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Solution of a general one-turning-point Schrodinger equation using
lattice extrapolation techniques
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In this paper a recently proposed lattice approach to the solution of boundary-layer problems is applied to the one-
turning-point WKB problem. The introduction of the lattice converts the singular-differential-equation perturbation
problem to a regular perturbation problem. The singular nature of the WKB problem is restored when the lattice
spacing is extrapolated to zero. Accurate numerical results are obtained for several cases of interest,

y(0) =1 and y(+~) =0.
Near the origin, s(x) is assumed to have the

asymptotic form

s(x) -o.'x (n, p & 0) .
It is clear that if (3) is substituted into (1), the

(2)

(3)

Lattice methods have played an important role
in the derivation of strong-coupling expansions in
quantum field theory, and various Pade-type
schemes have been used to extrapolate the lattice
strong-coupling expansion to the continuum. In
recent papers, lattice methods have also been used
as a means of finding, approximate sot.utions to
singular boundary-layer problems. ' In Ref. 1, it
was shown that the introduction of a lattice con-
verts a singular perturbation problem into a regu-
lar perturbation probl. em, which can then be solved
to very high order using a (convergent} perturba-
tion series. The inherently singular nature of the
problem resurfaces when the lattice perturbation
series is extrapolated back to the continuum (zero
lattice spacing).

It was recently suggested to us by Russell Pack
that a one-turning-point %KB problem would pro-
vide an interesting testing ground for the methods
developed in Ref. 1. Therefore, in this brief
paper we give a lattice analysis of a generalized
one-turning-point problem

By a one-turning-point problem we mean a
Schrodinger boundary-value problem of the form

e'y" (x}= s(x)y(x),

where e is a small positive parameter and s(x) has
one zero, which with no loss of generality can be
located at the origin. A region in which s(x}&0
is called a classically forbiddenregion and we as-
sume, again without loss of generality, that s(x)
&0 for x&0. We seek the solution to (1) which
satisfies the boundary conditions

variable g can be scaled to eliminate n from the
problem.

To illustrate the lattice methods discussed in
Ref. 1, and the assertion that lattice methods re-
duce singular perturbation problems to regular
perturbation problems, we consider the following
simple singular boundary-value problem:

e'y" (x) = x'y(x) (4)

with y(0) =1, y(+~) =0, in which s(x) is every-
where equal to its asymptotic behavior at the ori-
gin. Our objective will be to compute y'(0). The
value of y'(0), which is a nontrivial consequence of
the two widely separated boundary conditions, is
crucial because, together with the value of y(0),
it determines all of the Taylor coefficients of y(x)
at the origin.

We have chosen to solve the problem (4}because
(4) has an exact analytic solution to which the lat-
tice results can be compared. The solution to the
differential equation (4) which decays exponentially
as g -+ is

( ) C~-1/(8+2) 1/2' ( 2 X(8'2)/2
1 /(8+2)

( (p + 2)~

Requiring that y(0) =1 determines the constant C
=2(p+2)-'/'~"'I'(I/(p+2)). Finally, evaluating
y'(0) gives the closed-form expression

+3)
y (0) ~-2/(8+2)(P + 2)-2/(8+2 jZ'( P

(P+2/ P 2+1

Now we will explain why (4) is a singular boun-
dary-vat. ue problem. A regular perturbation prob-
lem is one for which the solution can be expanded
as a series in powers of the perturbation parame-
ter, which in this case is e. However, if we at-
tempt to represent y(x) as a series in powers of e,
we find that all the coefficients in this series are
zero. It is well known that the only way to repre-
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TABLE I. The first 40 extrapolants Q& for the cases P =1 and P =2. 'The convergence of
these extrapolants is very different for these two cases. When P =1 the sequence Q& is mono-
tone increasing towards the exact answer, and when P =2 the sequence initially decreases to-
wards the exact answer, goes below it, turns around, and crosses it again on the way up.
'The sequence of first Richardson extrapolants R& for the P =1 sequence of Q& is even more in-
teresting, oscillating above and below the exact answer, with nearly equally spaced peaks and

valleys labeled by (max) and (min) occurring about every six numbers.

Order p
Extrapolants Q&

for P =1
Richardson extrapolants

Rp for Qp atP =1
Extrapolants Q&

for P =2

1

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

0.693 361
0.693 361
0.697 779
0.702 688
0.707 242
0.711176
0.714393
0.716873
0.718665
0.719875
0.720 654
0.721 160
0.721 530
0.721 865
0.722 218
0.722 607
0.723 023
0.723 443
0.723 839
0.724 187
0.724 471
0.724 691
0.724 856
0.724 981
0.725 087
0.725 188
0.725 298
0.725 419
0.725 552
0.725 691
0.725 828
0.725 956
0.726 069
0.726 165
0.726 244
0.726310
0.726 366
0.726419
0.726 472
0.726 528

0.693 361
0.706 614
0.717416
0.725 459
0.730 848
0.733 691
0.734 234
0.732 998
0.730 772
0.728 441
0.726 722
0.725 980
0.726 212
0.727 159
0.728 443
0.729 686
0.730 586
0.730 964
0.730 787
0.730165
0.729 311
0.728 474
0.727 868
0.727 616
0.727 732
0.728 140
0.728 704
0.729 274
0.729 716
0.729 941
0.729 923
0.729 691
0.729 327
0.728 930
0.728 60Q

0.728 405
0.728 372
0.728 488
0.728 706

(max)

(min)

(max)

(min)

(min)

0.707 107
0.687 656
0.679 616
0.675 350
0.672 795
0.671 158
0.670 067
0.669 325
0.668 821
0.668 483
0.668266
0.668 142
0.668 087
0.668 088
0.668 133
0.668 215
0.668 327
0.668 465
0.668 625
0.668 804
0.669 002
0.669 216
0.669 445
0.669 688
0.669 947
0.670 219
0.670 506
0.670 808
0.671 126
0.671 461
0.671 814
0.672 188
0.672 585
0.673 008
0.673 462
0.673 951
0.674 483
0.675 067
0.675 719
0.676 457

Exact
answer 0.729 011 0.729 011 0.675 978

sent the solution to (4), or more generally to (&),
is by means of a WKB approximation in which
terms of the form expI f(x)/e] appear, and which
does not have a smooth limit as e —0.

We ciaim that on the lattice (4) is converted into
a regular perturbation problem. To introduce the
lattice, we let

g an,

y(x)- y„,
y'(x)-(y, —y„)/a,
y" (x)- (y„., —2y„+y„,}/a',

where a is the lattice spacing.
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These replacements convert the boundary-value
problem (4) into its discrete lattice analog:

5(y„„—2y„+y„,) =n'y„,

yo=l, y„-0 as n-~
with

5 =6' /0

(8)

On the lattice, we regard the I.attice spacing a as
being fixed and e as smal. l, and therefore we think
of 6 as a new small expansion parameter.

We solve (8) by expanding y„at the nth lattice
point as a regular perturbation series in the para-
meter 5. The trick is to recognize that at the nth
-lattice point the perturbation series begins with a
5" term:

y„=+A„,5~, n & 0 .
f=n

(1o)

Substituting (10) into (8) and equating coefficients
of like powers of 5 then gives the fol. l.owing recur-
sion relation for the coefficients A.„f '.

tr
o (~&n),

0 (n=o, j&0),
1/(n! )' (j=n),

A„f—(1/n')g „-m„„) (~=n+1),
(1/n )(i4 +) y g 2A

y y
+A ) g y)

(n&0, j&n+1}.
Our objective is to compute y'(0). Using (7) we

represent y'(0) as the limit

y'(0) = lim(y, —y, )/a

=-l(m(1/a) i —QA, ,II')g~o f=l
00

=-, 'i'""(imo'i""l(-gw, ii'), ((2)
6~ ao

where we have used (9) to eliminate the lattice
spacing g in favor of the dimensionless parameter
5.

Observe that the lattice limit in (12) is extreme-
ly singular; keeping only a finite number of terms
in the series leads to a divergent result for the
limit. Thus, to perform the limit in (12), one
must use an extrapolation technique. It is through
this extrapolation technique that the singular na-
ture of the boundary-value problem in (4) is re-
stored.

The extrapolation method used here was first
proposed in Ref. 2, and some of its properties
were studied in subsequent papers. '

Briefly, the procedure consists of (a) raising
the series (1 —Q,. ,A»5~) in (12) to the power
—p(p + 2) (p = 1,2, 3, . . . ) and then (b) raising the
coefficient of 5~ in the resulting series to the
power -1/(pp+2p). This produces the pth extra-
po!ant, Qt. The hope is that the sequence -e '~(8")

Qt
converges to, or at least closely approximates,
the exact answer in (6) as p —~. This extrapola-
tion procedure is more fully discussed in Refs. 1
and 2.

In Table I, we give the first 40 extrapolants for
the cases P=1 and P=2. Observe that in the case
P =1 (this is the most common case and one for
which the exact solution is given in terms of Airy
functions) the extrapolants Qt are monotonically

increasing and appear to be converging slowly to the
exact answer. The convergence can be accel.cr-
ated using Richardson extrapolation. 4 In Table I,
we list the first 39 Richardson extrapolants R~
defined by

R =(p+1)Q., -PQt. (13)

It is interesting that these extrapolants oscillate
slowly above and below the exact answer, and that
averaging the peaks and valleys of the Richardson
extrapolants using a Shanks transformation gives
an approximation to the exact answer which is ac-
curate to a relative error of about 0.01%.

We also list in Table I the first 40 extrapolants
Qt for the case P =2. These extrapolants decrease
monotonically until they reach a minimum in 13th
order which falls about

lpga&

below the exact answer.
Then they increase at an accelerating rate. This
kind of behavior is strongly reminiscent of the be-
havior exhibited by asymptotic series, in which
partial sums first approach the exact answer, and
then rapidly deviate from it.

Finally, we note that for more complicated choices
than monomials for s(x), (4) is not in general
soluble in terms of known special functions. How-

ever, it is trivial to generalize the recursion re-
lation in (11) to cover such cases.

We wish to thank the U. S. Department of Energy
for financial support. We are also indebted to the
Laboratory for Computer Science at the Massa-
chusetts Institute of Technology for allowing us the
use of MACSYMA to perform algebraic manipula-
tions. Finally, we would like to thank Hussel Pack
for calling this problem to our attention.



l694 BRIEF REPORTS

C. M. Bender, F. Cooper, G. S. Guralnik, E. Mjols-
ness, H. A. Rose, and D. H. Sharp, Adv. Appl. Math.
1, 22 (1980). An exposition of this work can be found
in C. M. Bender, Los Alamos Science 2, 76 (1981).
C. M. Bender, F. Cooper, G. S. Guralnik, and D. H.
Sharp, Phys. Rev. D 19, 1865 (1979).

3R. J. Rivers, Phys. Rev. D 20, 3425 (1979); 22, 3135

(1980); C. M. Bender, F. Cooper, G. S. Guralnik,
R. Roskies, and D. H. Sharp, Phys. Rev. Lett. 43,
537 (1979); R. E. CaQisch and K. C. Nunan, Phys.
Rev. Lett. 46, 1255 (1981). See also Ref. 1.

4C. M. Bender and S. A. Orszag, Advanced Mathematical
Methods for Scientists and Engineers (McGraw-Hill,
New York, 1978).


