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We study the question of small or large virtuality of the partons involved in elastic form factors at large q' and in
deep-inelastic lepton scattering at @~1.We consider two classes of models, both allowed by kinematics: the soft
ones, small-virtuality models (SVM}, where all partons are near the mass shell, and the hard ones, high-virtuality
models (HVM}, where at least one active parton is far off the mass shell. Taking the Bethe-Salpeter wave function as
input, we compare the kinematical and analytical properties of SVM and HVM in the above processes, using
successively covariant formalism and old-fashioned perturbation theory at infinite momentum. Both models lead to
the Drell-Yan-West relation, but Bloom-Gilman duality looks more natural in SVM. We apply our analysis to the
recent quantum-chromodynamic approaches of asymptotic form factors.

I. INTRODUCTION

Hadron form factors at high q' have been thought
for a long time to contain basic information on
hadronic structure (compositeness) and on strong
interactions at short distances. 'This is certainly
true in nonrelativistic theory: there, the two-
body bound-state form factor is

&(q') = e*"~4(r)
~

'd'r

~ k+q k d3k.

Its high-q behavior is sensitive to the short-dis-,
tance behavior of the wave function g, or, equiva-
lently, to the large momentum components of g.
'This in turn is governed by the singularity of the
potential at r= 0 (Ref. 1); the more singular the
potential, the slower is the decrease of the form
factor.

'

In relativistic theory, the connection is not
clear:

(i) one cannot sum all possible Feynman dia-
grams, so one considers only a subset of them.
Until recently, most of. the studies were based
on the covariant impulse approximation which is

represented by diagram (a) of Fig. 1. Its expres-
sion is the relativistic generalization of (1.1):

F(q ) =f d k p "(k+ q,p -k)[(p-k) —p ]p(k, p -k),
4

(1.2)

where g is the (unfortunately unknown) Bethe-
Salpeter equation.

Diagrams such as 1(b) are not taken into ac-
count. Diagrams such as 1(c) can be included in
the impulse approximation with a quark form fac-
tor.

(ii) The relativistic generalization of "short dis-
tance, " or large k, is "large virtualities, " i.e. , at
least one of the parton virtual mass squared

a'= k' b'= (k+ q)' s'= (p —k)'

must be large compared to the typical hadronic
mass scale A-1 GeV. But it is possible to have
simultaneously q' large and a', b', and s' finite.
For instance, in the timelike region q & 0,
ImF(q') receives a contribution from two-quark
intermediate states. a'= b'= p, ' ~ s' is the invariant
squared momentum transfer in the "final-state in-
teraction" quark+ antiquark- hadron+ hadron, and
is small in the forward direction. This kinemati-
cal situation also occurs in the triangular graph

ps-,

s=p k

FIG. 1. Diagrams for the meson form factor: (a)
impulse approximation, (b) gluon overlap, and (c) quark
form factor. FIG. 2. Vertex correction in @ED.
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of QED (Fig. 2), and is responsible for the infra-
red divergence of the electron form factor'

ImF, (t)= —~ln, --
~,

t=q'»m'.o ( t 3)
2( m„' 2)' (1.3}

Thus, the asymptotic behavior of form factors
may depend on the soft ("long-distance" }part of
the wave function as well as on the hard ("short-
distance") part. In the case of the electron, con-
sidered as an electron-photon bound state, both
regions, s'-m„2 and s'-t, contribute to (1.3).

Dimensional counting rules (DCR) have been
derived assuming that at least e' or b' is large. '
For n, spectator partons, one has, modulo log-
arithmic factors,

about the exclusive limit of deep-inelastic lepton
scattering, i.e. , when one looks at the threshold
behaviors of structure functions. Denoting by x
and by k~ the usual infinite-momentum parton
variables, we have, inside a hadron of momentum

Py

k'+kr' (p -k)'+kr'
(1.6}

Thus, whenx-l, we have two possibilities: (1)
in HVM, (P —k)' is finite, k'--~ and (2) in
SVM, k' is finite, (P -k)'- -kr', the last relation
being allowed by the confinement of the spectator
quark. Both models generally satisfy the Drell-
Yan-West relation"

F(t)-t "s t (1.4) ~E(t)~' ~ t "-::-G(x) ~ (1-x) "". (1.7)
in agreement with available experiments. On the
other hand, in the naive parton description of
Feynman4 all partons are nearly on the mass
shell, the active quarks a and. b taking nearly all
the momenta of their parent hadrons and the
spectator being soft. This is also the case in the
massive quark model (1VQM} of Preparata and
co-workers' and in a similar approach by Einhorn
and Fox.' (Actually, "massive" is not a conven-
ient word since we know that quarks are light —at
least inside the hadron —but it was chosen for
historical reasons. ) In these models, the asymp-
totic form factor is

F(t) Pg(0) 1 (1.5)
!

where 0', is the assumed Regge trajectory of the
spectator systein. o.',(0) can be adjusted to fit the
experiment. Thus, we distinguish two opposite
kinds of models.

(1) High-virtuality models (HVM), used in the
derivation of dimensional counting rules and in
earlier works on form factors. ' The recent cal-
culations of asymptotic form factors in quantum
chromodynamics' (@CD) are of this type.

(2) Small-virtuality models (SVM), such as the
MQM and the Einhorn-Fox approach. In this cate-
gory we include an approach by Licht and Pagna-
menta' based on the Lorentz contraction of the
bound-state wave function in the Breit frame, a ~

two-dimensional QCD model of Einhorn'0 and a
dispersion calculation, using two-quark unitarity,
by Qhoroku and Kawabe.

One may also have a combination of the two
models, i.e. , both short and long distances con-
tributing to the asymptotic form factor, as in
(1.3). Appelquist and Poggio have found that this
is the case in (Q'), theory. " For simplicity of the
discussion we shall consider only pure SVM or

. pure HVM.
The same kinematical question can be state/

In view of the great popularity of dimensional
counting rules, it is worthwhile to look more
carefully at their theoretical basis and compare
them to alternative models such as 1VQM. One
might think that the recent QCD approaches of
Efremov and Radyushkin, Brodsky and Lepage,
Farrar and Jackson, Duncan and Mueller, and

Pagels and Stokar have rendered this debate ob-
solete. In the case of the pion form factor, they
justify the dimensional-counting-rule approach,
apart from logarithmic corrections. This would
be in favor of HVM. However, Duncan and
Mueller' have raised some doubts about the valid-
ity of this approach in the case of the proton
form factor, or the scalar form factor of the
pion. For these reasons, we think the problem
is still open.

In this paper we shall review in parallel the
applications of SVM and HVM to asymptotic form
factors and threshold behaviors of structure and
fragmentation functions, and emphasize the rele-
vant theoretical and kinematical differences. We
shall work in a nongauge theory with spinless
hadrons and constituents, as if gauge and spin
were "unessential complications" in the problem
of high or low virtuality. The input assumptions
which will characterize the two models will be
about the Bethe-Salpeter wave function P(a', s').
We shall use successively the covariant formula-
tion and old-fashioned perturbation theory in the
infinite-momentum frame (OFPT„), and check
the consistency of the results.

The rest of the paper is organized as follows:
In Sec. II we consider the: asymptotic form fac-
tor in the covariant impulse approximation. In
Sec. III we examine the structure function in the
wave-function approach. In Sec. IV we discuss
the structure and fragmentation functions in the
leptoproduction approach. In Sec. V we consider
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form factors in OFPT„. In Sec. VI we present a
summary and conclusion.

II. ASYMPTOTIC FORM FACTOR IN THE
COVARIANT IMPULSE APPROXIMATION

We use the lightlike notations

S —So+Sr y

sr = (s„,s,),
x', =s'/A', x, =s /B

(2.6)

We assume that the asymptotic form factor is
given by the "impulse" triangular diagram [Fig.
1(a)] We describe the internal structure of the
hadron by a covariant hadron-parton vertex
V~(a', s') or equivalently by a Bethe-Salpeter
wave function

a'= (A' —s')(A -s ) —sr',
b'=(B'-s')(B -s )-sr',

(2.7)

etc. For the active quarks, we write x, =—x'„x,
=—x, . 'The virtual masses squared are given by

S =S S Sz
2 + - 2

a-m, s -m, (2 1)
with, at large Q,

The scalar form factor is given by (throughout
this paper we omit factors of 2v)

E(q') =i Jtd's $„(a',s')(s' -m, ')ps(b', s'), (2.2)

with

A+~ B ~q
2

A- B

A. Small-virtuality model

(2.8)

q=B -A=b -a,
s=B —5=A-a.

The generalization to the n-parton case is

(2.3)

As in MQM or in the covariant parton model of
Landshoff and Polkinghorne" we assume (softness
hypothesis) that V(a', s'), or f(a', s'), decreases
very fast when

~

a'I+
~

s'~- ~ with a cutoff A'
-1 GeV'. This gives

t

E(q') = id-'s
m, 2 &2 mb2

+T-a, g y, s(a -th is sq (2.4)

2A s=Qs &A',

2B s —Qs'& A

s2 s 2g+2

(2 9)

qo= 0,

q = -Q -=—(-q')~' (2.5)

where T is the off-shell quark-hadron scattering
amplitude. Diagrams 1(b) and 1(c) are taken into
account. From now on, we shall consider the
spacelike form factor (q'& 0). The integration over
s will be analyzed in the Breit frame (Fig. 3) (Q; A', B-)—X(Q,A, B-),

(s',A, B+)-X '(s', A, B+),

s~ s~.
(2.10)

As Q' increases, the effective domain for s is a
narrowing cigar of length -A, diameter -A'/Q,
and volume A'/Q'. Also, the integrand in (2.2) is
invariant under the transformation

q =q =A =A =B =B =0.S 9 e 3l g

'Thus, one gets at large t

E(M)= & 'E(t),
E(t)-t

(2.11)

This power law is independent of the degree of
softness of the theory. The generalization to n,
spectators gives

E(t)—t-ns (2.12)

We note in passing that

1 -x:-x & A /Q~,

1 -x:—x &A2/Q2
(2.13)

FIG. 3. Momentum diagram for the spacelike form
factor in the Breit frame (2.5). In the small-virtuality
model, s must lie in the cigarlike domain.

We would like to calculate the normalization
factor. Neglecting terms in s's in (2.7), we can
replace d's by
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da'db'
d's = &d's~ds+ds = ~d's~ (2.14)

give us zero owing to the superconvergence sum
rule

One thus gets, from (2.2),

F(t) = d'sz, (sr'+ m, ')f„(-sr')fs(-sr'),
(2.15)

with

f„(s')= —$„(a2,s')da' (similarly for 8) .
+ ~ 20

(2.16)

Discussion

Expression (2.15), which is also valid in the
timelike region, has bad analytic properties; in
particular, it gives a purely imaginary, instead
of real, form factor in the spacelike region. In
conventional field theory one can get rid of the
factor i by making a Wick rotation in the s' (or
s', or s ) complex plane. Instead, in a confining
model like %AM (Refs. 5 and 6) one assumes that
$„(a2,s') is an entire function of a' and s' with an
essential singularity at infinity, for instance,
similar to exp[-(a')']. Thus a Wick rotation is not
possible. However, M@M takes field theory only
as a guide; it starts from (2.4) but removes the
poles of the quark propagators and takes a Reg-
geized form for T. In such an unconventional
model, there is no reason to keep the factor i in
(1.2) anyway.

B. High-virtuality model

Now we turn to a more conventional model
where g„(a2,s') is a decreasing function of a' and
s' in all directions of the complex planes, with
the usual poles and cuts of a nonconfining theory.
The idea behind this is that, at short distances or
large momenta, the quarks "do not know" that
they are confined. Now, one cannot use the ap-
proximation (2.14). Had we made it, (2.15) would

$(a2, s2)da2= 0, (2.17a)

which comes from analyticity in a' in the upper
half plane and from a weak softness hypothesis:

f

a'
f

- ==
/

a'y(a', s')
f

- 0 (2.17b)

sp +my&=m~ 1-x: (2.18)

sr + tpl2

xs x

and cuts coming from the cuts of the vertex func-
tions. Depending on x'„wehave four possible cut
configurations (Fig. 4). In cases 1 and 4, one can
close the contour in the A's plane and the result
is zero. In the other two cases, one can rotate
the contour far away from the soft region [given
by (2.9)] such that at least

(
a'~ or

(
b'( is large.

Thus, the softer the theory, the faster is the de-
crease of F(t), in contrast to the SVM result
(2.11). As an example, let us take

m„=m =0, m, =m, =m, = p, -l GeV,

P~(u' v')= Ps(u' v )

(t 2 u2)-1-i(@2 v2)-1-xy~ 0

(2.19)

Introducing T=- p.'+ s~', z =—p'-s'=w -s's and
performing the Wick rotation, we rewrite (2.2) as

uniformly in all directions.
Let us first integrate (2.2) on s at fixed s' and

s~. More precisely we shall take the boost-in-
variant quantities A's and x', . In the A's plane,
the integrand has poles located at [see Eqs. (2.7)]

2 2sp + ms -zc0'=
xs

im
" idx+ t'"'- t' 7' s i 2 2

F(t)=— d~ .' t dies '-'"is+,
i

(s+Q'x', )
' ".

0 Xs ~g ~ 4 k Xs
(2.20)

Choosing, for instance, ft =7'/2 in order to get
away from the soft region, we can see that

(1 -x,)(1 -x, ) =x',x,c p, 2/Q2, (2.22b)

(2.22c)
F(~2} (Q 2) 1 2 InQ 2 (2.21)

the main contribution coming from the region
(2.22d)b'a/ & ~'Q'

[This is compared to a'- b'-A' and (2.9) and
(2.13) in SVM.] The "rapidity" of the spectator

l.e. y

+ 2
J Xs 1 0

Y =& ln —=
& ln-

x b'
S

. (2.23)

S ' S' S+S -P,' (2.22a) is uniformly distributed between -ln(Q/p, ) and
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—(~) ' (t} ' (&)
0 x+

t Q

(g) - x
S

x =—x'=1-x'a

P—=A, Q=—a, p —k=s.
We normalize the one-parton states as

(x,kr )x', kr) = 2x5(x -x')5"'(kr -kr)
and define the wave function by

g ~x„a;x„sr)
= 25(1 -x, -x,)5"'(ar+ sr)ct (x„ar).

(3.1)

(3.2)

(3.3)

0(

"q Wick rotation

C

'Then, the structure function at fixed k~ is

g( k )
~ P( r)~ (3.4)2x(1 -x)

(Here we consider only the spinless case. ) We
want to relate P to the Bethe-Salpeter wave func-
tion P„(a',s'}. Let us compare OFPT„and co-
variant expressions for the process shown in Fig.
5 where T... z is a hard subprocess (for in-
stance iluark+ antiiluark- W boson), in which one
can neglect the a' and s' dependence:

FIG. 4. Configurations of the cuts in the A's plane,
according to the xs intervals (shown in the upper figure).
Poles and branch points are supposed to coincide, Cases
2 and 3 correspond to nonvanishing diagrams of old-
fashioned perturbation theory in the infinite-momentum
frame. (3.5b)

1

(, )d'kryo(x, kr)T...-g, (3»)

, i d'kg(k', (p —k)')T, ,

+In(Q/p) (whence the logarithmic factor). The
dimensional counting rule is obtained in the limit
A. —0.

C. Comparison of SVM and HVM approaches

In the derivation of the SVM result (2.11), it is
implicitly assumed that there is no cancellation
due to change of sign of the integrand, within the
soft region (2.9). In the HVM, such a cancella-
tion does occur due to the superconvergence sum
rule (2.17}(in Fig. 4, the soft region is the neigh-
borhood of &). Thus the analyticity of g spoils the
naive expectation based on kinematics alone. On
the other hand, the SVM assumes an essential
singularity at infinity so that (2.17) does not hold.
For the moment, both approaches seem to be in-
ternally consistent.

with

a'=k'=xp'0 -k '

s'= (p -k)'= (1 -x)(m„'-p'k ) -kr'.
(3.7)

Expression (3.6) can also be obtained from the
Bethe-Salpeter wave function in position space at
eilualX'. (This is done, for instance, by Ida and
Yabuki" for spin=,' partons. ) a' and s' are rela-
ted by the useful identity

a2+ k'+ ' =m'
x 1-x (3.8)

Identifying the two results, one gets

P 00

Q(x, kr)=ix(1 -x)p' dk g(ko, (p —k)o) (3.5)

III. STRUCTURE FUNCTION IN THE
%AVE-FUNCTION APPROACH

which comes from a + s =A. .

In old-fashioned perturbation theory at infinite
momentum the structure function of a two-parton
bound state is proportional to the square of the
wave function &f&(x, kr}. Let us consider hadron
A of the preceding section. We shall use alter-
natively our previous notations and the more
standard ones FIG. 5. Hard quark-antiquark process within a meson.
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A. Small-virtuality model

In SVM, expression (3.6) does not a priori van-
ish for x outside [0,1] so that it may not be pos-
sible to identify (3.5a) and (3.5b). Nevertheless,
we shall keep this P, considering it as the equal-
X' Bethe-Salpeter wave function. From softness
hypothesis and (3.7), we get

(3.9)

for any x c [0,1]. When x - 0 or 1, (3.8) fixes the
virtuality of the soft parton:

o'. -O-S -m~ 2

m. '+ k, ' m. '+ k~'
+ -m~ &0

x 1 ~x (3.14)

[8 -m~' is the energy denominator in OFPT„. We
have the useful identity

we can close the contour and Q vanishes, as ex-
pected (see also Ref. 15). For x c [0,1] and m„
& m, + m, (A stable) the right- and left-hand singu-
larities are separated by a gap

x-1, s'=(p-k)'--k, 2. (3.10)
2 2 2 2-mg s -mg

x 1 ~x (3.15)

G(x, kr)- (1-x) "'"'. (3.12)

This result satisfies the Drell-Yan-West rela-
tion with (2.12).

B. High-virtuality model

We return to expression (3.6) of @(x,kr). It
must vanish for x outside [0,1] otherwise we can-
not identify (3.5a) and (3.5b). The singularities of
the integrand in the P'k plane are shown in Fig. 6.

In analogy with (2.18), we have two poles at

m, '+ k&' -ia
x (3.13}
ms'+ ~r' -&&0'= mg 1-x

and corresponding cuts. We see that for xg [0, 1]

Thus, we get for x-1
y(x, k, ) = i(1-x)f(-k,2),

G(x, kr) = (1-x)f2(-kr2) /2,

f being defined by (2.16), provided again that the
superconvergence sum rule (2.17) does not hold.
The generalization to the case of n, spectators is

by combining (3.8) and (3.14).] Thus, one can
make a Wick rotation around a point of the gap
and get a real P. Alternatively, one can take a
contour which encloses only the right-hand or the
left-hand singularities. If one chooses, for in-
stance C', (3.6) becomes

(3.16)ds'disc, 2 $(a2, s'},
~m 2

S

with a' and s' related by (3.8). In the case of a
constant vertex V(a2, s') =g, one gets, omitting
factors of 2m,

Q(x, kr)=ix

8 -m~' '

2

G(x, k 2x(l -x)(S -mg2)2

(3.17)

Let us now come to the limitx-1.
At finite k~, there is a "soft region" in the

p'k plane, given by ~p'k ~&A', where both k' and
(p-k) are finite. This remains true in the limit
x- 0 or 1, although or o -~. But in this case
we can perform the Wick rotation far away from
the soft region, for instance at

x&0

0( x(1

2.

a

Q+o
ReP'k =

2

'Then,

(Rea (-

i

Res'/-

(3.18)

(3.19)

Let us assume again that g is given by (2.19), one
gets (for x- 0 or 1, and/or kr-~)

y(x k ) «1+2(1 x)1+x(i12+k 2) 1 21

G(» k ) »1+21(1 «)1+21(i12~k 2) 2-41

(3.20)

(3.21)

FIG. 6. Singularities of $(k2, (p —k)2} at fixed x and

kz in the p'k plane. Poles and branch points are
supposed to coincide.

'This result satisfies the Drell-Yan-West relation
with (2.21), modulo the logarithmic factor. Again,
DCR is obtained in the limit X-O.
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s2 ~ 2

a'- A

and in HVM

S2

a'» p,'.

(3.22)

(3.23)

The Drell-Yan-West relation is a consequence of
this similarity, in SVM as in HVM. The observed
agreement of this relation with experiment does
not favor particularly one of the two models.

However, Bloom-Gilman duality" implies a
more precise connection between the two proces-
ses: assuming that G(x) is built up of transition
form factors, we have, for m„'«m~~«

~

t ~,

m, '—-~t~(l-x, ), (3.24a)

G (x)ax= g ~F .(~)~ . (3.24b)
1-m~2/ l tl m~~ & mg

In the case m&-m~-A, we have

C. Comparison

There is a deep similarity between the behavior
of the structure function at x-1 and the asympto-
tic form factor. For both processes, we have, in
SVM,

function, in particular for the following reasons:
(i) It ignores the final-state interactions be-

tween the spectator and the active quarks, re-
sponsible for the hadronization (confinement).

(ii) It seems difficult to generalize it to the
crossed process quark- quark+ hadron (fragmen-
tation).

Thus, we have to consider a more complete
description of the leptoproduction process. We
choose the planar diagram (a) of Fig. 7, where
the active quark is a valence quark, not only for
simplicity but because the valence contribution
dominates at x = 1. In a nonconfining model, di-
agram 7(b) will be sufficient; at least it solves
difficulty (ii). The unitarity diagrams corres-
ponding to Figs. 7(a) and 7(b) are, respectively,
the "cat's ears" and the "hand-bag" diagrams of
Figs. 8(a) and 8(b).

For simplicity, we shall consider all particles,
including the photon, as scalar. We can express
the structure function directly in terms of the
virtual photon-hadron inelastic amplitudes or
(using unitarity) in terms of the off-shell forward
C ompton amplitude

1 2

G(x)= -q' Q5'(A+q -X) -T„„
X

A2x'-1-x -—' l~t' (3.25)
2g
e Im&„~ „~, (4.lb)

which is the kinematical situation of SVM (2.13),
but not of HVM (2.22): for instance, in the mid-
dle of the spectator rapidity plateau in HVM [Y,
= 0 in (2.23)], we have

where e is the parton charge. Now G does not de-
pend on k~, since this is not an observable quanti-
ty, at least in confining models. Equation (4.1)

(3.26)

Thus, Bloom-Gilman duality is better understood
in SVM than in HVM. However, if, for some
reasons, only the edges of the spectator rapidity
plateau contribute to the asymptotic form factor
in HVM, we have

(3.27)

and Bloom-Gilman duality is also possible in this
case. We shall see in Sec. V that the kinematical
situation (3.27) is assumed in the OFPT„-QCD
approach of the pion form factor by Efremov and
Radyushkin, Brodsky and Lepage. '

IV. STRUCTURE AND FRAGMENTATION
FUNCTIONS IN THE LEPTOPRODUCTION

APPROACH

Despite its simplicity, we may not be satisfied
by the wave-function approach to the structure

FIG. 7. Electroproduction diagram (a) confining
model: planar duality diagram, (b) nonconfining model.
These diagrams also describe the crossed process
e e —A+X.
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A. General. kinematics

For deep-inelastic scattering, ps for spacelike
elastic form factors, we shall use the Breit
frame (Fig. 3) replacing B by X. We define

—

A

b ~9
2 +

x-=
2A q A' '

M '= W-2= (b+ s)'= -q'(I/x —1)+m„'.
(4.4)

Both in HVM and SVM, b' and s2 are finite. In the
limit -q'» m'+ kr' (kr is the common value of
a, br, and -sr), we have

FIG. 8. Diagram representing the imaginary part of
the off-shell Compton scattering amplitude, Eq. (41b):
(a) confining model, (b) nonconfining model.

also applies to nonconfining models [Fig. 7(b)),
with X=lb+ s}. Similarly, the quark fragmenta-
tion function is

b'+ kr')x.=xll+,' l=x-q'

and the usual relationship

a2+k 2 f2+kT + T =m'.
x 1-x A

(4.5)

(4.6)

1 2

D(z) = zq' Qb'(q -A -X) T, — (4.2)
For e'8 annihilation into hadrons, we use the
center-of-mass frame, with AT = 0. Formulas
(4.4)-(4.6) remain valid with

The comparison of (4.1) and (4.2) gives formally
the crossing relation (for spin-zero partons)

D(z) 1
G(x)=—,x=—.

8
(4.3) A~-A, a~-a.

(4.7)

B. Small-virtuality model

As we have already seen, confinement plays an important role in SVM, so we consider diagram (a) of
Figs. 7 and 8. la'l, lb'l, ls'l, and kr' are cutoff at A', as in the case of elastic form factors. Using
unitarity for quark-antiquark amplitudes, one gets

db' db"
G(x)= d'k da'tt(a' s') li d'k' da"g*(a" s") t (4.8)

s' being given by (4.6). ImT,„,;,. is a, function of
the virtual mass squared b', s', b",s", and of the
Mandelstam invariants lP and

(4.9)

Confinement implies that the poles of the propa-
gators in b' and b" are canceled by zeros of ImT.
D(z) is obtained from G(x) by use of the crossing
relation (4.3).

Scaling in SVM

(4.11)

with o.(0) =1 but n'. (0) a0 gives an approximate
scaling (i.e. , up to logarithmic factors).

Threshold behavior

The limit x-1 or z -1 is obtained by putting
s'= —kr' in (4.8) [see Eq. (4.6)j. Assuming (4. 10),
one gets

In order that expression (4.11) does not depend
on q2, we must have

G(x) = c(1 —x),
D(z) = c(l —z),

(4.12)

A Regge behavior such as

(4.10) with the same coefficient c. This is the same
power law as that obtained in the wave-function
approach.
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Remarks

The results (4.12) imply that the superconver-
gence sum rule (2.17) does not hold (otherwise
c =0). Thus, confinement is relevant for two rea-
sons: (i) (kinematics) to allow s'=-kr', and
(ii) (analyticity) to give»& an essential singularity
at infinity. Similarly, one must have

one gets for x-1 and/or kr-~
G (x k ) (1 x)1+2k (~ 2 ~k 2) 2 "2)L (4.19)

The x dependence is the same as in the wave-func-
tion approach (3.21), but not the kr dependence;
this is because, at large k~, only one parton is
far off the mass shell instead of two. The Drell-
Yan-West relation is satisfied.

D. Discussion

(4.13)

In (4.8) we have lost the symmetry x—1 —x
that we had in the wave-function approach (3.6).
Anyway, none of these formulas apply to small x
but the Begge mechanism:

G'*'(x- 0) -x ~a&'&. (4.14)

C. High-virtuality model

In the spirit of HVM (and also of asymptotic
freedom), we ignore confinement and consider
now diagram (b) in Figs. 7 and 8." In (4.1a) we
replace X by (b+s}. In the general case where s
is itself a multiparticle state as in Fig. 8(b) one
gets

G(x, k,) = '-x -.
ds'(a' —m, ') 'ImT,

„

(4.15)

a' and s' being related by (4.6). In the one-specta-
tor case, one has

We see that, within each model, the wave-func-
tion approach and the multiproduction approach
are in qualitative agreement about the threshold
behaviors. In SVM, however, this agreement
rests on assumption (4.10) or (4.11)which is nec-
essary to get sealing.

SVM takes hadronization completely into ac-
count. In HVM the hand-bag diagram of Fig. 8(b)
corresponds to "parton+ core" decomposition of
the hadronic state. At small x, the squared mass
of the core is, from (4.6),

a'+k&' 1
x x

dx d'krG,"~„(x,kr) =1. (4.20)

Thus, we can identify the multiparticle state s as
the hadronic plateau of rapidity length ln(1/x).
But, there remains a rapidity gap of length In@'
in the current region, which, in the real world,
must be filled by the confinement mechanism.

Expression (4.15) has the advantage, over other
approaches, to guarantee the probability sum rule
for a valence quark

(4.16)

with 5' defined by (3.14). In the limit of a constant
vertex one gets the same result as in the wave-
function approach, (3.17), but this is not generally
true. As in SVM there is no x 1 —x symmetry.

The fragmentation function D(g, Ar) can be ob-
tained from (4.15) or (4.16) by a generalization of
the crossing relation (4.3):

If, indeed, one calculates the elastic form factor
(2.4) at q =0 by performing the s integration along
contour c in Fig. 4, one obtains

1=v(0)

ds'(a' —m, ') 'Im7'.
„1-x 2ms

(4.21)

Threshold behavior

Assuming, in analogy with (2.19),

V(&2 ~ 2) (n2)-&.

(4.17)

(4.18)

(we put an extra. x factor because we consider the
vector form factor). This is in fact an alternative
method to derive (4.15).

Let us finally mention a recent model proposed
by Azeoiti, Alonso, and Cruz" which is of SVM
type, but retains the hand-bag diagram [Fig. 8(b)].
Confinement is ensured by forbidding pole and
cuts in a2 only. The result is a nonvanishing limit
of the structure function at x=1.
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V. FORM FACTOR IN OFPT

Up to now, we have calculated the form factor
and the structure function with covariant Feynman
diagrams. But at least the spacelike form factor
is often analyzed in old-fashioned perturbation
theory, " in an infinite-momentum frame where q
is purely transverse. This frame may be obtained
from the Brett frame introduced in Sec. II [(2.5)]
by a boost in the y direction. Also, we define

Sp+ Sy =1-y =1-y~
0 y

(5.1)

(2) If o.'=P (limiting case), then

k1 P,

or vice versa,
k,'-y, (5.7a)

d+(-Q ) Q 'Q lnQ
dP. / Q VS

(5.7b)

The Drell- Yan-West relation is still satisfied,
modulo logarithmic factors.

(3) If n &P (strongest damping in y, ), then

s

s, =(S„,S.).

The initial and final relative transverse momenta
are

k~ p,

or vice versa,k'-Q

&(-Q') -Q "
(5.8a)

(5.8b)
qk —s +g

Qk,'= s, -y,
2

~

(5.2)
and the Drell-pan-West relation is not satisfied.

Let us now look for the connection between this
classification and the SVM/HVM one.

These new variables may be expressed in terms
of the old lightlike variables of Sec. II [(2.6)].
Neglecting terms of relative size m„'/Q2, ma'/Q'
we have

A. Small-virtuality model

SVM is clearly of type (1): @=1, P-~. Putting
expression (3.11) into (5.4) leads to

28=X +X + 2

E(-Q') =-, d'k f(—k,') (5.9)

k = —s —xQx y s

k'„=s, —x,"Q,

k =k'=s
Z 2 2'

(5.3)
Comparing with the covariant result (2.15), we
have the same power law but a different normali-
zation.

In the OFPT„impulse approximation, the vector
form factor is

(5.4)

The asymptotic behavior of E depends on the be-
havior or P at k, —~ and/or y, -0. Suppose that

Q(y „k,) -y, (p.'+ k,') s, y, -0 and/or k, —~,
(5.5a)

whence

G(x, k,)-(l-x)'" '(p, '+k, ') '~. (5.5b)

1
&(-q')=

J 2 (,
'

) J d'k4(y. k.)4*(y. k. -y,q).
0 &S &S

B. High-virtuality model

One might take for Q the symmetrical expres-
sion (3.6) and for g(a', s') the asymptotic behav-
ior (2.19). Then, we have from (3.20) u =1+X,

P =1+2K., so we are again in case (1). On the
other hand, the multiproduction approach to
G(x, k~) gives n =P = I+X [see Eq. (4.19)], i.e.,
we are in case (2). The fully covariant approach
chooses the second case. The asymptotic forms
(2.21) and (5.Vb) are the same, and one can see
by using formulas (5.3) that the effective kine-
matical domains (2.22) and (5.Va) are correspond-
ing; for x', &x, (or (a'~ & ~b'~), we have

Following Soper,"we distinguish three cases:
(1) If n &P, i.e., the strongest damping is in

k„then

k„k',—p, ,

(5.6)

—X

k, finite,

k', -y,Q,

In y,Q = ~ ln ~ =
~

I',
~

.
S

(5.10)

&(-Q') Q
'

and the Drell- Yan-West relation holds.
For x, &x', we have the symmetrical situation.

To understand why the covariant approach cor-
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responds to ct = P, let us evaluate (2.4) in the new
infinite-momentum frame defined by (5.1). The
following analysis is close to the one done by
Hughes using a slightly different I'„frame,
where q, =A, ~

= 0.
The singularities of the integrand in the A. 's

plane are again given by Fig. 4, the third con-
figuration being absent (&'=B'), and with dif-
ferent expressions for u, P, and 0. Integrating
along contour C, we get, for the vector form fac-
tor

Z( ~) ~t„.-, "'(l-y, )dy.,
+0 &S

ds'(a' —m, ') '
fft s

x (b' —m, ') 'ImT,
„

(5.11)
with g2 and b depending on y„sjy and s'. If one
takes only the one-parton intermediate state of
Im T,

Im(T ")=- zb(s'- m, ')V(a, m, ')V(b', m, '),
(5.12)

one gets the OFPT„formula (5.4) with the three-
dimensional wave function

(5.13)
A

This unsymmetrical wave function is the square
root of G(x) calculated in the leptoproduction ap-
proach (4.16). Thus, covariant impulse diagram
+ spectator pole approximation correspond to case
(2) of OFPT„, i.e., n =P. In the general case,
when one takes into account higher s' interme-
diate states, (5.11) is not equivalent to (5.4), due
to time ordering in OFPT„(Fig.9). (This has
been discussed by Fishbane and Muzinich'. ) But
the pole term will likely represent a sizable part
of the asymptotic form factor.

Whatever model we take, we have o. ~ P, i.e.,
the damping at y, -0 is not stronger than at k~

This ensures the Drell- Yan-West relation.
The slow spectator region is dominant boih in
SVM (y, —I/Q) and in HVM [see Eq. (5.7b) j.

We point out that Lepage, Brodsky, Efremov,
and Radyushkin in their QCD-OFPT„approach
neglect the small-y, region (y, is defined in Fig.
10), in contradiction with the above result. In

time X+

FIG. 10. Form-factor diagram used in the derivation
of the dimensional counting rule in the QCD-OFPT
approach.

our formulation this implies a &P and the viola-
tion of the Drell- Yan-West relation. In fact, they
get the dimensional counting rule (modulo loga-
rithm) for the pion form factor

1
E,(q')- —,, i.e., (5.14)

but take a "softer" threshold behavior for the pion
structure function

G„(x)- (1 —x)', i.e., u = ~ . (5.15a)

This deviation from the dimensional counting rule,
first proposed by Ezawa, ' indicates that, in fact,
spin does matter in HVM. The inclusive-exclu-
sive connection (3.24b) is nevertheless fulfilled
by adding a nonscaling piece" to G,(x):

C'
G,(x, Q') „-,C(1 —x)'+—,. (5.15b)

VI. SUMMARY AND CONCLUSIONS

We have investigated the degree of quark vir-
tuality in elastic form factors at high q', structure
and fragmentation functions near threshold, in
different frameworks: (1) F(t) the in covariant
impulse approximation, (2) G(x, kr) as the square
of the OFPT„wave function, (3) G(x) and D (z) in
the leptoproduction approach, and (4) F(]) in the
0FPT„approach.

We considered scalar "quarks" and assumed the
existence of a Bethe-Salpeter wave function
g(a, b') for which we considered two possible
softness assumptions:

(i) small-virtuality model: g has a very strong
damping ip g and 5', no poles nor cuts, and, con-
sequently, an essential singularity at infinity, or

(ii) high-virtuality model: g decreases like a
power in a' and g' and has the usual poles and
cuts.

FIG. 9. Time-ordered diagram which is not included
in the OFPT„impulse approximation, but in the co-
variant impulse approximation.

SVM emphasizes the confinement of the quarks,
whereas HVM relies on asymptotic freedom.
Within each model, approaches (I) and (4) for
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TABLE I. Kinematical situation: a, b, s,A, B,q are the four-momenta indicated in Figs. 1
and 7. a~ x,A+kz„b~x&B+ kz. in the Breit frame. s=y, A+ k~=y~B+ kj' in the infinite-momen-
tum frame (fl=g~, q0=0). t=—q, Q=-(t~t

SVM HVM

Elastic form
factor

z(t), t-~
a2 y2, s2 k 2 finj

2 2s = —kz

1-x ta

xy
w f

Q-i

k~, k~ finite

s2, k&2 finite

a&-t
(i -x,)(1-xq) - t

Q Sy (1
hays behavior
ys

xa & ~ xa. If not:

k finite

k~ ysQ

a b

k'

Structure
function

a(x, k~), x-1
a finite

s =-kp2 2

a~ rv
1

1 —x

s finite

E(t), and (2) and (3) for G(x) give consistent re
suits. The kinematical situation is summarized
in Table I. In SVM, one' can predict the power-
law behavior at t- ~, x or z- 1 from naive kine-
matical arguments. n, being the number of spec-
tators, one has (for spin-0 partons)

z(t)- t-",
G (x) (1 —x)

D(s) —(1 g)-&+2ng

In HVM, the naive kinematical arguments fail,
due to superconvergence relations in a' and Q'.
Assuming g(a', b')-(p. +[a'~) ~ ~(p, +[b ))

' ~ at
large (a'[ and/or large (b'[, one gets, for n, = 1,

+(t)-t ' '»(-t),
G (x) —(1 —x)""
D(~)-(1 —~) "",
dimensional counting rules: ~ =+0.

From the theoretical point of view, SVM is
more questionable than HVM. One must introduce
wave functions of the momenta with essential
singularities at infinity. One must also drop a
factor i from the conventional expression of E(t)
in the covariant impulse approximation. On the
other hand, HVM wave functions have parton
poles which actually do not exist, due to confine-
ment, so the soft integration region, i.e.,

s', a', g' finite, is certainly not well taken into
account. Thus, neither HVM nor SVM are theo-
retically adequate. Besides, if one comes to a
gauge theory of strong interactions, our diagrams,
e.g. , impulse approximation, become gauge de-
pendent (an exception is the two-dimensional QCD
model of Einhorn, which is of SVM type).

From the phenomenological point of view, both
models lead to the Drell- Yan-West relation.
Bloom-Gilman duality looks more natural in
SVM, due to 1 —x, -l/Q', than in HVM. But in
both models, the asymptotic form factor is sensi-
tive to the small-y, region. The opposite assump-
tion is made in the recent QCD approach.

Dimensional counting rules are obtained by
accident, for spin-0 partons, in SVM and in the
limit ~ = 0 in HVM. At fixed x, the high-k~ parton
spectrum is cut off exponentially in SVM, where-
as in HVMone has

G(x, b, )-b, -'-".
Only spin-0 partons have been treated. Kill

spin modify the power-law behaviors' In HVM,
in principle, DCR are spin independent, although
helicity conservation increases in some cases the
exponent of (1 —x) or 1/Q, for instance in the pion
structure function. In SVM, there should be a
systematic dependence on the spectator spin (see
Eq. 1.5) which may decrease the exponent of
(1 —x) or 1/q. The same conclusion waS made in
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"old" HVM by Ciafaloni. ' This question of spin
dependence, which we have neglected in this paper
to concentrate only on the kinematics, seems to
us very important to clarify.

To conclude, we have not given an answer to the
initial question, i.e. , does the form factor at
high q' involve at least one far-off-mass-shell
parton'P We have shown that both possibilities
are kinematically allowed; it depends on the as-
sumed analytic properties of the Bethe-Salpeter
wave function, which must choose between con-

finement and asymptotic freedom. In any case,
no Bethe-Salpeter wave function can describe
both "soft" and "hard" regions of internal mo-
menta for use in the impulse approximation.
Concerning the recent QCD approaches, we think
that they give the contribution of the hard region
alone, but that one cannot exclude an equal im-
portance or a dominance of the soft region; one
must wait for a more precise knowledge of con-
finement. Meanwhile, we hope to have clarified
the distinctions between the two alternatives.
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