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Renormalization ofgP' theory in a six-dimensional conformally flat space-time
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Using dimensional regularization and 't Hooft's renormalization scheme, 4)
' theory is renormalized at the one-1oop

level in a six-dimensional conformally flat space-time. The calculation is done by treating the scalar curvature as an

interaction term. Using the renormalization group the effective conformal coupling f (1)r ) is calculated and it is shown

that in the UV limit g'()r )v6/25 as s —v ()0, instead of the conformal value of 1/5.

There has recently been a great deal of interest
in the renormalization of interacting field theories
in curved space-time. Henormalization-group
methods are extremely useful in studying renor-
malization and have recently been applied to Q'

theory in curved space-time. " In this paper I
study (3))s theory in a six-dimensional conformally
flat space-time. 'This theory is of interest be-
cause it is asymptotically free."'

The renormalization of massless ((II)s)s theory in

spherical space-time has been considered by
Drummond. ' However, Drummond and I use dif-
ferent renormalization schemes. Drummond takes
pc= g(n), whereas I use the more general renor-
malization scheme of 't Hooft. As a result I, un-
like Drummond, get nonconformally invariant
counterterms. As discussed by Birrell and Davies'
these two schemes are inequivalent and the correct
one can only be determined by experiment.

I will restrict myself to a conformally flat n-di-
mensional space-time with metric

f1~1

ds'=As(tl) dr)s -g (dx')' (1)
j a

The scalar field (P has Lagrangian density

g~(q, q', k) =Zr~t "(q,q', k),
g=1

where

grt, )(q, q', k)= f)(q q')Gr (q;k)-,

(8)

(9)

and

g~ '(q, q', k)=-G~(q;k)V(q, q')Gs(q', k), (10)

g Z3/2- p3 ~2 g+ g
rt (g)

„, (n —6)"
40 so

p3 ff/2 g+g Pr g
„....„(n—6)'

Momentum-space representations for the Feyn-
man propagator in a conformally flat space-time
have been developed by Birrell"' and by Bunch
and Panangaden. ' In this paper I will use Birrell's
representation. Birrell defines a propagator
gs(x, x') as

g~(x, x~) = [A(x)]'"-"/'G~(x, x~)[O(xi)]'"-"', (7)

where Gz(x, x') is the Feynman propagator, and
then shows that

&= &-g a g""&„(p&„(p--,'(m„'+ f;„B)res

-s(6ms+6~)ys- —g y'B
with

c„(g}~(g, )= ~(„",).
P«l

r
=1 ZZ („""',)"

m'brn b„g
„, (n-6)"

r '

g t gd (h~gv)
o

= + („~ 6)v

gQ dvr($)g'
(n —6)"

(4)

gst '(q, q', k)=G~(q;k)Gs(q';k)
«s

x Gg p;k V q-p tq p, q' dp.

(11)

Here Gz (p, ; ( p ~
) = (p,' —

~ p (

' —m '+ ia ) ', ts satis-
fies a Lippmann-Schwinger-type equation

ts(p, p'}=1/(p, p') - G~(q;k}f/(p q}ts(q p')dq
a so

V(p, q} is the Fourier transform of

v(()) = [m ' —m'()'(q)] —I( — ()'(v)R(v),4(n-1)
(12)

m =mQs/s(t)= -~) .

Although it is perfectly possible to calculate al.l
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the counterterms using Birrell's method, it is
easier to treat the scalar curvature as an interac-
tion term; this allows one to do the calculation
using flat-space-time propagators.

Following Mac Farlane and Woo,' I use massl. ess
propagators and mass insertions. 'The diagrams
which contribute at the one-loop level are shown
in Fig. 1. The new diagrams are 1(e) and its
counterterm 1(f). The triangle in l(e) represents
an insertion of V(q, -q) and the cross in diagram
1(f}represents the scalar curvature counterterm.

The contribution from diagram 1(c) is the same
as in flat space-time4 except that m2 is replaced
by m '. Thus from diagram 1(c) I get

(14)

exp[&(qo-qo~)p], and integrate over qo. Thus from
diagram 1(e) I get

i( ')fg2p tl V(q q/)sl(cowo)lt
2 & = (2v)n, aq2(p )2 qo

where q"= q, ' —
~ j~ '. Changing variables to ko

=q, -q, gives

ig p. Q(pl 18,(p)=
(2 )„' dk e V(k ) d"q, , ), ,

(16)

where k= (k„0,0, 0).
'The integral over q is logarithmically divergent

and thus the residue does not depend on k. Evalua-
ting the integral gives

The rule for inserting V into a line which carries
momentum q is to insert V(q, -qo), multiply by

(18)

The poles can be canceled by the counterterm
graphs 1(d) and 1(f). In diagram 1(d) the mark
indicates ~ b»[Q'(rl)m'g'Q'/(n —6)] and in diagram
1(f) the mark indicates —2d»[A'(q)R(g)g P'/
(I —6)]. The poles cancel if I pick b»= I/(4v)' and

d» = ($ --,')/(4v). ' It is easy to convince oneself,
by writing out the full expression for the 8 matrix
including all factors of V'-g, that all the terms
have the same factor of A(q). The coefficient 5»
agrees with the flat-space calculation by MacFar-
lane and Woo, ' as of course do the coefficients ay2

(c)

(g)

FIG. 1. (a) Self-energy. (b) Vfave-function counter-
term. (c) Self-energy with mass insertion. (d) Mass
counterterm. (e) Self-energy with V(q) insertion. (f)
Scalar curvature counterterm. (g) Vertex. (h) Vertex
counterterm. with

+ ~a("Po k"s ~s 4 4)= 0

I

and c~2.
I have gone through the calculations of 5»- and

dy2 in some detail in order to il lustrate the exac t
nature of the cancellations. In the calculation of
N, and S„one gets terms involving m ' and V(q),
but the counterterms involve m' and B(q). Thus in
order for the theory to be renormalizable, the co-
efficients of the m ' and the V(g) terms must be
the same.

The appearance of nonconformal counterterms
is due to the use of a nonconformally invariant re-
normalization scheme (see the discussion of
Birrell and Davies of this point). In contrast
Drummond uses a conformally invariant renor-
malization scheme and thus has no conformally
noninvariant counterterms at the one-loop level.

I am currently extending this calculation to the
two-loop level where one must deal with overlap-
ping divergences and where one gets state-depen-
dent infinities which must cancel in order for the
theory to be renormalizable.

'The curved-space-time renormalization-group
equation"' is

8 S 8 8
P(g) +-(I+@„—)m +y,)„-D ry+(rg }
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1 dh,
V)(g)=2 d

The effective coupling $(&t) satisfies'

~ d, =-&~(g(~))h(&)d&(&)

(21)

(22)

with $(l)= g. The theory is asymptotically free
with

$ &/2

8( 8( ) (I)21 (23)

where n = 2(47&)'/3, so in the UV region I only need
to calculate $(&) to O(g'). From Eq. (21)y&(g(z))
=. [5/6(4m)']($ —285)g'(&). Using this along with Eqs.
(22} and (23}gives

5(~)= —,', 5(1){5(1)—[Z'(I) »x+ o'] '"[h(1) ——' ]] '

(24)
and thus as x ~, g(K)

8
y~(gz)= lim g —lnZ(gs (»)g& -'&,»).

ff~6

A11, the other terms have their usual. meanings.
In order to calculate the P and y functions it is

necessary to relate the coefficients in the I.aurent
series for Z, m, Z, goZ, and $,Z to the coeffi-
cients iri the Laurent series for m„g„and $,.
Expanding g, as

ll (g) (20)„,(n-6)"

gives t&, = (d» —(c„)g'. In terms of I&„

In six dimensions the conformally invariant val-
ue for $ is —,', so in the UV region the theory is not

conformally invariant even if m= 0. This is in

sharp contrast to the IR behavior of $(~) for Q',
since for P' in four dimensions g(a)- 6 as z- 0.

The difference lies in the behavior of Z. For
Q' at the one-loop level Z = 1 so $(w) has an IR
fixed point at $= ~&. However, for Q' there are
nontrivial contributions to Z at the one-loop level
so the UV fixed point of $(e) is shifted from —, to
6

This allows one to guess at the result for four-
dimensional QCD in a Robertson-Walker universe.
Since the vertex structure of Q' is the same as
quantum chromodynamics (QCD) (except for the

four-gluon vertex) and since for QCD there are
nontrivial contributions to Z at the one-loop level,
it is reasonable to expect that the UV fixed point of

g(z) will differ from the conformal values. This
means that in the early universe (assuming that it
is a Robertson-Walker universe) QCD will not be
conformall. y invariant even when the particle ener-
gies are much higher than their mass. This will

lead to particle creation. A good discussion of the

relationship between conformal-symmetry break-
ing and particle production can be found in Birrell
and Davies' and the references within.
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