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Four-fermion interaction in the mean-field expansion.
Formation of Cooper pairs in four dimensions
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The mean-field expansion of a four-fermion scalar-scalar interaction is reconsidered in two- and four-dimensional

space-time. We study the model with positive and negative signs of the coupling constant. If the couplirig constant is

negative, the generating functionals allow the Laplace expansion after reparametrization with use of the collective

boson variables in the fermion-fermion sector. If the coupling constant is positive, collective variables should be

introduced in the fermion-antifermion sector. In two dimensions the theory is consistent for positive, coupling

constant, in four dimensions for negative coupling constant. Even in four dimensions the theory is renormalizable by

power counting.

I. INTRODUCTION

It has recently been recognized that a class of
theories describing fermions with quartic self-
interaction can be considered renormalizable by
power counting even in four-dimensional space if
the standard perturbation expansion in powers of
the coupling constant is replaced by Hartree-type
expansion techniques. The simplest four-dimen-
sional model of this kind with scalar-scalar four-
fermion interaction is

and the positive coupling constant g' has been
studied with the use of the 1/N expansion, "and a
handful of results is already available. A similar
technique turns out to be also useful as a tool for
studying more complicated models such as non-
polynomial scalar interactions in four dimensions. '

In a smaller number of space-time dimensions
these techniques, when applied to the model (1.1),
yield results bearing no apparent marks of incon-
sistency. " In four dimensions the situation was
far from being clarified because all existent find-
ings exhibited ghost poles in propagators of the
collective excitations. Even with unwanted poles,
the model (1.1) was particularly appealing mainly
because of its unexpected renormalizability in the
framework of the new expansion technique.

In this paper we shall attempt to reconsider the
theory in order to find the possible origin of un-
wanted poles. We shall use the integral version
of the mean-field expansion as formulated in Ref.
6 and applied to fermionic theories in Hefs. 2 and
5. This expansion, however very similar to, is
more general and more elegant than the ordinary
1/N expansion. At least formally, it can be used
even for single (or few) component fields which
are indeed the case of final physical interest.

N—Q (t) '0')'
N, ,

(1.2)

collective fields are introduced in the (Pg) sector
and the quartic interaction is replaced by the ggv
Yukawa interaction. If the interaction Lagrangian
has the form

(1.3)

then collective variables are defined in the (gg).
and (Tt1$) sectors and ging and oft trilinear vertices
replace the original quartic vertex.

Therefore, the insight gained from the analysis
of the 1/N-expanded theory may be misleading in

the N= 1 limit as, for N-~, (1.2) and (1.3) de-
scribe completely different theories. Extrapola-
tion of Green's functions from N large to the N =1

The common feature of the mean field and the
1/N expansion is the introduction of auxiliary col-
lective fields which appear as intermediate bosons
turning the original quartic coupling into the Yuk-
awa-type coupling. In both methods auxiliary
fields are introduced in such a way that the ef-
fective-action functional remains unchanged.
Originally constant, the propagators of auxiliary
fields acquire kinetic terms from radiative cor-
rections. These kinetic terms are responsible .
for the change of the power-counting rules, as
well as for the appearance of additional physical
or unphysical poles in the theory.

If the number N of field components is large,
then the sector in which collective fields should
be introduced is fixed by combinatorics which

picks out a class of diagrams contributing to the
leading order in powers of 1/N.

In the model with the interaction Lagrangian
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region is dangerous at least because for N large,
order by order in 1/N, different diagrams contri-
bute to Green's functions of models (1.2) and (1.3).
There are diagrams which contribute to the first
order of the 1/N expansion applied to (1.2) and to
the infinite order of the same expansion applied
to (1.3), hence on the N = 1 level, transition from
(1.2) and (1.3) corresponds to the essential re-
ordering of the (divergent) series.

In the mean-field expansion collective fields are
introduced in the very same way but with no ref-
erence to combinatorical arguments. The ambig-
uity connected with the possibility of the free
choice between two ways of introducing intermed-
iate bosons was the main obstacle in understanding
the significance of the expansion. In this paper
we show that thy mechanism creating neutral col-
lective fields in the (/[I)) sector cannot compete
with the mechanism which assembles. (gg) or (g)
in double-charged collective modes. If one is
consistent, the other is not. Which is the correct
one depends on the sign of the coupling constant
and the number of space-time dimensions. It has
already been recognized' that the model (1.2) al-
lows the 1/N expansion only in the case of the pos-
itive coupling while for (1.3} the expansion is cor-
rect only when the sign of the coupling is negative. '
Otherwise, the reparametrized Lagrangian would

be equivalent to the Lagrangian of the Yukawa
model with infinitely heavy mesons and imaginary
coupling constants. The above statement is inde-
pendent of the dimensionality of the space-time
but does not eliminate the ambiguity of the choice
between reparametrizations corresponding to
(1.2) and (1.3). In particular the Lagrangian of the
free theory can be written in the form

Expanding the first interaction part with the ([C)g)

collective field and the second with (g(} and (T[)$)

modes we cannot obtain the complete mutual can-
cellation of terms unless all order contributions
are evaluated and summed up. As a result, the
theory remains ambiguous because contributions
stemming from the expansion of the free theory
written in the form (1.4) can be freely added to

Green's functions obtained from (1.2) or (1.3).
There is one possible way out of this trouble.

The expansion will be unambiguous if for some
reason (1.2) or (1.3) will disallow the viable ex-
pansion in 1/N (or analogous mean-field expan-
sion}.

Searching for such an argument we have per-
formed direct calculations in the first order to
complete the existing results obtained in (1.2) and
its mean-field analog.

In two dimensions the model is consistent if the
coupling constant is positive and neutral collective
(gg) and (g) fields are introduced 'We show that
with negative coupling and double-charged collec-
tive ([I)() and (]t)T])) states the expansion fails be-
cause the ghost poles are produced in intermed-
iate propagators. Then we pass to the four-dim-
ensional case and find that the ghost pole disap-
pears when the interaction Lagrangian enters
with a negative sign and neutral bosons are re-
placed by double-charged collective states which
resemble Cooper pairs- in the theory of supercon-
ductivity.

II. THE MEAN-FIELD EXPANSION IN THE SECTOR
OF COOPER PAIRS

I

We shall consider a theory of the spinor field
with quartic scalar self-interaction given by the
Lagrangian density

(2.1)

in two- and four-dimensional space-time and for
both signs of the coupling constant X. Our discus-
sion is intended to complete the analysis of the
model (2.1) which has already been extensively
elaborated with use of the 1/N (Refs. 4 and 1) and
mean-field" expansions, but only for positive
values of the coupling constant.

We shall use the integral version' of the mean-
field expansion which is a path-integral general-
ization of the Laplace method of the asymptotic
evaluation of ordinary integrals. The vacuum
functional of our model is

Z[ , dfd][dii)][Dd]exp] i fd x[i)()if„md, )4+ X(il', ll', ) +-d, ll', + i)d]}-. (2.2)

Here and in the following we omit normalization
factors but it should be understood that all inte-
grals defining generating functionals are properly
normalized.

To perform the mean-field expansion we intro-
duce auxiliary Bose fields in such a way that the

I

integration over fermionic degrees of freedom in
(2.2) becomes Gaussian. This allows us to per-
form the integration over ]I and ]I) variables ex-
plicitly and leaves us with integrals over auxiliary
degrees of freedom. The integral over the Bose
fields is not Gaussian but can be expanded with
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use of the Laplace method which yields a series
of moments of Gaussian integrals which can be
explicitly evaluated. The resulting perturbation
expansion is essentially different from the expan-
sion in powers of the coupling constant and its
main virtue is that its renormalization properties
are dramatically improved.

Auxiliary fields can be introduced in several
ways; however, the requirements of consistency
may exclude certain possibilities. Thi. s situation
is well known from the 1/N expansion where in-
termediate fields are used as a convenient device
which simplifies the 1/N power counting. For ex-
ample, in the Gross-Neveu version of our model
the interaction Lagrangian is

where a enumerates the species of fermions and
c[ their spinor indices. The 1/N power counting
is simplified by introducing intermediate scalar
collective field o whose equation of motion is an
equation of constraints of the form

~1/2qa ~a$ O

This pattern of construction has been adapted to
the mean-field expansion in Befs. 2 and 5. Ojima
and Fukuda have investigated a similar two-dim-
ensional model with double-charged complex col-
lective fields o and cr~ satisfying

yl/2g C gt yl/2()C

where the superscript C means charge conjuga-
tion. This choice is appropriate to the interaction
Lagrangian

As before, Latin indices enumerate fermions and
Greek indices their components.

Here we are considering the interaction of a
single-component field and the combinatorics does
not point out any particular method of the repara-
metrization. The quartic term is g g P~g~ and aux-
iliary collective modes can be introduced in [t)„g,
g, p2 as well as in p [I2) sectors Alt.hough the prob-
lem requires the discussion of all possibilities,
we shall confine ourselves to the latter case and
only to the scalar intermediate modes.

Let us rewrite (2.2) in the form

&[J JI= f [rr(r][DrP][rrOI[Drrjexplr fde[/r(il) r »'Il, e)llr ——,Xr)J—)ell I)r+J rl, +il J ]), (2 2')

or equivalently,

(
&IJ J]= f ]rrO][rrO][rrO]]»j»O]l r Je[V(O(e-re. r )Ore O'" 'rrO. Oee. r

+O'" 'JO Oir„-ir„e„+JO, +r) J ]).
Equation (2.3) was obtained from (2.2} by adding to it a Gaussian term

(2.3)

[2( ~)'"0.—[I)2 -C./[2( /)—'"0.0, -(/. ,], —

-«&(-&) ~
and defining go=2 «" "' where d is the dimension of the space-time introduced here to compensate later
the factor produced by the trace of the unit matrix.

It is obvious that consistency requires that o 2 be antisymmetric in (2, p and o 2(/ 2, g„fr~v„2, as well as
o,2( g~ should be real. All these requirements are met if we impose that

(2 4)

where C
&

is the operator of charge conjugation and o is a scalar field. Adding source terms of the auxil-
iary fields and rewriting the entries of (2.3) in the matrix form we obtain

&[J J i i'] f[rrr)][rrO][»j[»'jee=O f e'ee/'ee/ +el( .Or])r)-,
( ~) (O 5,)lf

[O„O / (Jr/ (
where T means transposition and K 2=i)f,2- m25 2. The shorthand for (2.5a} is

(2.5a)
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Z[J,J;j,j 'j = [DT]}][D]/j][D[r][Do']exp z —,'(]/j, ~)X~ ~+(i/j, ]t)A ~- o'o+j 'o+j rr'

@) «1
(2.5b)

In order to perform the integration over fermionic degrees of freedom we change variables to get rid of
the linear term. Defining

A» /A, ,„/JI
(~) (~f &J)

we obtain

Z[J,J';j,j ] = [D}/j][D]/})[Djr][Do]exp i —'(J, J)A X A ~+
—'(]/}, ~)Z~

~

—o o+j o+j o
J

Hi
The inverse matrix x ' is

X-'= ~g (g'o'o+m'-n) '.[r'C ' iP+m

i$ —-m go'C

We can verify this by inspection if we notice that C,//~~=C~8„. Now the integral is Gaussian and can be
explicitly evaluated. The result is

Z[r, Zi j j ] = f [ ][ jja]exjj}ar r f d x (}jr rv[g arv+ I' —Z} —vrrr+ jerr+ jrrr
~xr

-2 dy Jxs„x,y Jy +Jxs,.x, y Jy +Jxs„x,y Jy

+J(x)S„(x,y)J'(y) j (2.6)

The S,. functions will be identified as fermion
propagators and they are 4 x 4 elements of the 8
x 8 A X 'A matrix. Their exact form is

S„(x-y) =go'(x)C '(,—m'-g'[r'(x)o(x)) '5(x-y),
S„(x-y) = (-iN„+ m) (o, —m'-g'o'(x) gx))-'6(x -y),

(2.7a)

S„(x-y)=(i$„'-m)(O„-m'-g'o'(x)o(x)) '6(x-y),
S„(x-y)=goC '( „-m'-g'[r'[r) ',
or, in the momentum representation,

S„(p}=g[r'C '(p' —m' g'o'o} ', -
S„(p}=(p+m)(p' —m' g'[rt[r) ',-

(2.7b)
S„(p)=(-pr- m)(p' —m' —g'o'o) ',
S„(P)=goC(P' —m'-g'oro)-'.

x [~ r jj'] f[jj.1[jr '']=
x exp( —. Efo, o'; J,J',j,j']j./'1

Rotating to Euclidean space we obtain

(2.8a)

Z,[r,J;j,j'] = f [Da][jjar]

I' ]x expl —-5'[a, rr', r, a jj r]) .

(2.8b)

In the end of calculations the expansion parameter
is set equal to unity. It was introduced in the same
way as the l.oop expansion parameter and in the

In diagrams S, will be represented xn the form of
single directed lines as shown in Fig. l.

In order to perform the mean-field expansion
we introduce the arbitrary expansion parameter
e into (2.6) which we now rewrite in the abridged

S„(x,y) S,„(x,y) S)) (x]y)

FIG. 1. Fermionic propagators.

Szz(x, y)



FOUR-FERMION INTERACTION IN THE MEAN-FIELD. . . 1651

diagrammatical language our expansion is actually
the intermediate field-loop expansion. The nth
order collects contributions stemming from graphs
containing n loops involving at least one o line.

The dominant contribution to the integral (2.8)
comes from the path on which F~ assumes mini-
mal value. Let such a minimum exist for o(x)
= a2(x) and a'(x) = ot(x). The mean fields o'2(x) and
o2t(x) are thus defined by conditions

J, gl +Q +
0 i

L as t r asn +

(a) +. J L r as jsa +

—'C- IrI +9 +
G~

5F
5o(x),vi„),, („)

yV(g) -fyo i(g)

(2.9}
(b)

+ r as

We also require that either FIG. 2. Diagrammatical representation of the gap
equation.

or

5F
5(r(x)5o( } OV &V

5F
-=i2 &y 6ot( ) bat( )
~, (x, )= &0,

det(A, ,) & 0,

A„(x,y) =A„(x,y} = 0,

(2.10)

where

g4F

bo', (x) 5o',(y) bo "„(z)bo",(I,), .„.&
(2.13)

5F
W (x )= &0.12( !y ba(x)bent(y)

(2.11}

e.g. ,

„( )
o(v), if i=1,
o'(t), 1f i=2,

Let us define

«»" " 6o (x)6o"( )bogz)
(2.12)

B„,(x, y, z) = 6'E/ba, (x) bo, (y) 6&rt(z) .

Making a Laplace expansion of the functional
integral (2.8b} and then returning to Minkowskian
momenta we obtain

JIr&i,i'I=expl J'I~., a, &,&i,r'I)-
x exp -trlnD 1-

2
dW d"y d"z d"m C,2

+— d"x d"y d"z d"ad"b d"c B,»(x, y, z)B,„„(a,b, c)
24

[2Q ')„(x,a)Q. 9, (y, b)Q '),„(z,c)+3(Jl ')„(x,y)Q ')„(z,a)(Jl ') „(b,c)]

+0(a*)I, (2.14}

where D=det(A, ~). The derivation of (2.l.4) follows the steps described in Ref. 6 with only minor modifica. -
tions which are due to the presence of two intermediate fields.

Before we proceed to the calculations of the effective potential and several Green's functions, we find it
convenient to redefine the auxiliary field and the coupling constant g so as to make g dimensionless and
o" to acquire the canonical dimension of the scalar field. We define
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0'~Mo', g~gM, g & 0 . (2.15)

This redefinition does not change our previous formulas except for the free 0~a mass term which now gets
a more conventional M'0~0 form.

The mean-field conditions (2.9} yield the gap equations which are represented in Fig. 2. Their analyti-
cal form is

= -~'o,'(x) +q'(x) —ig tres,",'(x, x)6o (x

dfd J ~ 11 ~ x CSi~ ' x J' +J f Sii g x CS~~ g J

+Z(g)s",,'(g -x)CS",,'(x —(}Z(g}+Z(g)s",,'(g —x)cs,",'(x —()Z(g) ] = 0 (2.16a)

and

= —M'o, (x) +q(x) —f g trC-' S,',"(x,x)
' 00

——'g dfd J g S g-x C S g- J +J f S g —~ C- S g- J

+J (g) S,',"(f-x)C-'S„(x —])j(])+Z(f)s '2(f- )xC-'S„(x- $) j(g)]=0, (2. 16b)

where the propagators S,'~" are obtained by replacing 0 and 0 by 0, and a, in the expressions for S,~. Spi-
nor indices have not been shown explicitly. The summation over them follows the standard matrix con-
vention [notice that in the definitions (2.7) certain matrices are transposed].

Higher derivatives of F can be immediately obtained from (2.15) with use of the identities

( )
S,~(x, y) =gs„(x,z) Cs,q(z, y),

Oa'(sj '~i, .S,~(x, y) = gs„(x,z) C-'S„(z,y) .

Again, these identities can be derived immediately if we remember that C„&t)&8 is symmetric.
For example, the leading-order contributions to the inverse v propagators are

(2y
A.„(x—y) =

5o, (x)&o,(y)

(2. 17)

= —~»')»C»,",'(»-»)CS';, '(»-») g'f»i»&[Z)g)S, '
(g -»)CS,' )»-»)CS,' )y.-—&)Z)&)

+z(L) s,',"(L-x) cs,",'(x y) csi",-'(y ~) j(g)
+~(L)Szi (f —'X) Csii (X —y) Csii (y —u~(5}
+Z(g) S,",'(g-x) CS,'", (x-y) CS,",'(y —~) J (g)],

(2. 18a)
Q2 QAiz(x- y) =

5rr, (x)6a,'(y)
= —M'5(x —y) —ig' trcS,',"(x—y)c-», ", (y —x)

qg2 dgd] J f Sax ~ + CSi~ g-g C S2

~g(g)S,',"(g —x) Cs,",'(x —y)c 'S,&(y —8~(!)
yg(g) S,",'(g-x) Cs',; (x-y)c-'S„(y —5)~(4)

+»f (f) S (f —x) CS,",'(x -y) C-' S,",'(y —6» (() + (& —t)], (2.18b)
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e'E
tive(x) 5o t(y)

=-ig'tr C-'8,",'(x —y) C-'8,",'(y -x)

-g dt d 4 f ~„f-x C ~22 x-y C ~„y—

+~(L)~,' (L-x)C '~, (x-y)C '~ (y —5) J(h)
+~ (L) ~.'."(L — ) C-'~..( —y) C-'~., (y —5) ~($)

+Z(f) S,",'(g -x) C-'&„(x—y) C '&„(y —g) & (g)1 . (2.18c)

In Fig. 3 we have translated the above formulas
in diagrammatical language. It is straightforward
to calculate higher derivatives with respect to 0'

and ot. To represent the (n+m)th derivative
6" '"E/5o",6vt" graphically, we draw all possible
(n+ m)-sided polygons and (n+ m+1)- sided open
polygonal paths. Then, in all possible ways we
attach Fermi sources and sinks to the ends of
open polygons. To the n+m apexes of each dia-
gram we attach, also in all possible ways, m
outgoing and n incoming double arrows represen-
ting differentiations. Finally, we orient Fermi
propagators according to the orientation of arrows
in apexes and species at the ends of open paths.

Having expressions for A, B, and C is trivial,
however, space consuming to calculate the va-
cuum functional by direct substitution of these
quantities into (2. 14). The rules of the calculus
are similar to those of Refs. 2 and 5, except for

I
complications caused by the presence of three
kinds of Fermi propagators and three kinds of
intermediate propagators. Although A-'

~ and
S«are nonvanishing functions, this must not mean
that the charge (Fermi number) is not conserved
in our model. All propagators used in our ex-
pansion are 0, dependent and Op satisfies the
mean-field conditions, thus it is manifestly source
dependent. %hat we really need here is that
A-'«and S«disappear when sources are switched
off. This may take place if o"(5~=j=jt =0) =0.

III. TWO-DIMENSIONAL MODEL
TO THE LOWEST ORDER

In the lowest order of the mean-field expansion
the generating functional of connected Green's
functions is

&O=F 4'O, &O'I ~1~1i11 11

12

71

+

71

r

71
'I I

7l
Ii 'I (

71

+

77
'I F

+

71

+ ii Ji

71

7C

IE

IP

71 77

+

7f

71-

with Op and o~ given by the mean-field conditions
(2. 16). Considerations of the preceding section
have revealed that in general two-point S«and
A « functions do not vanish. This implies the
possibility of the charge nonconservation and
casts doubt on the physical meaning of our model.
Therefore, we should check whether the mean
field develops nonvanishing values when sources
are set equal to zero. I et us recall that the mean-
field conditions are actually conditions for the
minimum of —I'. Kith sources off, at least to
the lowest order, the mean-field conditions are
identical to the conditions for the minimum of the
effective potential. The lowest-order unrenor-
malized o-effective potential is

V, (v„ot) =M2o to,

71

+ I I

7
'1

+
r

77
Ii
1(

d "0+i
(

)„in(g' t o+o'm-0') . (3.2)

FIG. 3. Diagrams contributing to the o two-point
functions.

Differentiating it with respect to ap and Op we
obtain
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&VO 2 ~ . 2 ~ d k
Sv ' g ' (2m)" m'+g'v'v

If fermions are massive from the beginning, we
normalize (3.6) and (3.7) in the standard way:

(3.3a)

8vt ' ' (2p)" m'+g'vtv, —k' '

BV(
0 j g'0= O, o

=MR Oo,
2

so that the minimum may occur either for oO

=o ~=0, or for

d
"k 1 2M'

(2m)" k'-m'-g'o', v, g'

(s.sb)

(s.4)

BV I

act
i 0 0=0 UO =00

2=M g, ,

~2V

OOBOO v 0
MR'

0 ~ 0 ~0=0

(3.9)

The second derivatives are
I

and

(2tt)" (k'-m' — 'o'v )''m -g OOOO

(s.6b)

aVO . 4, , dk 1
Sv g 0 (27/)" (k m g2vtv )2 '

(3.6a)

Setting p, '=m' we find that VR has a single mini-
mum at o 0 0 First derivatives of VR are posi-
tive for positive values of the classical field oO'.

O ooo

go R
—ot M 2+—g2ln ] +g2 m'

(S.loa)

t =vo Mz'+ —g'ln 1+g' '2' I, (3.10b)
0

Bvosvo (2tt)" m +g vovo —k and the effective potential is

4 ~ d k
g 0 0 (2 )n (k2 m2 g2vtv )2

(3.5c)

VR =MR OOOO

+ —(m'+g'v', v, ) ln
~

1+g' ', "
~

. (3.11)

~ VR t ( 2 1 2 PO. OOO'O +62
M g l

2 f 2
2 g 0'oo'0 +Spy

(3.6a)

(3.6b)

Subtracting pole parts of dimensionally regularized
integrals we obtain in two dimensions

Now, except for the minimum at o 0"=0, VR has no
other extremum and increases up to infinity. Se-
cond derivatives are everywhere positive hence
the first derivatives are monotonic and the'gap
equations determine single-branch functions which
are defined for all positive values of oOo~O. The
effective action functional of the o and o~ fields is

(3.7a) I',[v„v',]= W,[v„v,;Z, J,j,j']

UR 1 4 o'Oo0

S(o')' 4w g o',v, + m' ' (s. 7b)

We define

ja, — j o, .

4 OOOO+-
4+ O' OO'0 +Pl

(3.7c)
J,(x) -=J(x), J,(x) =—J (x),
q', (x) =-7t'(x), y,'(x) =- q'(x),

(3.12)

where p, is an arbitrary scale parameter of the
dimension of mass. In the massless (m'=0) case
the lowest-order effective potential has the sym-
metry-breaking, charge-nonconserving minimum
at

where

tf(x)= fdi S,'1(x,y)Z&(y), i,j=l, 2. (3.13)

v tv, = p,
' exp (—8p M'/g ') . (s. 6) Then
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I,(o„o',) = —I'o to, +i tr ln(g'cr', o, + m' —&)

—q tP&(S ) (s. 14)
I

1

so that the inverse Fermi propagator is (&') '~/, as
expected. With all sources off we have o, =(o,)
=0 and only the mixed g g lines persist in the
diagrammatical expansion.

Setting o, = 0 in (2.18) we find:

(D.'...) '(x, y) =-D (x, y)

= -/VI'6(x - y)

-fg'tr[S. ,(x-y)CS„(y-x) C-'].

(3.16)
Fourier transforming to the momentum space we
obtain

d "k'

5V 0/00 Pv

tr[(p+ p+ m) C-'( p' —m) C]
(2,) [(u+p) -m ](~ -m) (S.i6a)

Only terms even in y contribute. tr mCmC-'
=2"/', but tr[(p+k) C-' pr C] contains the trans-
posed y matrices. We diminish this inconvenience
using again the identities C~„p„„=C „„p„„andC„„
= —C„„. We have

1
sub, 'll (p', m') = 2 d x'[1 —m /p x(1 —x)]-'

27T 0

l
+ dx ln(1 —p'x(1 —x)/m') .

0
I

(P+P) C-' „P,„C, = —(P+P),„C-'„„C~p,
= —(P+f), C '„„C, jf

=-tr[(&+p))t']= —2"~(&p+&') .

Since

D,-'( p') = -I,'+g'11(0, m')

+g' sub, 'II(p', m'),

(s. i7)

(s. is)
Hence

=--M'+g'11(p', m') . (3.16b)

The main difference between our model and the
model with collective fields in the fermion-anti-
fermion sector manifests itself in the numerator
of the integrand in (3. 16b). In the model with
(t) g) intermediate fields all terms in the numera-
tor would have a positive sign. In the language
of diagrams this difference is caused by the in-
version of one fermion propagator forming the
collective self-energy loop (see Fig. 4). Evalua-
ting II (p, m ) in two-dimensional space and sub-
tracting on zero momentum we obtain

FIG. 4. One-1oop diagrams contributing to the self-
energy of the collective fields. {a) In the model with
{gP) and PP collective fields. {b) In the model with the
gg collective field.

m' —(k p) —k'
0 (P g (2 Q)n/2 [(i, yp)2 2](i,2 2)

we define the renormalized constant M' by the
equation

D - (0)= (s. i9)

l~ 2(1 —1/x)'/'in[(1 —x)'/'+ (- x) '/'] for x ~ 0,
&(x)=& 2(-1+1/x)' 'arctan[x/(I -x)]'/2 for 0 &x &1,

! (1-1/x)'/'(- fv+ 2 ln[(x - 1)'/'+ x' 'lk for x & 1 .

(3.21)

The first integral in (3.17) can be written in the
form

r
I
dxx'(1 —x)'(1- ux) '(1 —vx) ~

0

and hence can be expressed in the form of the
3+l generalized hypergeometric function. For
our purposes it is enough to observe that this

The integrability condition (2.11) requires that
M'& 0, in agreement with our previous assump-
tions. We are now able to examine spectral pro-
perties of the renormalized intermediate propa-
gator whose inverse is

D, '(p') =-M'+g' sub„'II(p', m') . (3.20)

The second integral in (3.17) equals B(k'/4m') —2,
where
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integral is equal to zero for P2=0 and tends to 1
in the limit P'- ~. On the other hand, B(0)= 2

and increases up to infinity as P2- ~. It is then
obvious that (3.20} assumes zero values some-
where between P' = 0 and P2 = —~ and therefore
the propagator develops the tachyon pole. When
g'-0 the site of the ghost approaches minus in-
finity as —m'exp(2w/g'). It is worthwhile to note
that the same kind of ghost would appear in the
propagator of the collective field if we would

blindly expand using the auxiliary field in the ($f)
channel and the negative coupling constant.

Our result shows that in two-dimensional space-
time the model (2.1) is inconsistent when forces
between fermions are repulsive.

The analysis of the mean-field expansion applied
to the model with positive coupling is already
available. Without going into detail, let us only
mention that neither ghost pole nor other apparent
mark of inconsistency occurs in the theory.

IV. FOUR-DIMENSIONAL CASE

In four-dimensional space, after the dimensional regularization, the Eqs. (3.3) and (3.5) yield

'~ =v& M -fg I

"' '
sv ' J 4n4 m'+g'v~v —k'0 La 0 0

= v M — ——+y-1 (m +g v v) 1-—ln2 2 m +g O„o„
0 4' 0 0 ~2 t

le

BV 2
g' ( 2 e m'+g'v~v„'

v M' —,
I

——+ y —1 (m'+ g'v, v,)
~

1 ——ln8v) 472 2

(4.1a)

(4.1b)

8+ . 4 g d k' 1=tg 0' (F'sv' ' ' 4w' (k'-m'-g'v, v, )'

1 4 g g 2 r( ~ m'+g'o„o,
4~2 0 0 ~ ]( 2 ~2

.'= "":(-'-)('--' ":'"):
(4.2a)

(4.2b)

82V . ~ d' 'a 1 d4 'A 1—M' zg' +ig40~g
4~4 m2+g2vgv y2 g 0 0 4~4 (12 m2 g2vgv )2

g'( 2 m'+ g'o„o„= M' —
~

——+y —1 (m'+g'v v ) 1 ——ln4m' I,
0 0 (4.2c)

where y is the Euler constant and p,
2 is arbitrary.

We have written down all relevant terms of the
expansion to make apparent the fact that there
is no way to tame pole parts by adding counter-
terms to the existing parameters M2 and g. We
couM add an extra parameter corresponding to the
(v~v}' coupling (the fourth derivative of the effec-
tive potential is also divergent) and then proceed
formally as in the perturbative Yukawa theory.
When dealing with Green's functions we would
then be forced to al.so introduce the o-field re-
normal. ization constant. This way, for all it seems
to be tempting, would render us directly or in-
directly, with methodol. ogical. problems which
are typical for the nonrenormalizable theories

t
in standard perturbative approaches.

We must remember that we are in the first
order of the mean-field expansion and we do not
have any finite "free" or "tree" theory below this
order which could offer us normalization condi-
tions for Green's functions in the o sector. As
(2.11) told, all higher-order Green's functions
are generated by the leading-order A, functions
used as nonlocal propagators and g, C-, and other
functions of this type used as nonlocal vertices.
A, B, and C are divergent, so is E[o~„v„Z,J,j,jt],
thus we should make an attempt to regularize them,
subtract divergent parts using a procedure which
possibly keeps g', I', and m' parameters being
fixed numbers to the first order of the expansion.
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We can accomplish this by allowing the arbitrary
p.' parameter to be the c-dependent quantity. All
divergences present in the leading order cancel
if we define

SV g' rn'+ 'o o
S&t 0 4&2 0 0

= rr, M'- (m'+g'ore )ln 2
0 K

(4.4b)

p, '= g' exp(- 2'), (4.3)

with arbitrary &2. There is nothing mysterious
in this fact. In the standard approach the changes
of the (then finite) scale parameter p,

' can be com-
pensated by appropriate redefinitions of the re-
definitions of the renormalized parameters (in-
cluding the eta~eo coupling). There is no reason
which would a priori forbid us to repeat the trick
also for the pole parts in order to see that subtrac-
tion procedures for all simply divergent diagrams
are in fact connected and can be reduced to the
singular resca1.ing of all dimensional quantities
which are expanded in powers of the regulariza-
tion parameter c.

We do not need this property to persist in higher
or'ders when overlapping divergences will occur.
What is crucial for us is that we have reduced
the number of arbitrary constants in the leading
order to one (rr') keeping the parameters of the
I,agrangian being fixed numbers of the lowest
order of the expansion. The finite parts of Eqs.
(4.1) and (4.2} are

SP 2 m2+ 2OtO
'

-a~ M' — (m'+g'o~o )ln
8o0 0 4w2 0 0

le

(4.4a}
I

S'V g' t t m2+g2ot(y„
4O'0 (4.5a)

S'V g m2+ g2oto„
2= —4- o' o' ln

O'0 n' (4.5b)

S2+ 2 m2+ 2Ota=M' — (m'+ g'ore )ln
So So 47t'0 0

0 0 2

mn +g ono'o—„2O'0O0 n
%7T

2 (4.5c)

V =Moto

fn 4-z dimensions (3.16b) equals

In the following we shall argue that g =m', thus
in both massive and massless cases we find only
one minimum at o"0= 0 and we need not worry about
the possibility of the charge (fermion-number)
nonconservation. Integrating the above equations
we obtain:

2 x 2 ), t'6
D -'(p2)=-M'-g dx m' --+~-1i+pa~l--»+1 -p'z'i--»+1

i4 ' i )

x
i
1--ln m' —p'x+ p'x'

(4.7)

Using (4.3) we obtain

2 1

D (p') = M' —, -dx(m' —3p'x+ 3p'x')

'The integrations performed, we find that

2m2
D, '(p')=M'- 4, ln(m'lg)'

2+,p' [J(p'l4m') —2+ in(m'lK') j .

(4.9)

'This expression for the propagator still depends
on the undetermined parameter g' which should

be eliminated by use of the suitable normalization
condition. As we have already explained we do
not want to impose any condition which wouM not
refer to parameters of the original Lagrangian.
In particular, we avoid assuming that the propa-
gator (4.9}has the "traditionaV' form

D, '(p') = -M, '+p'+g'(radiative corrections),

(4.10)

and then fixing &' appropriately. This procedure,
however "natural, " cannot be justified by any
argument referring to the origina1. quartic inter-
action.

- Another tempting possibility is to follow the
pattern of Ref. 2 and use the gap equation. 'This
method would be inconclusive here because of
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M'o, (x) = j(x) -igtrC 'S,",'(x,x),

M' o( x)= j'(x) —igtrCSfP(x, x) .

Defining

(4.11a)

(4.11b)

the lack of the symmetry breaking, but we shall.
devote some interest here because, slightly
modified, it will offer us a certain consistency
condition for the renormalization procedure we
use.

The gap equations with Fermi sources off and
constant meson sources are

or, in the momentum space,

d"p 1
J 0& 0 g 2+2 nl2 ~2+ 2+i+ 2 x ~

tg +g 0'00'0—

We rewrite (4.11) in the form

M'o, = oof(o„ot)+j,
M'o =o f(o o )+j

(4.14a)

(4.14b)

Differentiating (4.14a) with respect to oo we obtain

1
f(o„oto)= —ig —

t
-tr CSI", (x,x)
0

1-=—ig —tr C 'S~", (x,x),
0

(4.12)

M'= f(o„o,)+ o, f(o„ohio)+ Sj/so, .08O. 0& 0

Using the relation

(4.15)

5" Flo.(',j(z) j'(.))".&',j(z),j', (z))~
~ ~ ~ ~

~ ~

~ ~

~

~ ~~+0 +$ g +g g +g ~OO y g yy g yy V(g j( ) jg( ))~&(j jg) ~

t ~ai

(4.16)

f(o„oto) =M'+D, '(0) o, f-(o„ohio) .0gg 0 0

If the symmetry would be broken we could now

use Eq. (4.14a) directly to conclude that with sour-
ces off

&, '(0) = o, f(o„ot) . (4.17)

Examining the derivatives of (4.17) with respect
tooo'we wouMbeable, as inRef. 2, to find relations
between the bare parameters and masses due to
symmetry breaking, but now, with sources off
o,(j= 0) = 0, and not necessarily f(o„ato)&,=M'.
Now, with sources off, we have

For E=j we find that ej/so, = -D, '(0). Thus (4.15)
gives

g'D, (p'= 0) = -g /M'. (4.19)

)he gap equation which does not depend on any
momentum. This is not strange, the gap equation
coincides with the condition for the minimum of
the effective potential which is the generating
functional of Green's functions on zero external.
momentum and thus must satisfy the same re-
normalization conditions as Green's functions.

The fermionic propagator remains unchanged
due to the lack of the symmetry breaking and lead-
ing-order radiative corrections. The direct quar-
tic coupling between fermions has been replaced
by the exchange of the intermediate boson and
the only reasonable condition fixing' is that which
relates the four-fermion amplitude to the original
quartic coupling constant X= -g'/M'. If we do
it on zero momentum, this implies that

f(0, 0) =M'+D, '(0) =g'11(0,m') . (4.18) This is satisfied if
Formally (4.18) was an identity, the integrals
defining f(ato= o= 0) and g'II(p'= O, m') are identical,
though divergent. When regularized, they of
course yield the same pole parts. The finite parts
depend on the arbitrary scale parameter, thus
(4.18) is the consistency condition which tells us
that the scales used in the regularized gap equation
and Green's functions should be equal. If we im-
pose the normalization condition on the propaga-
tor, e.g. , fixing its value on zero external mo-
mentum, we are able to satisfy this condition by
fixing g2. This will also determine the scale in

2

D, '(p') = -M'+, p'[B(p'/4m') —H . (4.21)

FOr p2=0B=0 and inereaaeS aS p2 — thuS

(4.21) is free of tachyon poles, in contradistinc-

(4.20)

thus II(Q, m') = 0, and in view of (4.18)f(0, 0)= 0.
The substitution (4.20) should also be done in the
formulas for the renormalized effective potential
and finite part of the regularized gap equation.
The normalized inverse propagator (4.9) is
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FIG. 5. Classes of diagrams which are divergent in
four dimensions and lowest-order one-particle-irreduc-
ible graphs belonging to these classes.

tion to the theory with positive coupling and neu-
tral intermediate collective modes.

Changing the sector in which collective fields
occur and improving spectral properties we have
not spoiled the improvement of the renormal. iza-
tion properties which have been found in the (gg)
sector. Also in our case the fermion propagator
has the usual high-momentum behavior S,(P)
-P'/P', while the intermediate propagator behaves
as Do(p')- 1/p'lnp', thus we encounter only a
finite number of kinds of superficially divergent
diagrams. All of them are shown in Fig. 5. No-
tice that the conservation of charge exculdes dia-
grams with three external meson lines and that
graphs with four external Fermi lines are super-
ficially finite (see Fig. 6). This means that the
original four-Fermi vertex which was eliminated
in the very first step of our construction does
not reappear in the result of the renormalization
procedure. The same holds also in the model
with (PP) modes but here we get something more:
it requires particular emphasis that in our model
the three-point (oft) and (o"gg) effective vertices
are superficially convergent. The reason is that
if the charge is conserved then the vertex can
join an intermediate line with two fermion lines
or two antifermion lines but not with one fermion
and one antifermion line. In such a theory it is
topologically impossible to construct triangle
loops consisting of one bosonic and two fermionic

FIG. 6. Lowest-order diagram contributing to the
superficially finite four-fermion vertex function.

FIG. 7. Diagram contributing th the (0 g|t)) vertex
function.

propagators. Integrations corresponding to such
loops would be slightly divergent because

h. d8p
,- ln lnA .

0

'This kind of divergence is typical for the theory
with a neutral intermediate (Ttg) state which allows
us to construct triangle loops. In our case the
simplest one-particle-irreducible graphs contrib-
uting to the three-point (og) function has two loops
and is nonplanar, as shown in Fig. 7. Subintegra-
tions corresponding to both loops are manifestly
finite, the overall degree of divergence is zero,
but the integration is superficially convergent
because the diagram contains two intermediate
propagators. Each of these propagators contrib-
ute a p'lnp' term in the denominator. Introducing
the cutoff A we find that the contribution from
the upper limit of the integration behaves as

~ d'p
p8jn2p2 ]~

Thus the diagram of Fig. 7 is free of overlapping
divergences and does not require renormalization.
'The general topological rule which eliminates
certain kinds of graphs is the following: Each
loop containing an odd number of internal fermion
lines contains an odd number of lines of the inter-
mediate collective field. If the number of fermion
lines is even, then the number of intermediate
lines is also even (or zero). Notice that this con-
dition restricts the number of lines in a loop, not
in a diagram. In the model with neutral inter-
mediate particles the number of lines of a given
species in a loop was unrestricted.

The quartic (oto)' vertex function is superficially
divergent, but again, in consequence of our condi-
tion there are only two superficially divergent
diagrams which contribute to this function. One
has been represented on the bottom of Fig. 5,
another will contain one self-energy insertion
on the fermion li.ne. The diagram with two inter-
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mediate internal lines will be superficially con-
vergent for the same reason as the diagram of
Fig. 7.

The coupling strength corresponding to this di-
vergent function, which we define as the finite
part of the (@to)' amplitude on zero external
momentum is fixed by conditions (4.20) and (4.15).
Differentiating (4.15) twice, with respect to eo
and oto we obtain

8
'

8=-2 «(r o )
(Bv,)'Bo', Bo.Bo',"" '

—o,
( „,f(~„o,) - (4.22)

With sources off, B'j/(Bo, )'Bent = I' ~ (0, 0, 0), the
last term in (4.22) vanishes as o, = 0 and the first
gives

The pole part of this integral cancels if we sub-
stitute (4.3). According to (4.20) we should set
g =m and then the finite part also vanishes, thus

r" "'(0,0, 0)= 0. (4.23)

We should remember that (4.23) is the consequence
of the normal. ization condition (4.19) imposed on
the intermediate propagator.

V. FINAL REMARKS

Our results show that the mean-field-expanded
quartic fermion interaction is as consistent in
four-dimensional space-time as it was in two
dimensions. There is no need to search for ar-
guments justifying the occurrence of tachyon poles
in auxiliary propagator s. Tachyons disappear
when the sign of the coupling constant is changed
and intermediate collective fields suitably rede-
fined. 'This fact together with the observation
made in the Introduction that the expansion would
be ambiguous if it could be used for both signs
of the coupl. ing constant leads to the unique con-
clusion: In two dimensions the model. is consis-
tent for g2/M' & 0; in four dimensions for g'/M2
& 0. In two dimensions collective states are formed
in the (PP) sector while in four dimensions Cooper-
type (g) pairs are binded. The signs of the para-
meters of the theory were crucial for the argu-
ment of consistency. 'The sign of the coupling
constant in the Lagrangian was important when
we were introducing intermediate fields —the
wrong choice would lead to the imaginary coup-
ling at the vertex joining the intermediate field
to fermions. It was also important in the study
of the spectral properties of the propagator of the

o field. We have used the renormalization pro-
cedure which has kept the parameters of the La-
grangian as fixed numbers so that we were able
to combine both conditions. We have used rather
unusual renormalization procedures in which pole
parts of divergent integrals were compensated
by suitable redefinition of the scale parameter
rather than by introducing counterterms to all
couplings corresponding to divergent Green's
functions. This has allowed us to treat all signs
seriously as all. parameters were fixed numbers
of the first order of the expansion.

The use of this procedure requires some com-
ments. As we have already stressed before we
are using the mean-field expansion as the alter-
native procedure for evaluating the path integral
defining the effective-action functional. Our ex-
pansion reduces the problem to the workable ser-
ies of integrals being just Gaussian moments.
The same can be done with use of the standard
perturbation expansion but then the asymptotic
expansion would be completely different. In the
conventional approach the quadratic term enter-
ing in the Gaussian integrals would be just free
part of the Lagrangian while the moments would
be given by the expansion of the exponent invol-
ving the interaction part of the Lagrangian. First
order of such a series does not contain any diver-
gent integration over internal momenta. Higher-
order divergences can be eliminated by suitable
subtractions and then normalization which must
refer to finite parameters present in lowest or-
ders. 'The renormalization fails for obvious rea-
sons if the coupling constant has the dimensionality
of the inverse power of mass.

In the mean-field expansion the point vertex
which in four dimensions would have the dimen-
sion of mass ' is replaced by the intermediate
propagator of the same dimensionality, but now
the mass' term in the denominator appears to-
gether with the p'lnP' term gained from the radi-
ative corrections. Now dimensionless polyno-
mials built from such propagators, powers of
external momenta, and fermion mass cannot have
positive power-momentum behavior and the tra-
ditional argument stating nonrenormalizability
does not work. Qf course, the term "radiative
corrections" was applied here by abuse of lang-
uage. As long as we are in the first order of the
expansion we cannot add corrections to anything
and this is the most dangerous point of the method
we have used. In the mean-field expansion diver-
gent integrals occur in the leading order. In two
dimensions we have only one logarithmically di-
vergent integral; theory is renormalizable anyway
so that we were able to use the standard pattern of
the renormalization although we could avoid this,
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2 t 2 2
M2 t dffyl g 6 0 +fPl +k

0 0 (5.1)

[We have performed the notation to the Euclidean
space and neglected the (2n)~ factor which is in-
essential for the following argument. ] The inte-
gral in (5.1) is divergent, we have calculated its
finite part by subtracting pole parts from the di-
vergent derivatives of (5.1) with respect to o"
and then integrating the result over o'". Doing
so we remained in agreement with the traditional
approach though it was not necessary. We could
as well rewrite the integral in (5.1) in the form

as we explain below.
In four dimensions the situation is more com-

plicated. We need several subtractions, several
normalization conditions, and the o'-field renor-
malization constant. The fact that we do not have
any finite "free" approximation could mean that
as a matter of fact we are definin g our four-fer-
mion theory to be just the Yukawa theory and, as
long as we are using standard renormalization
prescriptions, such suspicion is more than justi-
fiable. This is why we have tried to get rid of
the leading-order divergences by introducing a
singular factor in the scale parameter rather
than by adding counterterms: This is justified
by the fact that the scale parameter should be
introduced even before we write down diagrams
because dimensional quantities occur in the argu-
ment of the tr ln term in the effective action from
the very beginning. For example, when writing
the effective potential (3.2) it should be understood
that its actual form is

with o' and T being dimensionless. Evaluating the
integral, over ~ we obtain

g2etfy +m2) ]p. 2

2

———+y —1~(go a+en)1 2

) 0 0

x 1-—lng " ' for

In two dimensions we can renormalize in the con-
ventional way because (5.1) contains the M'oto,
term. In four dimensions we cannot because
(5.1) does not involve quartic coupling. In both
cases we are able to get rid of the pole part by
assigning

~2 K2g 2/I (5.5)

Now we can see that (5.5) can be given clear in-
terpretation. Returning to (5.1) we find that we

'

have just subtracted the infinite constant from
the effective potential which can be interpreted
as the energy density of the ground state. The
essential singularity of the exponent in (5.5) at
a = 0 is not of great importance because p2 occurs
only as the argument of the logarithm.

Expanding in powers of &=2 —n in two dimensions
and & = 4 -n in four dimensions, again neglecting
the w factor we obtain

j --y ~(g'o'.o.+ m')( I --» '; I for d=2
t'2 &,t, I' s g'o'a, +en'~

2 t 2 2
ffyl g O'f10'g+Sl +k

p2

Q' Op00+tS )/gl 1ln

T +af-
(5.2}
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