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Detailed leading-order quantum-chromodynamics (QCD} predictions are given for the
scaling, angular, and helicity dependence of the reactions yy~MM (M =~, E, p, etc.) at
large momentum transfer. In addition to providing a basic test of QCD at short dis-

tances, measurements can be used to determine the process-independent meson distribu-

tion amplitudes $M(x, Q}. Other related two-photon channels such as yy~yp,
y~y~m. ,g, .q', and g,—+yy are also discussed. %"e also prove the existence of a fixed

Regge singularity at J=0 which couples to yp —+yp in the t channel but not to y~—+ye.

I. INTRODUCTION

Much effort has recently been devoted to the
study of exclusive processes involving large
transverse momenta within the context of perturba-
tive quantum chromodynamics (QCD).' Here, as
in other applications of perturbative QCD,
photon-induced reactions play an important role.
The pointlike structure of the photon results in
substantial simplifications of the analysis of these
exclusive scattering amplitudes. In this paper we
present detailed predictions for photon-photon an-

nihilation into two mesons at large center-of-mass
angles 0, . We also examine predictions for
photon-meson transition form factors, and for a
number of other two-photon processes relevant to
the study of perturbative QCD.

Ainplitudes for the large-angle exclusive
processes discussed here factor into two parts at
high energies'. (1) a parton distribution amplitude

P(xt, Q) for each hadron —the probability amplitude
for finding valence partons in the hadron, each car-
rying some fraction x; of the hadron's momentum,
and all collinear up to kit-Q, the typical momen-
tum transferred in the process; and (2) a hard-
scattering amplitude 1H—the amplitude for
scattering the clusters of collinear valence partons
from each hadron. Thus, for example, the process

y~y~ ~ma is described by the helicity amplitudes
[see Fig. 1(a)]

1

m«(s, 8, ) = f dx dy((e(x, Q„)y*(y,Q»)

X T«(x,y;s, 8, ),
where Q„-min(x, 1 —x)v s

~

sin8, ~, and simi-
larly for Q». The quark distribution amplitudes
depend only logarithmically on s, having the form

00

(b (x,Q)=x(1 —x) g a„' 'C„(1—2x) ln
n=0

(2)

to leading order in a, (Q },the running coupling
constant in QCD. The hard-scattering amplitude
T~~ is computed, in leading order, from Born dia-
grarns such as those in Fig. 1(b). All quark and
hadron masses may be neglected in these diagrams,
resulting in errors only of order m /s « 1. Con-
sequently, simple dimensional analysis implies
T~~ -a, /s for large s and, therefore,

1m«~ f(8, ,q), s~~, —
s

up to factors of (Ins/A ). Furthermore, in vector-
gluon theories like QCD, quark helicity is con-
served along each fermion line when masses are
neglected. Thus the meson helicities in yy—+pp, for
example, must be equal and opposite, to leading or-
der in m /s. This is not the case in scalar- or
tensor-gluon theories.
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Dimensional counting and hadronic helicity
conservation are general features of the wide-angle
exclusive processes which we consider here. They
are valid to all orders in a„and as such are impor-
tant tests of the theory, testing the scale invariance
of the bare couplings, the vector nature of the
gluon, and so on. However, we can say much
more about these photon-induced reactions at large
momentum transfer. Specifically, we give detailed
predictions for the magnitude, angular distribution,
and helicity structure of these amplitudes. Fur-
thermore, we can use these processes to probe the
nonperturbative structure of the hadronic wave
functions.

In Sec. II, we discuss two-photon annihilation
into two mesons. This analysis is combined with
that of the meson's electromagnetic form factor so
as to remove many of the ambiguities due to renor-
malization scheme, normalization point, and so on,
which usually beset such a QCD calculation. We
also discuss the power-law-suppressed contributions

due to vector dominance and Landshoff pinch
singularities. In Sec. III, we examine the photon-
meson transition form factor at large Q {for

ey ="M at wide angles} and its relation to the pion

form factor. We also show how current-algebra
predictions for low Q can be combined with QCD
predictions for high Q to obtain a rough predic-
tion for F&M(Q ) for all Q . In Sec. IV we review

predictions for a number of other two-photon
processes. Finally, in Sec. V, we summarize our
results and briefly discuss some of their broader
implications.

II. PHOTON-PHOTON ANNIHILATION
INTO T%'0 MESONS

In this section we examine the two-photon

processes y~y~ ~MI, M~ where MI„M~ are mesons

with helicities h and h, respectively. Dimensional

counting predicts that for large s, s (do /dt) scales

at fixed t/s or 8, up to factors of In(s/A ), for
all such reactions. Hadronic-helicity conservation

requires that either both meson helicities are zero,
or both are equal to +1, with h = —h'. (There is
no a priori restriction on the photon helicities. )

We discuss these two cases separately.

A. Helicity-zero mesons

Some 40 diagrams contribute to the hard-
scattering amplitudes for yy~MM (for nonsinglet

mesons). These can be derived from the four in-

dependent diagrams in Fig. 1(b) by particle inter-

change. The resulting amplitudes for helicity-zero
mesons are

g++ 16m.a, 32&+ (e i
—e2) a

3s x (1—x)y (1—y) 1—cos2{),

(3)

where

16@a

3s x (1—x)y(1 —y)

(e, —e2} (1—a) eie2a [y(1—y}+x(1—x)] (ei —ez )(x —y)

1 —cos 8,2 2 2 2a —b cos0, 2

——(1—x}(1—y)+xy,

the subscripts + +, ——,. refer to photon helicities, and ei, e2 are the quark charges [i.e., the mesons

have charges +(ei —ez)]. To compute the yy~MM amplitude Mix [Eq. (1}],we now need only know the
x dependence of the meson s distribution amplitude QM(x, Q };the overall normalization of /sr is fixed by the
"sum rule" (n, =3):

1 Mf dx /sr(x, Q)= (4)

where fear is the meson decay constant as determined from leptonic decays. Note that the dependence in x
and y of several terms in T~~ is quite similar to that appearing in the meson s electromagnetic form factor.
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16m.a& 1 $11r(«,Q )QM(y, Q&)
FM($) = — dx dy

when /sr(«, Q)=$11r(1—x, Q) is assumed. Thus much of the dePendence on P(«, Q) can be removed from

M~~* by expressing it in terms of the meson form factor—i.e.,

+ ((et —e2) )——16m aF11r(s) 2 +2(e1e2 )g [8, ;$11r ]
+ 1 —cos2g,

u p to corrections of order a, and m /s. Now the only dependence on P~, and indeed the only unknown

quantity, is in the 0-dependent factor

gr(»Q)PM(y~Q) a [y(1—y)+x(1 —x)]
x(1—«)y(1 —y) a bcos 8—,

dx dg 2 2 2

!~ =
PM(»Q)0~(y Q)

o x(1 x)y(1 y)
dx dp

The spin-averaged cross section follows immediately from these expressions

d0 2 d0'

dt s dcos8,
1 1 2

les 4 ~~

2
Fsr(s)= 16~a2

S

((e1 —ez) ) 2(e1e2)((e, —ez) )
2 + ~ & [8. 'Nsr 1

(1—cos 8, ~ 1 —cos~8,

+ 2(ele2 ~ g [8 . . ((M]

In Figs. 2 and 3, g [8, ;PM] and the spin-
averaged cross section (for yam~) are plotted for
several forms of P~(«, Q). At very large energies,
the distribution amplitude evolves to the form

/sr(«, Q) ~ ~3fM«(1 —x),
Q—+oo

and the predictions [curve (a)] become exact and
parameter free. However, this evolution with in-
creasing Q is very slow (logarithmic), and at
current energies PM could be quite different in
structure, depending upon the details of hadronic
binding. Curves (b) and (c) correspond to the ex-
treme examples jhsr ~ [x(1—x)]'~ and

1

PM cx: 5(x ——,), respectively. Remarkably, the cross
section for charged mesons is essentially indepen-
dent of the choice of PM, making this an essentially
parameter-free prediction of perturbative QCD. By
contrast, the predictions for neutral helicity-zero
mesons are quite sensitive to the structure of /sr.
Thus we can study the x dependence of the meson
distribution amplitude by measuring the angular

dependence of this process.
'The cross sections shown in Fig. 3 are specifical-

ly for @yam, where the pion form factor has been

Pp

(b)

FIG. 1. (a) Factorized structure of the yy—+MM
amplitude in QCD at large momentum transfer. The
TH amplitude is computed with quarks collinear with
the outgoing mesons. (b) Diagram contributing to TH

(yy~MM ) to lowest order in a, .
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z~= cos~(e)

I

0.8 1.0

approximated by F~(s)-0.4 GeV /s. The rr+rr
cross section is quite large at moderate s:

FIG. 2. The 8-dependent factor g [cos8, ;P~] of
Eq. {7)required for computing the yy~MM amplitude
for helicity-zero mesons. The curves (a), (b), and {c)cor-
respond to the distribution amplitudes PM(x, Q}
ocx (1—x), [x(1—x}]'~,and 5(x ——), respectively.

IO

0 0.2 OA 0.6
z~ = cos~ (8)

0.8 I.O

FIG. 3. QCD predictions for yam. w to leading or-
der in QCD. The results assume the pion-form-factor
parametrization I' (s)-0.4 GeV /s. Curves {a), (b), and
(c) correspond to the distribution amplitudes P~
=x(1—x), [x(1—x})'~, and 5(x ——), respectively.

Predictions for other helicity-zero mesons are obtained
by multiplying with the scale constants given in Table I.

do
dt (yam +m )

der

dt

4iF~(s) i

1 —cos 0

0.6 GeV
$2

at 8,
2

'

(10)

Similar predictions are possible for other helicity-
zero mesons. The normalization of yy~MM rela-
tive to the yy-+me cross section is completely
determined by the ratio of meson decay constants
(fM/f~) and by the flavor symmetry of the wave
functions, provided only that PM and P„are simi-
lar in shape. Given this assumption, we obtain the
all-orders (in a, ) relations presented in Table I.
Note that the cross section for charged p's with
helicity zero is almost an order of magnitude larger

than that for charged n's [Eq. (10)]. Cross sections
involving the g' have been omitted. Flavor-singlet
pseudoscalar mesons, like the g', have a two-gluon
valence Pock state which contributes to leading or-
der. These will be discussed elsewhere.

Finally, notice that the leading-order predictions
[Eq. (6)] have no explicit dependence on a, . Thus
they are relatively insensitive to the choice of a re-
normalization scheme or of a normalization scale.
This is not the case for either the form factor or
the two-photon annihilation amplitude when exam-
ined separately. However, by combining the two
analyses as in Eq. (6), we obtain meaningful results
without computing O(a, ) corrections.

B. Helicity-one mesons

Again the diagrams of Fig. 1(b) determine the
hard-scattering amplitudes which describe the pro-
duction of helicity +1 ("transversely" polarized)
mesons in yy annihilation. The resulting helicity
amplitudes for yy—+MM are
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+ '+ =16naFM (s)I((ei —e2) )+2(eiez) cos8, (1 c—os8, m )gi[8cm;pM, ]),

/

——16naFM (s) I ((ei —ez) ) —2(eie2) cos8, (1+cos8, )go[8, ;/M ]I,—++—

where we define (in analogy to the helicity-zero case) a "transverse form factor"

j6 gQ & M&» x Mj3~ y
FM (s)—= — dxdy

3 s x 1 —xy 1 —y

and where

(12)

gi[8c m~0M. &]=

NM, (»Q )NM, (y Qy) b2

0
dx dp x(1—x)y(1 —y) a bcos—8,

M» x mP~ y

0
dx dpi

x (1—x)y (1—y)

Of course hadronic-helicity conservation (in QCD) implies Mii ++——Mii =0 as well —i.e., 12 out of
the 16 helicity amplitudes vanish in leading order (in QCD). The spin-averaged cross section can now be
written

2
FM (s)

(l 1~MJMJ )=16ira I ((ei —eq) ) 4(eie—2 ) ((ei —e2) ) cos 8, go[8, ;PM ]dt s

+2(eie2) cos 8cm (1+COS 8 . c)mgl[8 . cmNM ]] (14)

In Fig. 4, go[8, ;/M, ] is plotted for the three

Ansatze for pM used in the previous section.

Hadronic-helicity conservation implies that only
helicity-zero mesons can couple to a single highly
virtual photon. So I'~, the transverse form factor,j.
cannot be directly measured experimentally. Here
we will assume that the longitudinal and transverse
form factors are equal so as to obtain a rough esti-
mate of the yy~pipi cross section (Fig. 5). Again
we see strong dependence on pM for all angles ex-

cept 8, -m/2, where the terms involving gz van-
ish. Consequently, a measurement of the angular
distribution would be very sensitive to the x depen-
dence of pM, , while measurements at 8, =~/2
determine FM(s). Notice also that the number of
charged p pairs (with any helicity) is much larger
than the number of neutral p's, particularly near
6I, =m./2. The cross sections are again quite
large with

do.
(H'~Pi Pi )

5 GeV

( + )3T P P

Results for the co& and Pi are given in Table I.

C. Nonleading processes:
Vector dominance; pinch singularities

The QCD predictions given here for wide-angle
yy~MM processes are in marked contrast to those
which are expected from vector dominance (VD) of
on-shell photon interactions. Dimensional count-
ing implies that contributions from the minimal
Fock state of a hadron (i.e.,

~ qq ) of mesons,

~ qqq ) for baryons) always dominate at high ener-
gies and large angles. The scattering amplitude is
suppressed by an extra power of 1/v s for each ad-
ditional parton involved in the hard subprocess
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TABLE I. Wide-angle high-energy relations for yy
annihilation into two helicity 0 (h =0) or helicity +1
(h =+1)mesons. Here g-g' mixing is neglected and
probably f„-f =93 MeV. The P is assumed to have

only strange quarks in its valence Fock state.

Process Cross section

h =+1

p'p

pp

p co

yy p'~

2 {yy~m+m )
do +
dt

0.3 (yy ~'~')do
dt '2

0. 1 (yy ~'~')fv do
dt

4

0.4 (yy ~'~')f, der

f dt

7.5 (yy~m+m )
dO'

dt

7.S (yy ~'~')do'

dt

(yy ~0~')do'

dt

8 (yy ~'~')dCT

dt

14 (yy em )
do'

dt

04 (yy pp )
do
dt

do'

dt
(yy p'p')

(yy pp )
do'

dt

0
0 0.2

(c)
I I

0.4 0.6
z =cos (8)

I

0.8 I.O

FIG. 4. The factor g) [cose, ;P~] of Eq. (7) re-
quired for computing the yy~MM amplitude for helici-
ty +1 mesons. See Fig. 2.

(i.e., TH). Since the photon is an elementary field,
its minimal Fock state is just the bare photon it-
self; the photon couples directly into TH for lead-

ing subprocesses. On the other hand, vector domi-
nance is associated with the

~ qq ) Fock state of the
photon. This Fock state is analyzed in the same
way any strongly interacting meson is analyzed:
the photon is replaced by a collinear, on-shell q-q
pair in TH, TH is convoluted with the photon's
quark distribution amplitude P&(x,g ). If p domi-
nance is assumed, P& is proportional to Pz and the

yy—+MM amplitude due just to the photon's
~ qq )

component, is proportional to p p ~MM. Several
features distinguish these contributions from the
leading terms described above.

lO

bl

i
0~

0.2 0.4 0.6
z = cos (8)

0.8 I.O

(I) The amplitude M (yy—+MM) due to vector
dominance is suppressed by an additional power of
I/s for large s and 8, . This follows directly
from dimensional counting.

FIG. 5. QCD predictions for yy~pipi with opposite
helicity + I to leading order in QCD. The normalization
given here assumes that the p distribution amplitude is
helicity independent. Other vector-meson results are ob-
tained from the scale constants given in Table I.
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(2) Hadronic-helicity conservation in QCD (for
zero quark mass) requires that the sum of the pho-
ton helicities equal the sum of meson helicities for

Thus in contrast with Eq. (6), M++ and
vanish relative to M+ for yy—+mw,

EE, . . . . If just one of the photons couples
through its

~ qq } state, then all the reactions con-
sidered above are forbidden in leading order, leav-

ing only yy~pgpy, pgm. , and so on.
(3) The vector-dominated amplitudes have pinch

singularities, resulting when each constitutent from
one photon is paired with one from the other pho-
ton, and the two pairs scatter independently of one
another. In lowest order this gives an amplitude
which is suppressed by only 1/vs relative to the
leading QCD term. However, radiative correc-
tions, i.e., Sudakov form-factor effects, tend to fur-
ther suppress these pinch contributions by about
1/~s. '

We thus predict that the vector-dominated ampli-
tudes for photon-induced reactions are unimportant
at high energies and wide angles. The possibility
still exists that they may play some role at
moderate energies. However, data' for the closely
related process yp~yp shows no sign of vector
dominance for s )5 GeV, and 0, -~/2.

We emphasize that pinch singularities are
suppressed in yy~MM processes by at least 1/v s
even for amplitudes in which the photon couples
directly. The pinch singularity can only arise if
the quark and antiquark coupling to the photon
are collinear and near mass shell, in which case the
analysis and results are analogous to those for
pp~MM. The pinch contributions are further
suppressed by radiative corrections; a leading-
logarithm analysis results in a correction to the
leading amplitude which is suppressed almost a full

power of s. This power-law suppression of pinch
singularities, which is a special feature of photon-
induced reactions, greatly simplifies the analysis
and interpretation of these hadronic scattering am-

plitudes.

III. MESON-PHOTON TRANSITION
FORM FACTORS

The photon-meson transition form factor
FM&(Q ) can be measured using two-photon events
in which one photon is far off the mass shell (with

q = —Q ). This is just the exclusive limit of the
photon structure function (i.e., e'er) or frag-
mentation function (i.e., ee—

+ye ). Only neutral

pseudoscalar mesons couple, and the y*yM vertex
has the form

where P~ is the meson's momentum and d' the po-
larization vector of the initial (on-shell) photon. A
complete analysis of this form factor for large Q
has been given in Ref. 1. For pions, the final result
is [Q=min(x, l —x}Q]

F~(Q )= I dx 1+0 a„22 ' 0(»Q } m'
3Q2 o x(l —x) "Q2

where large g(Q} implies a sharply peaked (at
x = —,} distribution and small r)(Q ) gives a broad
distribution. This Ansatz gives a my transition
form factor

Q'F~(Q') =2f
3n

which is clearly quite sensitive to the parameter g
(see Fig. 6}. For very high Q, rl(Q)~1 and thus,

2fF~~ 2
as Q —+Do . (19)

The x dependence of the integrand in Eq. (16}is
identical to that in Eq. (5) for F~(Q ). Conse-
quently all dependence on P can be removed by
comparing the two processes. Iri fact, a measure-
ment of each provides a direct determination of

(Q2)1.

F (Q')
a, (Q')=, » +0(a, '} . (20)

4~ Q'
I F~(Q

Once the 0 (a, ) corrections have been computed, '

this could be usmi to measure a, and the QCD
scale parameter A for a given renormalization

(16)

Unlike the electromagnetic form factor F (Q2)
[Eq. (5)], this form factor in leading order has no
explicit dependence on a, (Q ). Consequently an
accurate measurement of F r(Q } determines

I dx[P*(x,g)/x(1 —x)]. This can be combined
with the normalizing sum rule [Eq. (4)] to con-
strain the x dependence of P~(x, g). To illustrate
this, consider normalized distribution amplitudes of
the general form

P (x,g)= f. r(2~+2)
(1—x)"x", r) y 0,

3 [I (g+1)]
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500 are all similar in shape, then we have

400—
F„,(Q')= "F (Q'),'g1 Q3 y 1'

(24)

500—
CU

(3

200—(3

IOO—

0
I

0.5
I

I.O l.5 2.0

F ~ (Q )=2 2
ny

' 1/2I
F~(Q'»

IV. OTHER PROCESSES

to all orders in a, and to leading order in m /Q .
Presumably the decay constants f, fv, and fv are
all roughly equal. The gluonic valence state in the
g' does not contribute in leading order to this pro-
cess.

FIG. 6. Dependence of the y*y~m transition form
factor E~(Q ) on the parametrization of the pion distri-

bution amplitude given in Eq. (17).

F~(Q')~
4

asQ ~. (21)

To estimate the effects due to 0 (m /Q ) correc-
tions, we write F~ in terms of a monopole form

1 1

4' f 1+(Q /8' 2)

0.27 GeV

1+Q /M

which interpolates between the Q =0 and Q = ao

limits [Eqs. (21) and (19)]. The mass scale M is
quite similar to that measured for F (Q ). If the
best rl(Q) in Eq. (17) is appreciably different from

1 at current Q, this mass-scale parameter
might actually be more like

0.68 GeV'),

M (rI)=(0.68 GeV )
3n

Curves for Q F~(Q ) which include such g-
dependent mass effects are also given in Fig. 6.
Mass corrections do not greatly alter the predic-
tions for Q ) 5 GeV .

Similar predictions can be derived for F&& and

F& z. If the m., g, and g' distribution amplitudes

(23)

prescription.
Of course, all of these formulas are valid only at

large Q; 0(m /Q ) corrections become important
at lower Q . However, the Q —+0 behavior of F~
is fixed by the experimental rates for the decay
m ~2y, or, equivalently as it turns out, by current
algebra which implies"

Other two-photon processes which can be
analyzed perturbatively in QCD include the follow-

ing.
(a) @yap, nn, . . . . The analysis for baryon-

antibaryon final states is closely analogous to that
-for mesons, except that in general there are many
more subprocesses contributing to TH. ' Dimen-
sional counting predicts s (der/dt) scaling up to
logarithmic factors, and hadronic-helicity conserva-
tion implies that the baryons have equal and oppo-
site helicities. %e note that data exist for both the
proton's Compton amplitude (yp~yp) and for its
magnetic form factor." A detailed comparison
with yy~pp will provide new insights into the nu-
cleon wave function. The Compton amplitude is
dcrldt 0 In-b/G. eV at s-9 GeV and O=n/2,
suggesting that yy—+pp may be comparable with

yy—+pp, am, . . . for s (10 GeV and 0-m/2.
(b) yy~rf„re, . . . One of. the classic applica-

tions of two-photon physics is to the study of
even-charge-conjugation mesons. Particularly in-
teresting are the heavy-quark pseudoscalar mesons
such as the g, . As is well known, the leading

g, yy coupling can be decomposed into a nonrela-
tivistic wave function (evaluated at r =0) multiply-
ing a perturbative amplitude for cc~yy. This fac-
torization is valid, subject to very general assump-
tions, to lowest and first order in a, (M„), and

C

until nonperturbative bound-state effects of
0 (u /c ) become important. The total hadronic
width of the q, is analyzed in a similar fashion,
proceeding via q,~2 gluons in lowest order. Be-
cause the lowest-order amplitudes for two-photon
and two-gluon decay are identical (up to overall
color factors), the ratio of these widths is an espe-
cially clean prediction of perturbative QCO. All
dependence on the wave function cancels, as do all



1816 STANLEY J. BRGDSKY AND G. PETER LEPAQE

0(U /c }corrections, to give (in the MS scheme}'

I (2),~hadrons)

rr)

2a, (Mq )

1+
(e, )'

14a, (Mq )

+ 0 ~ ~

(25)

Thus a precise measurement of this ratio, for either
the 2k or the rtb, determines the QCD scale param-
eter A. This must agree with that obtained from
I (Y~hadrons)/I (Y~1M+p ) or other short-
distance processes. Quantities, such as this one,
which are proportional to (a, )" will probably be
the most useful for determining the parameters of
QCD. In contrast, measuring small deviations
from the scaling behavior predicted by naive par-
ton models is diAicult; interpreting these deviations
is equally challenging due to higher-twist eAects.

(c) rr~rp Dimensional counting predicts
s 3(do /dt) scaling (up to logarithms) for rr~rp at
fixed 8, . However, in QCD hadronic-helicity
conservation requires that the p have-zero helicity,
which is impossible, when its mass is neglected, if
it is coupled to the photons in a gauge-invariant
and Lorentz-covariant fashion. Thus QCD re-

quires additional suppression by a factor of
0 (m Is), and s (do Idt) scaling is more likely.
This is not necessarily the case for theories with

scalar or tensor gluons. These do not conserve ha-
dronic helicity and so s (do Idt) scaling may
result.

plitude PM(x, Q) for valence quarks in the meson

qq Fock state. The cos0, dependence of the

yy—+MM amplitude determines the light-cone x
dependence of the meson distribution amplitude in
much the same way that the xB; (Bjorken x) depen-
dence of deep-inelastic cross sections determines
the light-cone x dependence of the structure func-
tions (quark probability functions) G«bt(x, Q).

The form of the predictions given here are exact
to leading order in a, (Q }. Power-law (m/Q)
corrections can arise from mass insertions, higher
Fock states, pinch singularities, and nonperturba-
tive effects. In particular, the predictions are only
valid when s-channel resonance eA'ects can be
neglected. It is likely that the background due to
resonances can be reduced relative to the leading-
order QCD contributions if one measures the two-

photon processes with at least one of the photons
tagged at moderate spacelike momentum q, since
resonance contributions are expected to be strongly
damped by form-factor effects. In contrast, the
leading-order QCD rir2~MM amplitudes are rela-

tively insensitive to the value of q& or q2 for
la'I «s

Finally, we note that the amplitudes given in
this paper have simple crossing properties. In par-
ticular, we can immediately analyze the Compton
amplitude yM —+yM in the region t large with
s » i

t
i

in order to study the leading Regge
behavior in the large-momentum-transfer domain.
In the case of helicity +1 mesons, the leading con-
tribution to the Compton amplitude has the form
(s» it i

)

V. SUMMARY AND CONCLUSIONS

As we have discussed in this paper, two-photon
exclusive channels at large momentum transfer
provide a particularly important laboratory for
testing QCD since the large-momentum-transfer
scaling behavior, helicity structure, and often even
the absolute normalization can be rigorously com-
puted for each channel. The yy~MM and
y*y~M processes provide detailed checks of the
basic Born structure of QCD, the scaling behavior
of the quark and gluon propagators and interac-.
tions, as well as the constituent charges and spins.
Conversely, the angular dependence of the
yy~MM amplitudes can be used to determine the
shape of the process-independent distribution am-

rM rM I6~a+MJ (t)(el +e2

(A,r——A,r, A,~——A,~), (26)

which corresponds to a fixed Regge singularit'y at
J=0.' In the case of helicity-zero mesons, this
singularity actually decouples, and the leading J-
plane singularity is at J=—2.
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