construct the cor-
responding tensor operator in the enveloping alge-
bra of Sp(12, R). It is a symmetrized second-or-
der product of generators. An arbitrary compo-
nent of (4) =1365 is simply

Thirteen different subgroups are involved and
Table VH defines these subgroups by specifying
their generators explicitly. In addition, the ex-
pansion of Vs as a component of &~c~ involves
at least one of the operators

and

These are invariants of the groups Sp(4, R) &&O(3)

and Sp(6, R) XO(2), respectively, in that they
commute with the generators of these groups.
However, they do not belong to the enveloping
algebra of these groups and are thus not Casimir
operators.

The notation, definitions, and eigenvalues of the
quadratic Casimir operators and of Z and Z' are
given, along with the method of computation of the
eigenvalues, in Appendices A and B. Suffice to
say that typically the quadratic Casimir operator
of Sp(12, R) is given by

Cp =J J "S~Sec . (4.16)

The eigenvalues Cz(12) may be evaluated, for
example, by making use of the finite-dimensional
representations discussed in Sec. II and defined
by (2.8) and its generalizations. This implies
that

C: a ao. . .-J J [S,[S,as~. . .]]
= Cz(12) a~~. . . . (4.17)

Since the results depend only on the commutation

Sp(12)

Sp(6) x 0(2) Sp(4) x 0(3) Sp(2}x0{6}

Sp(2) x

Sp(2) xU(3} U(l) xSp(6)

U(l) x 0(3)x 0(2) Sp(2)xO(3)x SO{2)

U(l }xU{3)

U{I)x 0{3)x SU(2)

U(l) x 0{3)x S3
(3)xSO{2)

FIG. 2. Sp(12) labeling chains.
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TABLE VII. Subgroup generators. Index notation as
in text (A= ia&, I=ia, P=—i&, 0=a&) and metric tensor
JIJ= ~ip'ab.

Group Generators

U(2)

U(6)

Sp(4)

Sp(6)

O(2)

O(3)

O(6)

U(&)

Sp(6)

E gIJ

«iamb~"

EIJ =~I2 Jf

~Ie Jg &
IJ'

~Ui Yj~

Sg~gb6

O@)b6

Oift~6 "

OIJ ~I~Jg& EIJ' EJI

P(OSf jf+Oi~~2+tOif Jg tO;2~f)

Jm E~J+ Jm«~I

relations, they are identical with the finite-di-
mensional compact case yielding

C2(12& =2+ A.„(&„+14-2r)
r

in the representation (&) =(Xq, X2, . . . &, as given
elsewhere. ' "

In terms of these eigenvalues, the resulting
mass formula is

nE"'=(1141 l&(3c,(1].+ 6C)(2] +12C2(3] —4C2(3']

——,'C, (2&- C,(4) -C, (6) + 3C,(6'&

C2(12& C2[2] —3C2[3] + Z) . (4.18)

Several aspects of this formula should be noted.
Firstly, the use of overcomplete, noncommuting
labeling chains is familiar from similar studies of
symmetry breaking in nonrelativistic SU(6) mod-
els,"where the labeling structure is

example, at the N =3 level the formula fails for
the [70, 1 ] states which may be diagonalized with
respect to O(6), as in Table 1, but not simultane-
ously with respect to Sp(6, R). This cannot be
avoided and is a result of the proliferation of
subgroup chains and labels, necessitated by the
nonmaximal nature of the embedding of the physi-
cal symmetry group U(1) x SO(3) x S3 in Sp(12, R).

The validity of (4.18) is easy to verify once it is
realized that the expansion of V' in the form of
components of (4.13) can only involve quadratic
Casimir operators and Z. This is done by ex-
panding Vs' in terms of the complete set of 14
operators with arbitrary coefficients. These are
then fixed by noting that (N1 V 1Q is necessarily
zero for all the states bearing the Sp(12, R),
Sp(6, R), Sp(2, R) labels (1), (1), (1); (1 ), (2), (2);
(1'&, &2&, &o&; &1'), &1'&, &2&' &1'), &1'&, &o&; &2), &1'&, &2&;

(2&, (1 &, (0); and (2), (2), (0). Even the last seven
of these sets of labels provides enough informa-
tion, through 18 conditions, to fix and check the
coefficients.

Notice that the formula for 6&' has therefore
been derived in two different ways. The first
method involved the explicit construction of V'

and its reexpression in terms of quadratic Casi-
mir operators. The second approach determined
the coefficients of the Casimir operators by taking
matrix elements of V' between specific states of
the N=O, 1, and 2 levels. The equivalence of
these two approaches demonstrates explicitly that
the reduced matrix element (11 11& is indeed inde-
pendent of the state label N. This is character-
istic of a spectrum-generating algebra.

Returning to the application of (4.18) the physi-
cal eigenstates for the N=2 and N=3 levels are
identified, along with all the appropriate sub-
group labels and operator eigenvalues, in Tables
UIII and IX. The splittings for N =2 are precise-
ly those of Sec. III with

&1141 I& =-~n = 6(-,"--'f +~.), (4.19)

SU(4)z„,x SU(2) „„,x U(1)„ Ir x SU(2)~

where a, b, and c are the familiar Isgur and Karl
parameters (3.6)-(3.8). The total effect of the
anharmonic perturbation on the N =2 states is
given by

SU(2) ~ x U(1)r x SU(2),
~g(0) + ggQ) + ~g(4) (4.20)

where Wigner's SU(4)I„, and the familiar SU(2)„„,
are used to place different isospin and hyper-
charge submultiplets into a larger multiplet. The
overcompleteness means here that for Sp(12, R),
just as for SU(6), the formula is only useful for
states which are associated with a unique irredu-
cible representation of each subgroup. Thus, for

and 6E' ' is given by (4.18). The correspondence
between the parameters of Isgur and Karl and the
reduced matrix elements is
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& ~
~0 II&=-~=-RD- (Sm+ 3~),

( i i2 i [
)=— a + 5 =—II —co

and & I l4l I& is given by (4.19).
As we established earlier, in the N =3 case,

there are two anharmonic reduced matrix ele-
ments ( ~ ~4 ~ ~) and ( ~

(6 [)) . In fact, as was demon-
strated explicitly in Sec. III, for some of these
states the Clebsch-Gordan coefficient multiplying

( ~ ~6 ~ ~) vanishes, so that the level s littings are
again given by (4.18) in t'er ms of ( ~

4
~ ~ ) alone.

One of the zeros has the same origin as that ap-
propriate to the N= 2 state [20, 1'] for which AE

=0 by virtue, as explained abpve, pf this state
carrying the Sp(6, R) label (1 ) =14. The same
argument implies that ~~' '=0 for the N = 3 state
[70, 2 ], which carries the Sp(6, R) label (2, 1)
=64 and therefore decouples from V' which trans-
forms as a component of the Sp(6, R) representa-
tion (6) =462.

Other zeros owe their origin to the Sp(6, R},
subgroup of Sp(12, R) not previously used in this
or the preceding sections. However, the fact
that, for the physical states, (P ~

V(p, ~)
~ @)

= 3(g ~
U(v 2p) Q) implies that matrix elements

may be calculated merely by looking at the expec-
tation values of (p ' p)". In the case n=3 it is clear
that the Sp(6, R}, representation associated with
V' is (6) =462 and that at the N=S level, only
those states with maximal Sp(6, R), assignment
(3) =56, may couple to V'~'. For the states con-
structed in the previous section in terms of a (l')

and a (0) it is only necessary to examine the lead-
ing power in a (p). Any factor [a (l')a~(17)], leads
to the total Sp(6, R) and Sp(6, R), being nonmaxi-
mal: the state [70, 2 ] is of this type. Of the re-
maining monomials, (R(K'" ' P" ~)has leading
power p and is therefore associated with maxi-
mal Sp(6, R), whereas s(f ' 0'') has leading
power p" and is therefore nonmaximal. States
of this latter form at the N= 3 level are the
[56, 1 ] and [56, 3 ] states. Thus the [VO, 2 ],
[56, 1 ], and [56, 3 ] states decouple from V"'.
The level splittings produced by V' ' can be cal-
culated from (4.18)-(4.20) and the results are
indicated in Tables VIII and IX. They agree with
the explicit state-function and operator calcula-
tions of Sec. III.

V. CONCLUSIONS

Dalitz, Horgan, and Reinders have looked in
detail at the question of the assignment of the
LU)85(1930) to the N=S [56, 1 ]. Instead of just
looking at mean masses of multiplets in the har-
monic-oscillator quark model, they attempted to
do better than that, and obtained a sum rule re-

lating the mass of the ~85 of the [56, 1 ] to
masses of known 4 states, which they assigned to
the K=2 and N=O 56 multiplets. Specifically,
they give the result

M(~35) =—', M(aESV) +I'(~31)
+ 6M(~33*)——,'M(~33) (5.1)

relating the masses of the N= 3 [56, 1 ], the N
= 2 [56, 2'] and [56, 0'], and the N = 0 [56, 0']
multiplets. Identifying the ~37(1930) and
~31(1940) as belonging to the N = 2 [56, 2']
and the ~33(1690) as belonging to the N=2
[56, 0'], they predict

M(~35) = 2088+ 25 MeV, (5.2)

some 150 MeV higher than the candidate
~35(1930). The sum rule (5.1) is derived by a
spin average over 4's within the N = 2 band 56's,
and the right-hand side is actually independent of
the magnitude of the spin-orbit effects which they
consider. In general, however, spin-orbit forces
will be expected to mix the N=3 band ~35's of
the [56, 1 ] and [70, 2 ]: Dalitz, Horgan, and Rein-
ders estimate that such mixing will be small. At
first sight, therefore, it seems that this sum rule
provides a better, and more specific, test of the
assignment of the ~35 to the [56, 1 ] than does
our less ambitious procedure of estimating mere-
ly the nonstrange mean mass using the parameters
of the Isgur-Karl model. However, the whole
analysis of Ref. 17 is dependent on the neglect of
spin-tensor forces. Such tensor forces can mix
4 states of the same J within the N=2 band, and
also, of course, they can mix the ~35's of the
[56, 1 ], [70, 2 ], [56, 3 ], and [70, 3 ] N=3 multi-
plets. Since the analysis of Isgur and Karl sug-
gests that spin-tensor forces are indeed impor-
tant in determining the masses and mixing of the
individual states of SU(6) multiplets, the status
of the above prediction (5.1}for the ~35 is ob-
scure. In fact, the detailed predictions of the
Isgur-Karl model for the N =2 states indicate
that the ~31(1940), classified by Dalitz, Horgan,
and Reinders as a pure [56, 2'] state, is actually
an almost complete mixture of [56, 2 ] and [VO, 0']
basiS states.

In view of all these uncertainties, it seems bet-
ter to retreat to an examinatipn pf the zerpth-or-
der nonstrange mean masses of the N = 3 multi-
plets for a first indication of whether or not an
assignment of the ~85 to the N=3 [56, 1 ] is at
all plausible. In this respect, therefore, our
analysis of Sec. III is mpre akin tp the earlier
analysis of Hprgan, who discussed such mean
masses in the context of his (flavor) SU(6) mass
fits. He predicted the central mass value of this
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multiplet to be around 2080* 50 MeV, about 100-
MeV higher than our value for the nonstrange sec-
tor. Given the fundamental differences of ap-
proach of the Isgur-Karl Hamiltonian, which in-
cludes a flavor-SU(6)-independent anharmonic
perturbation U together with spin-tensor interac-
tions, and of Horgan, who introduces flavor-
SU(6)-dePendent anharmonic perturbations and
does not include tensor forces, the two estimates
are surprisingly close. In fact, the algebraic
structure of our results for the [56, 1 ], [56, 3 ],
and [70, 2 ] multiplets may be obtained from
Table I of Ref. 16 by identifying the parameter
a4 with the (in principle, independent) parameter

Phenomenologically, Horgan found the val-
ues

and

a4 ——2000 MeV

b4 —2100 MeV,

thus lending support to Isgur and Karl's (and our)
less general treatment of anharmonic perturba-
tion s.

In contrast to these approaches, all based on
the nonrelativistic harmonic-oscillator quark
model, Cutkosky and Hendrick"'" investigated
the status of the [56, 1 ] in a quark model based
on the string picture pf confinement. In the three-
quark version of their model, they concluded that
the mean mass of the lowest [56, 1 ] state was
some 200 MeV too high for the ~35(1930) to be
accommodated in this multiplet. They obtained
qualitative agreement for the mean positions of
other SU(6) multiplets, but no attempt was made
to make detailed fits including hyperfine splitting.
In terms of this model, therefore, the ~35(1930)
appears to be a good candidate for a new type of
baryon, in which some gluonic degrees of free-
dom are excited.

What conclusions can we come to? It is cer-
tainly true that the Isgur-Karl Hamiltonian has
had more success than any other quark model in
fitting the enormous amount of baryon data avail-
able, for both positive- and negative-parity
states, to theN= 2 and &= 1 oscillator bands, respec-
tively. In view of this, it seems entirel. y reasonable
to take this model as the most reliable guide to the
spectrum, and examine the model's predictions for
the Ã=3 states. In the approximation of neglec-
ting hyperfine interactions, taking Isgur and Karl's
parameters determined from their fit of the N
=0, 1, and 2 levels we predict a mean mass of
the nonstrange sector of the [56, 1 ] only 55 MeV
above the quotecf mass, 1930+20 MeV, for the
~35. ' While it is clear that hyperfine interac-
tions will mix and shift the masses of the 4's of

the K=3 band, it seems to us impressive that
such a constrained and simple model as that de-
scribed here can get so close to the mass of the
~35, with no "fine tuning" of the three param-
eters &0, Q, and &. We therefore conclude that
the ~35(1930) does not constitute unambiguous
evidence for some new degree of freedom inside
baryons.
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APPENDIX A: BRANCHING RULES AND
CASIMIR INVARIANTS

The treatment of tensor representations L&] of
U(n) by Young-diagram techniques is familiar
from many texts' "and will not be repeated here.
Irreducible tensor representations [X] and (X) of
O(n) and Sp(n), respectively, correspond to Young
diagrams with & [n/2] rows [where n is even for
Sp(n)]. Here and in Appendix B we drop the dis-
tinction between the varipus real forms of a given
complex algebra, since the results for finite-
dimensional representations are the same. The
tensors are traceless with respect to the apprp-
priate (symmetric or antisymmetric) metric ten-
sor. In the case of O(n), there are also associated
pseudotensor representations [X]*: If the [n/2]th
row length is nonzero, for n even, then [X]* is
equivalent to [X]. The following branching rules
for the symplectic and orthogonal groups have
been derived

Sp(st) a Sp(s) xO(t): (X) =g (i/B) x[((X/A) c g)/D],

(Al)

Q(st) &Q(s) x Q(t): [g]=Q [g/D] x [((X/C) o &)/+1

(A2)

Q(st) &Sp(s) xSp(&): [&]—g'(l/B) x(((&/Q) r)/B) .

(A3}



ROLE OF Sp(12,R) IN THE HARMONIC-OSCILLATOR QUARK. . .

Here, the notation/A, /8, /C, and /D signifies
division by all admissible elements of the follow-
ing infinite collections (in Young-diagram nota-
tion):

, +('legs = arms+i')

taken to be

[X]=(-1)" [X—h]*, length ~h~ =2p —n, (A4)

(&) = (- I)"(&—h), length
~

h
~

=2P —n —2 .(A6)

The eigenvalues of the quadratic Casimir in-
variants of an irreducible tensor representation

[A], or (X), of U(n), O(n), or Sp(n), are easily
given in terms of the Young-diagram row lengths

With the generators normalized as in Sec. II,
the Casimir C2[O(n)]=5 Or„. 6 OBD, etc. , and
the eigenvalues are' ' '

+ (even columns')

U(n): C,(nj=g ~„(~„+n+1-2~),
r

O(n}: C2[n] = 2 P X,(X„+n —2r},

Sp(n): C2(n) =2 g &„(&„+n+2—2t') .

(A6)

(A7)

(A6)

, —
t 1, +

APPENDIX B: DERIVATION OF ALGEBRAIC MASS
FORMULAS

... &
+ ('Orms=legs+]')

+ ('even rows' )

As explained in Sec. IV, the derivation involves
the explicit construction of the tensor operator
corresponding to V' in terms of a bilinear ex-
pression in the generators. An arbitrary compo-
nent of (4) -1365 was given as

XABCD (SABt SCDj + (SACI SBDj +(SADt SBCj
For a given term p, in (X/4 or C), g runs over
all diagrams with the same number of boxes
as p, , and the product p o g is the Kronecker pro-
duct of the appropriate permutation group repre-
sentations whose evaluation corresponds to the
generalization of the familiar rules

for the permutation group S3. In these reductions,
nonstandard Young diagrams may arise. For
these diagrams, there are modification rules
whereby a continuous "boundary hook" h (a line
of boxes in contact on the surface of the diagram,
starting with the first box in the last row) of a
certain length is to be removed. If h, beginning
in column 1, row p, and ending in column x, can
be removed to reveal a standard Young diagram,
then the contribution of the original diagram is

In the Sp(6) &&0(2) basis, representing A = t'a& by
Pa the 126&&1 submultiplet is clearly

ab cg
~PQ g S MPagb Re Sg + Pg RbQc Sf Pa8bQc Rf &

(H2)

and similarly, in the Sp(2) XO(3) basis of Sp(6),
replacing I' by i&, the 5xl submultiplet is

Zngrg (Ytntgttrtg + i Frnagttg+ Ftnigttgtr)6 6 ~ (B3)

The K3 —0 component, and thus the desired tensor
operator, is

(B4)

Using these definitions, we can now rewrite
V' in terms of various combinations (S», ScDj,
each of which is a U(1) XO(3) &&O(2) invariant.
There are fourteen independent ways of using the
tensors & ', 6, and & ~, ensuring &=1, 2 equally
often, to make such invariants. We shall not
enumerate them, but in Table VII we identify ex-
plicitly the generators of the thirteen subgroups
of the embedding diagram in terms of whose
Casimir operators, together with one of the in-
variants Z or Z', the fourteen tensor invariants
can be expressed. In this table the normalization
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is as in Appendix A, so the Casimir eigenvalues
can be computed once the subgroup representa-
tions are known. The result of this algebra is the
mass formula quoted in Sec. IV.

It is of some interest to consider in more de-
tail the invariants Z and Z', given by (4.14) and
(4.15): Z is explicitly an Sp(4, R) XO(3) invariant,
while Z' is an Sp(6, R) && O(2) invariant, and
simple manipulation of the definitions (the proto-
type of all the rearrangements necessary for the
formula) shows that

Z —Z ' = C2[O(6)] + Cp[O(3)] —4C2(U(3)') . (B5)

We shall treat Z and Z' together, by assuming
that the symmetry is Sp(s) XO(t), and denote this
generic form as A.

Like C2, A is a bilinear operator (S, S'] and
must be evaluated on tensor operator states T by
means of double commutators [S, [&', T]]
+[8', [S, &]]. We define

(a6)

for u, p =1, 2, . . . , s, and I, J, . . . =1, 2, ~ ~ ~, t
where G and J are the symmetric and antisym-
metric metrics of O(t) and Sp(s), respectively.
We find, for symmetric tensors XI,XI J'g, . . . ,

[W, X,.] =-2(s+t)X...
[&,Xg~ g a] =-4(s + t)X~~ ~ a

—4G~~X~ ~ G

+4J p'I„~,J'"~,

[~,x...&„]=-6(s+t)x...~„
—4GuXi ~~~G —4GqgXiotl vr G

4GrrxrsZBVvG +4~ aXlvsr&~&

and so on. If we consider only the stretched states [for
example, inthe O(6) case(a (g) .a (q))'(a, (g)) '"]
neither the J" traces, nor the G traces
[other than those corresponding to (a (g) X(q))'
in the original tensor], can contribute, and we have
explicitly

[&,X ]=-4(s + t)X,

[A, Xla, &8&~] =-6(s + t)xz„Jar„,
[&, G X, ~~„]=-(6s +10t +6)G' X,

These eigenvalues are set out for X=2 and 3 in
Tables VIII and IX.
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