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Generalized mixing angles in gauge theories with natural flavor conservation
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A number of theorems relating natural flavor conservation and calculability are proven for general gauge models of
the weak and electromagnetic interactions with an unbroken U(1) symmetry. The concept of "nontriviality" —a
necessary condition that all naturally flavor-conserving gauge models must obey in order to have nontrivial mixing

angles —is introduced. It is found that naturality groups guaranteeing natural flavor conservation cannot generate

meaningful mixing angles in any guage model.

I. INTRODUCTION

'The elevation of flavor conservation from the
observed absence of strangeness-changing neutral
currents to a general theoretical constraint for
all flavors in gauge theories, presaged by a few
authors, ' was realized in a paper by Glashow and
Weinberg. ' There they stated the conditions for
SU(2)I && U(1), the "standard model, " to "naturally"
conserve all quark flavors in the neutral currents.
These conditions are that all quarks of a given
charge and helicity must have the same values
of T, and T', and that all quarks of p, given charge
receive their mass either through the couplings
of precisely one neutral Higgs meson or through
an SU(2)-invariant mass term but not by both
me chani s ms.

While the former condition is necessary and
sufficient for natural flavor conservation (NFC),
the latter (hereafter referred to as the sufficiency
condition) is only sufficient. That is, it is pos-
sible to have an arbitrary number of Higgs scalars
coupled to a given charge sector and yet ensure
NFC by applying a further "horizontal" symmetry,
called a "naturality group, '" to the Lagrangian.
Flavor conservation is still natural in this case
in the sense that it follows from the group struc-
ture and representation "ontent of the theory,
rather than depending on the particular values
of the various par ameter s.

One reason why we are interested in introducing
more Higgs fields into gauge theories is that
recent works' dealing with the calculation of flavor
mixing angles from the mass terms in the ef-
fective Lagrangian call for a much richer Higgs
content. 'There are those willing to posit the
existence of more Higgs fields and other group
symmetries in order to obtain meaningful mixing
angles in the theory.

The naturality group K then must serve a dual

purpose. It must ensure NFC and also limit the
Higgs-boson-quark couplings in such a way as
to allow calculable mixing angles. 'The mixing
angles obtained in this way are left unaltered by
renormalization. In the standard model it has
been shown' that calculability necessitates more
than one Higgs scalar.

There has recently been much work on char-
acterizing naturality groups' and their relation
to the calculability of mixing angles in the standard
model. "' In this paper we prove a number of
theorems which are, in the main, generalizations
of these works that are valid for any gauge model
of the weak and electromagnetic interactions with
an unbroken U(l) subgroup. In the following,
"gauge model" will refer only to models of this
type. In particular, we show that for a gauge
model, where flavor conservation is enforced by
a naturality group, all mixing angles in the
charged currents, be they left- or right-handed,
are phenomenologically unacceptable or non-
ealeulable.

The motivation for considering a general class
of gauge model is twofold. Simply, it is possible
that the standard model may not be the operative
gauge group of the weak and electromagnetic in-
teractions at higher energies [for example, neu-
trinos may turn out to be massive after all, in
which case the SU(2)z, x SU(2)s & U(l) model would

appear more attractivej. More importantly, we
would like to show that the results obtained pre-
viously are not peculiar to the standard model;
and the "clashing" of NFC and calculability is a
property inherent in all gauge models. "" This
would then be a much deeper result.

The paper is organized as follows. Section II
contains general conditions of NFC for arbitrary
gauge models along with the definitions of the
mass matrix and mixing angles. Section III deals
with the mathematical formulation of NFC in the
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Higgs-boson-exchange processes. In Sec. IV, a
nontriviality theorem for the mixing angles is
proven. Section V presents the results of applying
naturality groups to gauge models. In the Appendix,
some mathematical preliminaries, which are
used in the main text, are given.

II. PRELIMINARIES

After the spontaneous symmetry breaking of G
down to V(1), we obtain the mass term ZR:

RR = Q q~~ M(Q) qo„+ H. c. ,
Q

where

(2)

M(Q)= Q r;)(„
and where qoo«) is the left- (right-} handed pro-
jection of a vector containing all bare quark fields

Let us first generalize the results of Glashow
and Weinberg to an arbitrary gauge mo.del.

A first step has been taken in this direction in
Ref. 11. We find that" the conditions for NFC
in an arbitrary gauge group G with an unbroken
V(1) symmetry are the following.

(1) All quarks of a given charge and helicity
transform identically under G.

(2) All quarks of a given charge receive their
mass either (a) through a ("-invariant mass term
or (b) through the couplings of neutral Higgs
mesons, where the couplings of each Higgs meson
are simultaneously diagonalizable in a natural
manner with the mass matrix, but not by both
mechanisms (a) and (b).

These conditions are necessary and sufficient
to guarantee NFC in a gauge model. The case

.(2a) is trivial since it is often excluded by the
gauge group and representation and, more im-
portantly, because it is not possible to generage
quark masses and calculable mixing angles in this
case. "Diagonalizable in a natural manner"
means that the couplings derive this property from
a group symmetry or representation.

Consider now a gauge model based on the gauge
group G which is, in general, a direct product
of simple Lie groups. The theory will contain
elementary left-handed fermions, right-handed
fermions, and Higgs scalars in the multiplets
(i(;1,(x), (i)»(x), and (f)"(x), respectively
(i = 1, 2, ..., n~; j = 1, 2, . . . , n» k = 1, 2, . . . , m).

. These multiplets will transform according to the
arbitrary representations I'";L, I",.R, and &~ of the
gauge group. The gauge-invariant Yukawa inter-
action for this theory will be

of a given charge Q. A. o=—((t) )o is the vacuum
expectation value of a neutral Higgs scalar that
contributes to the mass matrix for quarks of
charge Q. I' is the associated coupling matrix.
Of course, in general we may have A. o= X o, (if
there is an (t) coupling) or I =I'o, if the Q and
Q quarks are both contained in the same left-
handed multiplet and the same right-handed multi-
plet.

For obvious phenomenological reasons, we shall
assume throughout that M(Q) is nonsingular and
nondegenerate. We can diagonalize each M(Q)
with a biunitary transformation:

UiM(Q)URo =M(Q), (4)

where M(Q) is diagonal. This will define the
physical quark fields qLQ z) by

Q —ypQ Q
L (R) ~OL (R) (5)

Now, due to condition (1), the gauge fields will
couple to all quarks of a given charge if they
couple to any. From the coupling of quarks of
charges Q and Q in the multiplet of given helicity,
the charged currents take the form

Q P Q'JLR 90L R & COL R (6)

III. NATURAL FLAVOR CONSERVATION

We would now like to mathematically formulate
NFC condition (2b). One way to do this is to
recognize that all the coupling matrices I'' in
each charge sector are simultaneously di-
agonaliz able.

Theorem I. Condition (2b) is equivalent to
r equi ring

U,'r, U"=r, (9)

for all n and Q, where I'™ois diagonal and U@«)
is defined in (4).

Condition (2b) can also be formulated' in a basis-
independent way.

Theorem f'. Condition (2b) is equivalent to
requiring the sets of matrices (I o I'8z) and
(I'"o I'()f to be Abelian for all n, p, y, and 6 tn each
charge sector.

One can fipd an even stronger constraint in the

That the currents take this form is a nontrivial
consequence of condition (1) for NFC.

Moving into the physical qurk basis defined by
(5) we have

r& Q &rr Q'
+ L(R) @ L (R)~ ~L(R)~L(R) &

where U«R) is the generalized left- (right-) handed
Cabibbo matrix given by

Q Q' f
Ul (R) L (R) ( L (R))
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case of left-right-symmetric gauge models as
follows.

Corollary 1. Condition (2b) for left-right-sym-
metric gauge models with real vacuum expec-
tation values of the neutral Higgs scalars is
equivalent to requiring

[I'„18,]=O.

Proof. For these models the Lagrangian is
invariant under left-right symmetry":

giR and d)—

(lo)

It can then easily be shown that if A. Q is real and
I'o is real (complex), then M(Q) will be real sym-
metric (Hermitian) and so, of course, normal.
Since a set of normal matrices commute if and
only if they are simultaneously diagonalizable,
Eq. (10) follows.

IV. NONTRIVIAL MIXING ANGLES

At this stage, without any reference to naturality
groups, one can prove the following'.

Theorem 2 (nontriviality). In a naturally flavor-
conserving gauge model with an arbitrary number
of Higgs multiplets, the necessary condition for
nontrivial mixing angles (i.e. , other than 0 or
v/2) between any two charge sectors, Q and Q',
is that the sets of coupling matrices (I&j and

fl o~,j are not identical. [Suppose o. , p, and c are
such that I'oecl'o, where c is a, number. ]

Proof. We prove the contrapositive. Suppose
that $1 oj ={I'

&, j. Then from Theorem 1

U~M(Q)U~ =M(Q) = Ul M(Q)U„. (12)

This can be rewritten as

UL (R)Q L (R) ~ Q &
(13)

where9R@ ——M(Q)M (Q) =M (Q)M(Q), both of which
are diagonal. From Corollary Al in the Appendix
we see that U«» must be diagonal unitary and so
the mixing angles must be trivial.

Although the proof of this theorem is straight-
forward, the theorem itself is quite powerful in
limiting the Higgs structure in gauge models.
Specifically, in NFC SU(2)z x SU(2)~ x U(l) models,
if one chooses the "standard" vacuum-expectation-
value (VEV) structure (,) for the Higgs scalars,
then there will only be trivial mixing angles in
the theory, as explicitly demonstrated by Gatto,
Morchio, and Strocchi. ' Contrary to their results,
however, an SU(2)~ x SU(2)s xSU(1) gauge model
can give nontrivial mixing angles if the Higgs
VEV'S are of the form (; ', ) and (,', ). Gauge models
with this choice of VEV'structures can easily be
shown to effect the same symmetry breaking as the
"standard" ones, and at the same time contain

no WL-M&R mixing.
In general, this theorem states that NFC gauge

theories whose Higgs multiplets contain more
than one nonzero VEV will have corresponding
trivial mixing angles, both left and right, between
the two charge sectors.

Since we would like gauge theories to' yield at
lea,st nontrivial mixing angles, we must require
that for all Q and Q in the same multiplet there
exists a I'Q and a 18Q, such thatr QI I'8Q, . We call
this "ondition "nontriviality. "

V. NATURALITY GROUPS AND MIXING ANGLES

(Rg~g~& iR

0" - (D,).i
4',

(14)

for all gcK. L, R, and D are unitary matrices
representing the transformation of the quark and
scala, r fields under K.

Invariance of 2 (and so Z„) under K requires

(D*)~ I" =L F R

for a.ll g and for each Q.
Tran'sforming (15) into the physical quark basis

using Theorem 1 we obtain

(D,*), I"=L, I' R, , (16)

where the transformed horizontal representations
are defined as

LQ=UQ LQPQ

RQ=- VQRQ U".
g R g R

Note that in gauge models whose left- and right-
handed multiplets are not singlets, there will be
elements of K degenerate for different values of

Q since K acts on the same representations as
does G. For example, in the standard model

'=L ' ' while for SU(2)lxSU(2)s xU(1),''=L ' 'andR ' '=R ' ' I l
the left- (right-} handed charged currents are
defined between the quarks of two charge sectors
Q and Q contained in the same left- (right-) handed
multiplet. 'This means that"

L (R ) =Lo'(R ). (18}

Then using Eqs. (8) and (17) we obtain

We now introduce naturality groups" ' K.
Assume that the elements of A commute with the
elements of C; that is, assume that the set of
symmetries (K j acts on the irreducible multiplets
of G. Then under K,

IiL ( g)ik kkL ~
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and

(19)

for all values of Q and Q for which a charged
current is defined. Equations (15)—(19) shall be
the main focus of our attention in proving the
remaining theorems.

Theorem 3. 'Natural flavor conservation for
a general gauge theory necessitates that the

A

matrices Lo and Robe monomial (a matrix with
exactly one nonzero entry in each row and column,
that entry being of modulus one) and ~L@~ = ~R I
for all g and Q. (~ Lo~ is just L@ with all the phases
set to zero. )

Proof. From the definition of M(Q), (3), and
from (15), we have

A A A

»8(D*}8 I' = X=L MR (20)

where, of course, NFC demands Mand Y be
diagonal. Multiplying (20} on either side by its
adjoint, we have the equations

L gTtL =XX —=D (21)

and

R', mI.,= X'X =- D.

Now since these equations transform diagonal
matrices into diagonal matrices and is non-
degenerate, it follows from Theorem Al in the
Appendix that L and R, are monomial for all
g and Q. Also, from (21) it follows that

(R, L',)~(R,L',)' = m. (22)
A

And so from Corollary Al, R, L must be diagonal
unitary, and this can only be true if ~L, ~

= ~R
~

—if
the permutation matrices underlying the monomial
representations for L and R are the same for all

g and Q.
Actually, one can prove more than this. The

generalizations of the results obtained in Refs.
3 and 7-10 on the further characterizations of
L, R, and D are easily obtained. For our pur-
poses, we shall need only what we have proven.

When the sufficiency condition of Glashow and
Weinberg is required, the following can be
proven. '

Theorem 4. Any gauge theory that obeys the
sufficiency condition will have trivial or undeter-
mined mixing angles.

Proof. Assume that all quarks of a given charge
receive their mass through precisely one neutral
Higgs meson. Then Eqs. (21) take the form

L 9RL =gq (23)

and

(24)

We consider the two cases.
(1) detUO 0 0. In this case it is easy to see that

U, must be a permutation matrix and so U will be
m onomial.

(2) detU, =O. For this case U, must be of the
form

1
(Uo);,. = for all i, j,

&in
(25)

which implies that every element of U is nonzero
with absolute value I/Mn.

From (19) one can show, using Schur's lemma,
that these solutions are unique up to a multiple
of the identity. For case (1) it has been shown"
that radiative corrections do not alter the result.
For case (2), the lower limit on the mixing angles
is 45'.

For the case of ~educible reP~esentctions, we
make use of Theorem 1 and the nonsingularity of
M with arguments similar to Segre and Weldon. '
The result is that U can be written as a direct

R, ~R =OR.

Again, since 0R is nondegenerate, from Corollary
At. we see that L and R are diagonal unitary.
Then from (19) U~&» will just transform diagonals
into diagonals. If Lo (R,) is nondegenerate, then
from Theorem Al one obtains the result that
U«» is monomial, hence the mixing angles will
be trivial.

If Lo (Ro) is degenerate, then U«R& will be
undetermined in the subspace of the degeneracies.

We would now like to solve the problem for an
arbitrary gauge model with an arbitrary number
of Higgs scalars. We consider the case of ir-
reducible representation first and prove the fol-
lowing. '"

Theorem 5. Natural flavor conservation for an
arbitrary gauge model with n generations of
quark multiplets that transform irreducibly under
a naturality group will induce generalized mixing
matrices Uz«& that are either (1) monomial,
corresponding to trivial mixing angles (0, »/2),
or (2) matrices with eve&'y element nonzero and
having absolute value 1/Wn, corresponding to
mixing angles ~ 45'.

Proof. As we have shown, an arbitrary gauge
model with n generations of quark multiplets
transforming .under a naturality group will obey
Eqs. (19). Then it follows from Theorem A2 in
the Appendix that since the represent itions are
irreducible, all nontrivial elements of U«R& have
the same absolute value.

Suppressing the subscripts on the generalized
mixing matrices, define
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sum of blocks U,

U=geU, (26)
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such that every U' is either (1) as in the irreducible
case, i.e., monomial or satisfying (U, ),, =1 for
alii, j, or (2) undetermined.

We conclude from Theorem 5 and the above that,
for an arbitrary gauge model, jt is no. t bossible
to guarantee NFC and obtain meaningful mixing
angLes from a naturality group. This is a con-
sequence of neither the specific gauge model nor
the number and type of quark and Higgs fields.
NFC through naturality groups and calculability
are, therefore, inherently clashing notions.

We would not like to abandom either of these
conditions as the alternatives present problems
in themselves. ' " It is becoming increasingly
clear that the answer lies beyond gauge theories-
in the grand unified schemes of the strong, weak,
and electromagnetic interactions. " Within that
framework, the choices of Higgs-boson and quark
representations may be enough in themselves to
guarantee that both natural flavor conservation and
calculability survive.

APPENDIX: MATHEMATICAL PRELIMINARIES

In order to expedite the proofs of the theorems
in the text, we would like to state the following
simple mathematical theorems.

Theorem A l. If two nondegenerate diagonal
matrices A and & are related by a unitary trans-
formationn

UAU =8, (Al)

then U will be a monomial matrix (a matrix with
exactly one nonzero entry in each row and column,
that entry being of modulus one).

A corollary to the above theorem when A = B
is also useful.

Corollary A1. If a unitary matrix U commutes
with a nondegenerate diagonal matrix A, i.e.,
[U, A] =0, then U is diagonal.

For completeness, we include here the following
lemma due to the authors of Ref. 8.

Theorem A2. If X~ and Y~ are irreducible
monomial representations of a group E and X
= U+~U, then all the nontrivial elements of U have
the same absolute value.
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