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Majorana neutrinos and magnetic fields
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It is stressed that if neutrinos are massive they are probably of "Majorana" type. This implies that their magnetic-
moment form factor vanishes identically so that the previously discussed phenomenon of spin rotation in a magnetic
field would not appear to take place. We point out that Majorana neutrinos can, however, have transition moments.
This enables an inhomogeneous magnetic field to rotate both spin and "flavor" of a neutrino. In this case the spin
rotation changes particle to antiparticle. -The spin-flavor-rotation effect is worked out in detail. We also discuss the
parametrization and calculation of the electromagnetic form factors of Majorana neutrinos. Our discussion takes
into account the some~hat unusual quantum theory of massive Majorana particles.

I. INTRODUCTION

The growing presumption that neutrinos may ac-
tually be ngassive particles' makes it interesting
to reexamine their properties, especially in the
light of the modern gauge theories of weak inter-
actions. The "classical" questions are: how do
neutrinos interact with (i) electromagnetic fields,
(ii) gravitational fields, and (iii) matter (absorp-
tion and coherent scattering). Here we shall be
concerned with an aspect of case (i)—the interac-
tion of neutrinos with magnetic fields. It has been
realized for a long time' that the weak interactions
should induce a neutrino magnetic moment of,
roughly,

eG~m„,

where G~ is the Fermi constant, e is the proton
charge, and m„ is the neutrino mass. The effect'
of a nonzero moment is, of course, to rotate the
neutrino's spin when it encounters a magnetic field.
There has been interesting speculation in the liter-
ature' about whether or not there exist somewhere
in the universe (or laboratory) strong enough
fields to give observable effects with moments as
small as those given by (1.1). We shall not focus
on this matter here. Our goal is'to illustrate an
interesting theoretical aspect of neutrino spin
rotation, in the case wherein neutrinos are de-
scribed by Majorana fields. The usual scenario
is then not directly applicable, since a Majorana
neutrino cannot have a magnetic moment. His-
torically the possibility of neutrinos being of Ma-
jorana type has generally been thought very exotic,
even though it was recognized that the interactions
of a zero-mass Majorana neutrino are indistin-
guishable from those of a chirally projected Dirac
particle. Even if the neutrino has small mass the
differences are extremely difficult to detect. %'e

would like to emphasize that the possibility of the
usual neutrinos (assumed massive) being of Ma-

jorana type is, rather than an isolated curiosity,
actually the most probable situation. There are
two reasons for this. The first is that the usual
neutrinos which emerge' from grand unified the-
ories like SO(10) are of this nature. The second
reason is perhaps more profound and is inde-
pendent of which gauge theory turns out to be most
nearly correct. It is simply that the most general
description of spin-& particles is in terms of two-
component Weyl or van der Waerden spinors,
which amounts to the Majorana description. In a
fundamental weak-interaction theory it has come
to be accepted that it is unaesthetic and unnecess-
ary to make any ad hoc assumptions about the C,
P, and 7.' prop|. rties of the Lagrangian: the theory
itself will decide on which (if any) symmetries of
this type should emerge. A four-component Dirac
description of a massive spin- ~ particle can be
thought of as an amalgamation of two two-com-
ponent spinors in order to achieve a linear trans-
formation property under parity. Therefore, it is
unnatural to expect that the fundamental fields of
the theory be Dirac fields: The Dirac theory is a
special case of the theory of two massive Weyl
fields. ' (The Majorana description of a massive
Weyl field amounts to halving the degrees of free-
dom of the Dirac theory by imposing a constraint. )

If.one grants the force of the above argument it
appears that'neutrinos should not suffer any spin
rotation in a magnetic field. However, this con-
clusion is not true. As we shall see it is possible
for a pair of Majorana neutrinos to have a Aans-
ition moment, roughly analogous to the Z -~ hy-
peron transition moment. This will enable a neu-
trino of a given spin to rotate into another neutrino
of different spin in the presence of a magnetic
field. For this to happen the magnetic field must
be inhomogpneous either in space or time. There
is another interesting difference between this spin
rotation and the spin rotation for a Dirac neutrino.
In the case of a massive four-component Dirac
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neutrino it is expected that lepton number is con-
served. An antineutrino which, for example, has
been produced in P decay will after spin rotation by
a magnetic field lose some of its effectiveness for
producing e"s, p "s, etc. , and not gain anything
in return. [This is true in an SU(2)(3U(a) gauge
theory of massive Dirac neutrinos. ] On the other
hand in the present case the effect of a magnetic
field on an antineutrino produced in P decay will
be to enhance its strength for producing e 's, etc.:
In the present case the magnetic field rotates par-
ticles into antiparticles. In fact our original mo-
tivation in examining this question arose from an
attempt to upgrade a neutrino-to-antineutrino-os-
cillation "thought experiment" (which was shown'
to be sensitive to new CP-violating phases) to the
status of a process which could conceivably be ob-
served in an astrophysical environment.

In Sec. II the kinematics of massive two-com-
ponent neutrinos is briefly reviewed. The general
electromagnetic form factor is presented and it is
shown that the diagonal moment-type form factors
vanish identically. More discussion on the. theory
of Majorana neutrinos is given in the Appendix.

In Sec. III we calculate the matrix element for a
neutrino of one type to transform to a neutrino of
opposite spin and different type in the presence of
an inhomogeneous magnetic field. For illustration
we adopt a particularly simple type of inhomogen-
eity —a space pulse —and construct an effective
four-level Hamiltonian to approximate the system.
This permits us to find the transition amplitudes
after passage through the field region. There is
a certain methodological interest in the construc-
tion of the effective Hamiltonian. This is because,
as discussed in the text, one cannot write down

a first-quantized description of a system involving
massive Majorana particles in the ordinary way.

Section IV contains a brief discussion of the
order of magnitude of the spin-flavor-rotation ef-
fect and the possibilities for enhancing it. We also
show how the existing calculations of neutrino de-
cays for massive Dirac neutrinos in SU(2)~(3U(1)
gauge theory can be used to furnish the intermedi-
ate-boson loop contribution to the Majorana-neu-
trino transition form factor.

o, =(o, i),— (2.2)

and the ~ are taken to be real by convention. The
SL(2, C) covariance of (2.1) may be seen mani-
festly by introducing dotted and undotted spinor
indices as follows:

V~V i V (V)

(+Ii)lljl )L
=

Sli))i (+2)a'2= 2~a2 ~

Then (2.1) can be rewritten

(2.3)

i(v~)' &,;v' ——(v'E; v'+ H. c.), (2.1')
gQ

It may be noted from either (2.1) or (2.1') that the
mass terms of the free Lagrangian will vanish if
the v 's are c numbers. We overcome this prob-
lem by treating the v as quantized anticommuting
fields from the beginning. A convenient field ex-
pansion, discussed in Sec. II and the Appendix of
Ref. 6 is obtained in terms of the left-handed
components of the ordinary massive Dirac wave
functions u'" and v'"'. In this way, with a repre-
sentation of the Dirac algebra where y, is diagonal,
one finds

mv j 1 +y „ g m
)

,~.„ („)( ~ ( )
Oj 2 ir

+ 8 I() IIV(r)(p)A f(p)] (2.4)

(2.5)

where Cg'"' =e'"', C bemg the charge-conjugation
matrix. The quantization of the Majorana field dis-
cussed by Case' is a special case of the above
wherein the spinors are taken to be helicity eigen-
states (see the Appendix). It is also helpful to
give the intermediate-boson term of the charged
leptonic weak interaction. The explicit form this
takes depends on the gauge theory of interest. If
we restrict ourselves to SU(2)~.(2) U(1), the inter-
action form depends on how many of the v belong
to left-handed doublets. For simplicity let us as-
sume that all n of them do (the more general case
is discussed in detail in Ref. 6). Then the inter-
action term is

II. TRANSITION MAGNETIC MOMENT

First we write down the Lagrangian density for
n free two-component (Weyl or van der Waerden)
spinor fields v of different masses m:

cC = —Q [iv~o'~9~v~ + 2(v~(T2v~n2N+ H. c.)].. (2,1)

Here we are using

where E z is the unitary mixing matrix. It is ap-
parent from (2.4) and (2.5) that the usual theory
is recovered when all neutrino masses vanish. In
that case one of the u'"' and one of the v'"' do not
contribute because of the (1+y,) projection.

After these preliminaries' we.will write the ef-
fective electromagnetic interaction of magnetic-
moment type between a pair of neutrinos, say v,
and v, . The most general effective electromag-
netic interaction involving v, and v2 may be writ-
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ten" as
2

R = g v~ [j (((Q)(o„Cl —o((8((8„)A„]v((
o,B~

r+ v2 OO'ztT„vp( )E~ „+H. c. (2.6)

ent field in terms of c-number wave functions ."
Thus it is better to use perturbative field theory
directly, considering the (S-matrix element for
the interaction of v, and v, with an external mag-
netic field B=KB(x). Using (2.7).and the field ex-
pansion (2.4) we find

(2.7)=kv, o2(r (B+iE)v2 + H. c. ,

In (2 ~ 7), B and R are the magnetic and electric
fields. ~P invarianc e would require k to be real .
This statement follows from the assumed CP
transf ormation properties

E(x, t) -E(-x, t), B(x, t) -—B(-x,t),
v (x, t) - -io,v*(-x, t) . (2.6)

The last of these has a unique phase, required in
order to keep the free Lagrangian (2.1) CE invari-
ant with the convention of real m

Finally, we can verify that the diag ona/ moments
vanish since

8 =oro, ag,„=8

p 6p=-p 6 p=0
~

by virtue of the antic om muting property of the v

fields. This argument does not eliminate the off-
diagonal moments, of course .

III. SPIN-FLAVOR ROTATIONS

As noted in the last section there is no "first-
quantized" description of a massive two- compon-

where &„ is the electromagnetic field, F~ = 8,A~
and CI is the d'Alembertian. j z( ) =jg ( )

and h( ), the form factors, " are complex functions .

of Cl. In checking the covariance of (2.6) it is
helpful to use (2.3) above. The effective Iocv ene-rgy
moment-type interaction is the last term of (2.6)
with h( ) replaced by h—= k(0):

=—v2 0'It, 0'2 0'„vjF~„+H .c.EM SA T T

&v„P',r' l~ I vz, P, r}=
& T„,„d'xB(x)e'"""

(3.1)

B(x,y, z, t) =B(0,0,z, 0) = 0, 8 &L

a„ lz l
&s.

(3.3)

Such a choice can, of course, only be an approx-
imation; it is similar to the field that a neutrino
would see in traveling along the s axis through the
center of the gap of a (gigantic) horseshoe magnet.
With (3.3), the x and y components of the mo-
mentum as well as the energy of the neutrino will
be conserved. The change in mass will be com-
pensated by a change in z component of momen-
tum. We shall adopt (3.3) for the purpose of il-
lustrating the spin- flavor- rotation effect. Assign-
ing to r the values of + helicity and —helicity and
using the y, -diagonal- representation spinors of
the Appendix, we find for the S-matrix element

Here r' and P ' are the spin and momentum labels
of the final neutrino v, and r and P the same for
the initial neutrino v, ~ The phase X is defined from
h, =—

lb l e'" '~". The Dirac spinors above are to
be considered in a y, -diagonal representation. If
the external field & is constant in space and time
the integral in (3.1) will be proportional to
6'(p —p'). This will vanish if the neutrino masses
m, and m2 are different. Thus we must consider
a magnetic field with some space-time inhomo-
geneity in order to find an effect. The simplest
choice is a "space pulse"

lSl }- "6(P P')6(P -P )6-(P -P )
* * 7 (3.4)

.(3.6)

T, T j

m((m, m, '",, m, (P, +p,)'",„m,(ul+P ('")'
2 & pop'0

'
m2(po+ p)- m((po+ pg

(m, -(m) m, m, '~'" .„(O„m-pJ""+ „m,(pl+A('")
popo ~ -m2(po+ p', ) 'm&(p-o p)-

(3.6)
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The last two expressions simplify considerably
if the neutrino masses mq and m2 are small com-
pared to the momenta:

. f0
T = (n„—in, )e" .

(3.7)

With A. =O, (3.7) and (3.5) are of the same form as
the spin-rotation Hamiltonian in the Dirac the-
ory, although the interpretation is different.
Notice that 1"„is generally negligible compared
to T, . This shows that the components of mag-
netic field perpendicular to the neutrino's direc-
tion of motion are the effective ones for causing
spin rotations. (This would also lessen the ef-
fects of the "fringing" field. ) It is most con-
venient to orient the x and y axe's so that

T = sin8, (3.8)

0 being the angle between the direction of the
beam and the magnetic field.

From the discussion above it is clear that there
are nonzero matrix elements for a Majorana neu-
trino of one flavor to make a transition in the
presence of an inhomogeneous magnetic field to
a Majorana neutrino of different helicity and dif-
ferent flavor. In order to make this more vivid
let us focus on the flavor and helicity labels des-
cribing a neutrino beam. Define an effective
four LeveL Ham-iltonian by

x (v,r'
~
H.« ~

v.r& . (3.9)

The order of the labels is (1+, 1-, 2+, 2-) with
the first label describing flavor and the second,
helicity. Comparing this with (3.4) gives

eff 0 (j j ryL iTt 0
H =(L, )H

""«&. &')L~ ' " (3.10)

where T is defined in (3.5) and (3.6) and approx-
imated in (3.7) and (3.8). Note that H,« is Her-
mitian. The factor in curly brackets is a geo-
metrical factor describing the "shape" of the ex-
ternal magnetic field. As a consistency check we
note that it vanishes as L —~; in that limit the field
becomes homogeneous and there is no rotation
effect. On the other hand, for (p —p~gL=(mq
—m2 )L/(2P), small compared to one, this shape
factor is unity. In writing (3.10) we are implicitly
assuming that the edge effects responsible for the
transition can be "spread out" over the field
region. This approximation is clearly more
reasonable when (p, —fp', )L is small.

(v,jp'r'
~

S
~
v.f r&

5(P0 —Pt) 5(L.—Y.)~(L, —Y„)
-i(2v)'(2I. )

Using (3.10) as an effective four-level Hamilton-
ian we can easily discuss the time evolution of a
relativistic neutrino beam entering the field region
at time i=0. If we neglect T., in (3.7) and use
(3.8) (we are here neglecting corrections due to
the small neutrino masses), H,«becomes

(3.11)

~= ~a~a. ..s(""'0' ""~I
P.—p.' L

Equation (3.11) is easily diagonalized as follows:

V'H, «V = n.diag(-, +, +, -)

I ( U -iU'I l(iV=
i

i, U= —
i

iU U) El -1

(3.12)

With our level ordering the eigenvalues thus are
E, =E4 = -n, and E2 ——E0 =+&. Let tLI» denote the
states of the incident beam k =1-4. The eigen-
states of H,«, y~ are related to these by

x =V'tL. (3.13)

Let us say that, at t =0, the system is in the
state tL». After entering the field region, under
the influence of H,« , g» evolves to.

(3.14)

The amplitude for state k to go to state j at time
(=2I- is thus

amp(L0-j;f)=g »V~,Ve
' &',

g=i
(3.15)

amp(l- -1+)= amp(l- -2-) =0,
amp(l- -1-)=cosLV,

amp(l- -2 +) =-sinn. t

(3.18)

Notice that the labels 1 and 2 refer to neutrinos
of definite mass. They are each mixtures of
v„v„etc. In this example the initial neutrino
has dominant matrix elements for producing neg-
ative leptons by W exchange with matter. After
passing through the magnetic field region there is
amplitude sin2~L, available for producing positive
leptons.

This analysis can be immediately extended to

where the E, are given after (3.12). Equation
(3.15) explicitly shows how an initial neutrino beam
of a given type oscillates to the opposite flavor and
spin. Taking k=1-, for example, yields with the
help of (3.12)
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three neutrino flavors, for example. Instead of
the matrix (3.10) we would have the 6x 6 matrix

e& w'
I

I

tf

+ r ~ e

+i

Here T' is the same as T except for an overall
strength which characterizes the vq - v3 transition
moment, etc.

IV. MAGNITUDES AND MOMENTS
+ & ~ ~

XII

The magnitude of the spin-flavor-rotation effect
depends on the product of the transition moment
h, the magnetic field Bo, and an effective time
during which the neutrino beam transverses a vary-
ing field. There is also a shape factor, describ-
ing the field inhomogeneity. If the neutrino is a
true elementary particle, rather than a composite,
its transition moment will be very roughly given
by (1.1). (In fact detailed calculations may give
an additional suppression of 10 or so, depending
on the Higgs-meson structure of. the theory. ) To
appreciate how small the effect is we note that
the product of (1.1) (assuming m„=1 eV) and a
magnetic field of 10 G is about 10 sec '. Thus
effective travel times of the order of 108 sec are
needed for sizable particle to antiparticle con-
version. The effect could be enhanced if (i) neu-
trinos were composite or if they had larger trans-
ition moments than (1.1) for other reasons, (ii)
extremely strong rapidly changing (either in space
or time) magnetic fields were present, or (iii)
the neutrinos were to pass through the same B
field again and again due to an orbiting motion.
Although the present mechanism would probably
be somewhat weaker than a comparable spin ro-
tation for massive Dirac neutrinos, it seems more
amusing. If, as seems likely, neutrinos are
Majorana particles the effect described here is
the only one.

Finally, we will comment on how much of the
calculation of h from a gauge theory can be ob-
tained from the existing literature, in which trans-
ition moments for massive Dirac neutrinos have in
effect been calculated. Consider the intermed-
iate-boson loop contribution to the transition mo-
ment. For definiteness in our formal argument
imagine that we are using the & gauge (although
this is a delicate one in practice). In addition to
lepton-number-conserving diagrams like the one
in Fig. 1(a) there will be corresponding lepton-
number-violating diagrams like the one in Fig.
l(b). For Fig. 1(a) we use the interaction in
(2.5) which we write out explicitly using a y5-
diagonal representation of the Dirac algebra:

FIG. 1. Lepton-number-conserving (a) and lepton-
number-violating (b) diagrams for the vo-v& electro-
magnetic transition.

inc = fg2 ' Q(e,y„A,gvgi +'~

+ v~l, y„E*qe W'). (2.5 )

Then, using the field expansion (2.4) we see that
Fig. 1(a) will contribute a factor

++~+fJQNBL, SR 0 QoL, P (4.1)

where sit(o) is a matrix, containing the "core" of
the diagrams. While OR(o) depends on the mass
of the intermediate charged lepton g it does not
have any y5 factor. Equation (4.1) has the same
momentum-space structure as what one would get
from the massive Dirac theory. To calculate the
diagrams of Fig. 1(b) imagine that we rewrite
(2.5') in terms of "charge-conjugate" fields (de-
fined by P'=Cg, for a fermion field g):

p ~ NgA+ vgA (4 3)

or
v'- v&A +u+A,

in an evident shorthand. Comparing Fig. 1(a)
computed using (2.5') and Fig. 1(b) computed us-
ing the conjugate formulation (4.2) we see that
there will be an overall difference of sign due to
the electromagnetic interaction. Also, the mixing
matrices will be complex-conjugated and right-
handed spinors will appear resulting in

~i.a= —&g2
' Q(v y,& se'll +e'y, v8a&,').

(4.2)

The expansion (2.4) may be equivalently presented
as either
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(y ~+(ygQgggR 0 Q 0(g o (4 4)

The important point is that the same Qlt(o) appears
in (4.1) and (4.4). The total contribution of the
diagrams involving gauge bosons is given by the
sum of (4.1) and (4.4) which may be written as

i g Im(K, K,~)u,OR( o)u, + Q Re(K, K„)u()9R(o)y,u

(4.5)

Now from the calculation of Petkov" (who was
interested in the decay v' - v() + y) we can read off
the moment parts of u()3R(o')u and u()DR(o)y5u '.

3eG„(m +m()) m(l, )
u()mt(o)u = r i +e&i &I I Vv+o ~32m' m(%

(4 6)
3eG~(m()-m ) m(I, ) 2

g)y~u(g 32 2' W)
u()E~o~~y5q~ur mg

Here q„ is the four-momentum transfer and ~, the
photon polarization. Still to be added are the con-
tributions from the Higgs mesons. This will have
the same general structure but there will be extra
contributions characterizing the Higgs sector of the
theory. Notice the additional suppression factor
(mass df charged lepton divided by mass of inter-
mediate boson) compared to (1.1). It is impor-
tant to check that the result in (4.5} and (4.6) gives
zero for the diagonal moments (when ((=P): The

g„„y5 term vanishes because ng =mz while the

o„„term vanishes because Im(K, K,*,) =0. Equa-
tion (4.5} shows that the coefficients of o„„(1
+yz)q„and o„„(1—y(;}q„are equal in magnitude,
differing by a phase. This is the origin of the e'"
phase factor in our basic equation (3.2).

emote gdded. After this paper was written we
learned of a recent paper [Carnegie Mellon Report
No. COO-3066-164, 1981 (unpublished)] by l,in-
coln Wolfenstein which also discusses transi-
tion magrietic moments between different Majorana
neutrinos.

Eq. (2.4) uses the left-handed projections of ordi-
nary Dirac wave functions. For the Dirac theory
we adopt Pauli's conventions and use the explicit
y, -diagonal representation

(0 -'~) (0 I)
i(y 0 1 0

(A1)

(i 0) l-a, 0):
(0 -lj ( 0 g, )

(A2)

In (2.4) the index r labels any convenient set of
two independent spin wave functions (see the dis-
cussion in the Appendix of Ref. 6). If we specia-
lize x to the me'aning of a helicity label

i puP '(p) = a
I p I

uz" '(p), (A3)

we arrive at a quantization essentially equivalent
to that of Case. ' We used the y, -diagonal helicity
spinors in computirig (3.2J; they are explicitly
given by

(y)(~) m
2(&+ )pl) 1(E

I I) (,)
(A4)

() 1 (I+p,
[2(p,+1)]+'I - . .-

(p„+ ip~)

(A5)

i ('p„„pl
X —

[2(p + 1)])I2

'To check that, with helicity spinors, both terms
of (2.4) obey together the equation of motion

Note that C obeys -y~r=C 'y„C. Furthermore, we
adopt the phase convention

v("'(p)=Cu ("' (p) .
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APPENDIX

For convenience, the quantized-field expansion
of the massive two-component spinor given in

for a given p and r, it is sufficient to use (A3) as
well as [noting (A2)]

~ pv,"'(I))=+lplv& '(p).

For example,

i(r„8„[e'~-'u~"(p)A, (p)+ e v(~"(p)At(p)']

= (I 5 I+ &)s"'*u,"(p}A,(p)

+ (lp I-&) ."(p)A'.(p), (A7)

while

mo', [e (~ "u~'*At(p) e'~ +*v~"*(p}A(p)]

is equal to (A7) since (A2) and (A3) imply
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(+) g P (+) (+) g P (+)&+ I:I I pI -~ from (2.4):

Notice that u~ ' and v~" do not vanish as the neu-
trino mass m goes to zero, whileu~" and g~(' do
vanish. One arrives in this way at the old two-
component massless-neutrino theory.

Finally, we give the two propagators (lepton-
,

number violating and conserving) which follow

«1».h) ~(y)1o) = (o.)~&&(x -y;~)

«1».(x)~'(y)1o)=t(~'„) 8„~ (x y-;m),

(AS)

A review is furnished by S. M. Bilenky and B. Ponte-
corvo, Phys. Rep. 41C, 225 (1978). The Proceedings
of the Neutrino Mass Miniconference, Telemark, Wis-
consin, l980, edited by V. Barger and D. Cline (Uni-
versity of Wisconsin, Madison, 1981), should enable
one to trace more recent work.

A review is given by A. O. Barut, in Proceedings of the
Neutrino Mass Miniconference, Telemark, Wisconsin,
2980 (Bef. 1).

3A. Cisneros, Astrophys. Space Sci. 10, 87 (1980);
K. Fujikawa and R. E. Shrock, Phys. Rev. Lett. 45,
963 (1980); B.W. Lynn and G. Feinberg, Columbia
University Report No. CU-TP 181, 1980 (unpublished}.

The history of Majorana neutrinos is discussed by S. P.
Rosen, in Proceedings of the Neutrino Mass Minicon-
ference, Telemark, Wisconsin, 1980 (Ref. 1).

5For recent work on neutrino masses in SO(10) see, for
example, R. Barbieri, CERN Report No. TH-2850,
1980 {unpublished); M. Gell-Mann, P. Ramond, and
R. Slansky, in Supergravity, edited by P. Van Nieuwen-
huizen and D. Freedman (North-Holland, Amsterdam,
1979), p. 315; L. Maiani, CERN Report No. TH-2846,
1980 (unpublished); H. Georgi, in Particles and Eields—
2974, proceedings of the Meeting of the Division of
Particles and Fields of APS, Williamsburg, Virginia,
edited by Carl Carlson (AIP, New York, 1975);
H. Fritzsch and P. Minkowski, Ann. Phys. (¹Y.) 93,
177 (1975); P. Bamond, Proceedings of I"irst Work-
shop on Grand Unification, edited by P. Frampton,
S. L. Glashow, and A. Yildiz (Math Science Press,
New Hampshire, 1980); Y. Tomozawa, University of
Michigan Report No. HE-80-17, 1980 (unpublished);
E. Witten, Phys. Lett. 91B, 81 (1980); S. Nandi, in
Proceedings of the Neutrino Mass Miniconference,
Bef. l.

~See J. Schechter and J. W. F. Valle, Phys. Hev. D 22,
2227 {1980);also J. Seheehter, in Proceedings of the
Neutrino Mass Miniconference, Telemark, Wisconsin,
1980 (Ref. 1).

~J. Schechter and J. W. F. Valle, Phys. Rev. D 23, 1666
(1981).

SK M. Case, Phys. Bev. 107, 307 (1957).
Besides Bef. 6 above and references therein, recent
discussions of neutrino "kinematics" include T. P.
Cheng and L. F. Li, Phys. Rev. D 22, 2860 (1980);
J. Harvey, P. Ramond, and D. Reiss, Caltech Report
No. 68-800, 1g80 (unpublished); P. Mannheim, Univer-

sity of Connecticut report, 1g80 (unpublished); R. Moha-
patra and G. Senjanovic, Phys. Rev. D 23, 165 (1980);
L. Chang and N. Chang, Phys. Rev. Lett. 45, 1540
(1980).
Taking the matrix element of (2.6) between neutrino
states At~0&, one will find with the aid of (2.4) a result
of the form (4.5) where four-component Dirac wave
functions appear.

~~Astrophysical bounds on Dirac-neutrino electromagne-
tic form factors have been suggested by J. Bernstein,
M. Ruderman, and G. Feinberg, Phys. Bev. 132, 1227
(1963). For a review see A. Dolgov and Y. Zeldovieh,
Rev. Mod. Phys. 53, 1 (1981).

~2This does not preclude a "pseudoclassical" description
in terms of Grassman fields as in F. A. Berezin and

M. S. Marinov, Ann. Phys. (N.Y.) 104, 336 (1977);
A. Barducci, B.Casalbuoni, and L. Lusanna, Lett.
Nuovo Cimento 19, 581 (1977).
With X= 0 and mg=m2=m, T becomes

(n m/po n„-in

ln„+in, -n, mlpp)

which can also be derived directly for the massive
Dirac theory. Diagonalizing this matrix gives eigen-
values and eigenveetors in agreement with Fujikawa
and Shrock, Bef. 3 above. Notice also that X= 0 im-
plies the hermitieity of the matrix T [as given exactly
by Eqs. (3.5) and (3.6)] and thus permits (for any
number n of "generations") the effective Hamiltonian

corresponding to (3.10) to deeouple as H, ff ~ p00 T,
where p is an nxn skew-symmetric Hermitian matrix.
For example, for three flavors it has the form

0 -ih(2 -ih(3
~

~

ihg2 0 -ih23 I,

ih)3 ih23

where h,&=h,*& is the strength of the (ab) transition mo-
ment. Thus, for X= 0, the diagonalization of H, q~ re-
duces to the diagonalization of the flavor-space matrix
p.
S. T. Petkov, Yad. Fiz. 25, 641 (1977) fSov. J. Nucl.
Phys. 25, 340 (1977)];ibid. 25, 698(E) (1977) ribid. 25,
641 (1977)];W. Marciano and A. I. Sanda, Phys. Lett.
67B, 303 (1977); B.W. Lee and B. Shrock, Phys. Rev.
D 16, 1444 (1977); J. Kim, ibid. 14, 3000 (1976).


