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Phase transition due to vortex condensation and the problem of quark confinement
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We study the phase transition of the Abelian Higgs model with man'y magnetic vortices, which turns out to give
the Marshall-Ramond model of relativistic strings with the aid of the dual transformation technique. We show that
the vortex condensation appears as a stable phase in the strong-coupling region. The relation between the dielectric
permeability and the order parameter of the phase transition exhibits the antiscreening of electric charges in the
vortex-condensed medium. We also demonstrate that the potential between two opposite charges is linearly rising,
unless the distance between them exceeds a critical length where the two charges are liberated.

I. INTRODUCTION AND SUMMARY

Recently, Creutz and others' have extended the
study of lattice gauge theories into weak-coupling
regions, adopting Monte Carlo simulations„with
an interesting indication that confinement and
asymptotic freedom coexist in non-Abelian gauge
theories.

In this article we investigate the problem of
quark confinement in the Abelian Higgs model in
the continuum. In particular we study the phase
transition, which is caused by condensation of
magnetic strings. In the strong-coupling phase
quarks will be partially confined. We utilize the
dual transformation technique so that we can study
the strong-coupling phase rather than the weak-
coupling region.

We first briefly sketch our ideas on quark con-
finement as follows.

(i) In order to confine quarks we must squeeze
the electric flux between a quark and an antiquark.
When the squeezing of the electric flux is achieved,
the electric flux takes well-defined values at each
space-time point, so that the conjugate magnetic
fields should be undetermined from the uncertainty
principle between electric and magnetic fields.
This situation may be realized by preparing a
medium where magnetic objects" such as mag-
netic strings' or monopoles' are created and an-
nihilated everywhere at any instant, which causes
large fluctuation of magnetic fields.

(ii) In order to see what magnetic objects are
important for confinement, we remember lattice
gauge theories in which the confinement is triv-
ially achieved, if the gauge coupling constant is
large enough, both in Abelian and non-Abelian
cases. Here the confinement does not depend upon
whether it is Abelian or non-Abelian, but the es-

sential point is the strong coupling. Therefore,
we should take the magnetic vortex which exists
both in Abelian and non-Abelian cases as the mag-
netic objects playing an important role for con-
finement, rather than magnetic monopoles which
only appear in the latter case. There are two
types of strings of magnetic vortices, closed and
open. In the latter, we have to terminate mag-
netic strings with magnetic monopoles which do
not appear in Abelian gauge theories but have to
be introduced by hand. So, we restrict our con-
sideration to closed strings of magnetic vortices.

(iii) Next, we consider in the strong-coupling
region what phase is realized in the medium where
magnetic vortex rings are created and annihilated
everywhere at any instant. The phase is deter-
mined by the balance of action and entropy. We
calculate the free energy E,

E = (action) —(entropy),

where the action is given by Mle' with & the area
of the world sheet of a vortex ring, e the coupling
constant, and z a constant. The entropy is ob-
tained by counting a number of states Q(A) having
the area A, as QQ) ~e8" where p is a constant
depending on the space-time dimension. There-
fore, the entropy pQ dominates over the action
in the strong-coupling region e'& o. /p, and the
medium where vortices are condensed appears
as the stable phase. This is a type of phase tran-
sition found by Kosterlitz and Thouless in the two-
dimensional XY model. '

(iv) Introducing external classical charges into
the medium, we show the squeezing of electric
fluxes originating from the charges.

Our aim is to examine (i)-(iv) in the Abelian
Higgs model without invoking lattice gauge theo-
ries. In this case a vortex is the magnetic string
of Nielsen and Olesen. ' We treat it perturbatively
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in the dual-transformed Abelian Higgs model which
is equivalent' to the relativistic hydrodynamics of
kalb and Ramond and of Nambu. ' The dual trans-
formation'-' interchanges kinetic terms with mass
terms, and hence it enables us to treat the self-
energy of the vortex in a 1/e' expansion. Through-
out this paper we use a cutoff theory, i.e., we
ignore small variations of string by introducing a
hypercubic lattice with spacing a which is identi-
fied with the inverse of the momentum cutoff.

The phase transition in the Abelian Higgs model
has been studied so far in lattice gauge theories. "
In lattice theories magnetic monopoles are inher-
ently included and the condensation of them causes
the phase transition. It should be stressed that
in this paper we study the condensation of mag-
netic closed strings rather than monopoles, since
the conventional Abelian Higgs model does not
involve monopole excitations.

We generalize the dual transformation in the
Abelian Higgs model with one vorticity source'
to the case with many vortices. We sum up vari'-
ous configurations of the world sheet of vortex
rings, restricting ourselves only to the closed
vortex with topological quantum number +1. We
take the configuration sum by extending the method
of Stone and Thomas. " They rewrite the config-
uration sum over all possible worM lines of mono-
poles into a second-quantized scalar theory. In
our case the configuration sum over all possible
world sheets of closed strings is rewritten into a
string theory of Marshall and Ramond. "" This
is the model of interacting closed strings, where
the functional field 4[C] for a closed string cou-
ples with the local field &„„(x)gauge invariantly
in the sense of Kalb and Ramond. ' As a result
of the configuration sum, effects of the entropy
appear as a negative mass squared in the action.

We calculate the effective potential for the string
field 4[C] in our dual-transformed model. We

apply the Stueckelberg transformation'4 to the
tensor field g „„which leads to s~D„„~~(x)= 0 for
the propagator of the field. This enables us to
calculate the effective potential for the string field
within the framework of local field theory, since
the above condition leads to the automatic sup-
pression of the diagrams including the propagator
of the string field. Now we get self-energy for the
string field and we study the phase transition due
to condensation of magnetic vortices by comparing
the self-energy with the entropy in (1.1}. The
order parameter P, (x) describing this phase tran-
sition is naturally given by h sum of the vacuum
expectation value of ~4[C] ~' over a set of curves
(C), i.e. , g, is the sum of the existence probabil-
ity for closed strings over the set of curves pass-
ing through g in a fixed direction. We observe that

the minimum of g, [we denote it by (P,)~] does
not vanish and the vortex appears in the strong-
coupling region e'&e, ', while (P,)~ vanishes and

the vortex does not appear in the weak-coupling
region. When expressing the effective potential
in terms of P, (g, includes 1/e in the definition},
the gauge coupling e appears only in the entropy
term. When e increases, the entropy term grad-
ually dominates and (g,)~ becomes larger. In
order to obtain a physical picture of the medium
with condensed vortex rings, we rewrite the sys-
tem in terms of g„ instead. of ~„,using the in-
verse dual transformation. We then can obtain
an important relation between P, and the dielec-
tric permeability 4' of the medium:

g = (1+/, ) ~. (1.2)

This relation immediately shows the antiscreen-
ing, as 5 takes the values 1.ess than unity in the
phase with'vortex condensation (e'& e, ') and it
becomes smaller as e' increases, while 5 =1 in
the normal phase. We have now arrived at the
effective Lagrangian similar to that of 't Hooft and

of Kogut and Susskind" where 5 is introduced by
hand.

Our mechanism is interpreted as follows in the
dual-transformed model: A nonvanishing expecta-
tion value of the string field produces the mass
of W„„ fields which is added to the original mass
term, just as the vacuum expectation value of the
Higgs field gives a mass to gauge fields &„. This
phenomenon is in turn interpreted as follows in
the original Lagrangian: The vacuum expectation
value of the string field decreases the dieleetrie
permeability which is the coefficient of the kinetic
term --,'(E„„)'. This corresponds to the phenom-
enon that the vacuum expectation value of the Higgs
scalar decreases the coefficient of the kinetic
term --,'(p„)' in the dual formulation. These cor-
respondences reflect a feature characteristic of
the dual transformation which interchanges the
kinetic term with the mass term.

We next introduce two external classical parti-
cles with opposite charges into our medium and

study the potential between them. Our dielectric
permeability $ does not vanish except for 8'=~
and differs from that assumed by 't Hooft and by
Kogut and Susskind, "so that the Coulomb-type
behavior of the electric flux still appears for finite

In calculating the potential between two ex-
ternal charges in the strong-coupling region
(e'» e, ') we assume A„ to be massless in the re-
gion since we expect that the vacuum expectation
value of the Higgs scalar takes a sufficiently small
value as the Higgs field is repelled by the densely
condensed vortex rings in our medium. For sim-
plicity we take the potential V(p, ) as
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l'4. ) = —c.4.+d4.' (1.3)

which retains the essential feature of our effec-
tive potential. In Eti. (1.3) the first term is the
entropy effect and the second term is anticipated
from the overlapping of strings and the require-
ment of renormalizability. The calculation of
the effective potential suggests that d does not
depend on e and only c, does depend on e, c,~ e'.
Under these simplifications we evaluate the total
energy for various solutions of Euler equations
and look for the solution having the minimum en-
ergy. We take three typical solutions: (a) string-
like solution, (b) thick-tube-like solution, and
(c) Coulomb-type solution. Comparison of these
three cases indicates that the electric flux is
squeezed and forms an electric string connecting
two external charges if the distance ) between the
two charges is less than a critical length /, . When
the distance l becomes larger than /, , the potential
between the charges behaves like a Coulomb po-
tential and the charges are liberated from each
other. The liberation energy is, however, suffi-
ciently large as compared with the energy of the
string per unit length.

We also discuss the question of whether we can
derive in the strong-coupling region an effective
action similar to that of lattice gauge theories,
by considering interactions of g „,with a closed
string of magnetic ft.ux. Although this question
is partly answered in our study on some crude
assumptions, a rigorous answer waits for future
studies.

In Sec. II we give the dual transformation in the
Abelian Higgs model with many vortices and de-
rive the Marshall-Bamond model of string theo-
ries. In Sec. III the effective potential for the

II. DUAL TRANSFORMATION OF THE ABELIAN
HIGGS MODEL VfITH MANY VORTICES

As a generalization of our earlier work, ' in this
section we present a dual tran'sformation which
relates the relativistic hydrodynamics of Kalb
and Ramond and of Nambu coupled with string
fields to the Abelian Higgs model with many vor-
tices. We consider the Lagrangian of the Abelian
Higgs model given by

,'(J"~,)'+ ~
(—sq +ieAq)$ ~' —V((t)),

v(y) =) 'y'y+, '~(y'y)' () '«) .

The partition function of this model reads

(2.1a)

(2.1b)

Z~ X)Aq x ~ x x

)

X)y x exp i d'xgx

(2.2)

where
~ (t) ~

and )t are defined by f =
~

(t) (e'". The
dual transformation with an antisymmetric tensor
field W„„(fV„„-=-,'e, ), ~W~(') (Ref. 5)

string field is calculated at the one-loop level and
we study the phase transition due to vortex con-
densation. In Sec. IV we evaluate in the strong-
coupling region the potential between two opposite
external charges and obtain a linearly rising po-
tential unless the distance between them exceeds
a critical length. Section V is devoted to discus-
sions on a relation between our model and the lat-
tice gauge theories and on the renormalization-
group equation in the presence of nonlocal vortex
rings.

exp i 4'x ——,'E„,E"" 0- „X)W„,x exp i 0'x ——,
' m'gi„„g ~'+ 2m@&„E"" (2.3)

reduces (2.2) to the following expression:

Z~Z+= X)X xZ+ XX
0

(2.4a)

&'Ix(~))-=J~& (~)f)) ~I( l,-«v ( xzd' x(x)](
1

p, V (2.4b)

Cg

&*[q( )]=-, , (V, )' ,' -m'(w„, -)'--+ 'mw&'-e,—„„,(s's&

-spy�')x(x)+

(s„~ y i)2- V(~ y i), (2.4c)

where P„=—8 "g„„.'
The vorticity source defined by

1
up„, (x) = —e„,~p(s s)' —s('s )y(x) (2.5)
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gives nonvanishing value only at the singular point of y(x). Therefore, the integration over X(x} in Eq.
(2.4a) singles out all singular configurations of the )t(x} field. If the set of singularities of y defines a
world sheet y~(r, o), then we have

8(s",y")td'"(x)=n ff dud~
' 5'"g-y(v, o)),

a(7, v)

where n is a topological quantum number. "
Now let us evaluate the g(x) integral in (2.4). The difference of two singular configurations y, and y,

corresponding to the same v~" (x) is a regular one X„(x),

y, (x) -y,'(x) =y„(x),

so that (2.4a) is reduced to

(2.6)

(2.7)

f 2%

z*= ux (x) Z z*[~( )].
"p gonAgurathn

of (gPv( g )

(2.8)

We can omit an infinite factor J~ ZX„(x) and this procedure is equivalent to gauge fixing. After substitu-
tion of Eqs. (2.5) and (2.6) into Eq. (2.8), the main part in (2.8) reads

(2.9)

where we have considered the configuration made

up of N connected world sheets $"'-$("', and
performed the summation over all possible con-
figurations of S"' and the summation over the

topological quantum number n~'~ for S~').
In order to perform the configuration sum we

extend the method of Stone and Thomas" in the
case of pointlike excitations of monopoles to that
of stringlike excitations of magnetic vortices. We

define a measure to count the number of config-
urations of a world sheet by introducing a hyper-
cubic lattice of spacing a, which is identified with

the inverse of the cutoff A in momentum space.
Throughout this paper we use a cutoff theory for
two reasons.

(1) A complete theory of renormalization does

not yet exist for a string coupled with an antisym-
metric tensor field.

(2} A string in the real world has a finite width
which plays a role of the cutoff.

Let us evaluate a configuration sum K(c„c,;A)
defined by

K(C„C,;A) = g exp i
2
—m der"'(x)W„, (x)

~ &2m

S S
(2.10)

where the summation is taken over all configura-
tions of the world sheet $ connecting closed curves

j and Q, with area g in Euclidean space -time.
(We restrict the sheet $ to be an orientable one
without holes. ) The following recursion equation
holds for K(C„C,;A) (see Fig. 1):

I

K(C C A)=g[e'S"i-"~«"'K(C C —5"'C A-s')+e-'t"t'-' v~'"'K(C C +5"'C A-a')]
p&0

(2.11)

where g"„'C denotes a keyboardlike variation of the curve C at the point x in the p, direction vertical to the

tangential direction t of C. From Eq. (2.11) we have

—,x —,[K(c„c,;A) -K(c„c„A—a')]a' a'

=g —,II-i —'ma'W„, (x) K(C„C,+g'C;A-a') — I+i—ma'W„, (x) K(C„C,;A-a')
„&pa' & e e

K(C„C,;A —a') —l(1+i —mW~, (x))K(C„C,—5„"'C;A —a')

——,[1 —2(0 1)]K(C„C,;A--a'), (2.12)
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where p denotes space-time dimension, and c is supposed to be a small quantity. Equation (2.12) leads us
to

2

„rc—(C„C„.X)= P, „„,-t —'mw„, () -M,'z(c„c„Ã) (2.13a)

—g —mk'&, X —M0 & Cg C2PA (2.13b)

with g =—g2& and

~:-=—,[1 —2(D —1)].2 1

a' (2.14)

This diffusion equation (2.13) is a generalization of Foerster's equation" (13) for a free string extended to
the case of a string interacting with an antisymmetric tensor field Pi'„„.

Let us notice that the negative value of M, , representing entropy effects, does not immediately indicate
the emergence of a phase transition. It occurs only if M0 is not modified to a positive value by the self-
energy, which will be calculated in the next section.

Now we solve the diffusion equation formally. Introducing an orthonormal set of eigenfunctionals ]4„[c])
and their eigenvalues ["„']defined by

a,e„[C]-=- !&dr, ~ dx, g „, -t —mW„, (x) -m, ' e„[C]

=u)„'e„[c], (2.15)

we can write a solution for K(c„c,;g) as

x(c„c,;X)=g e-"'"e„[c,]e„'[c,] (2.16)

under the following normalization condition:

K(c„c„.0) =p e„[c.]e„*[c,] = 6(c„c.) . (2.17)

G(C„C,) defined by"

c(c„c.)= f aaron(c„c. ;a)
0

represents a propagator of a closed string, since it satisfies

fi, ,G(c„c,) = 6(c„c,).
In the string theory, this propagator G(C„C,) can be obtained from the Lagrangian

(2.18)

(2.19)

-1 6 2 2

a,"[cl-=- fax, ax, g „, -s —'mw„, (x) a[c) —I''(la[c)(l',
c

t c t u.t 50c-t X e )' t (Z.20)

c,+ s~g

Cg c', C
(a) Cb) (c~

FIG. 1. (a), (b), and (c) express world sheets appear-
ing in the definitions of &(C~, C2+), K(C~, C2 -6„" C2p4. ),
and K(C), C2+ 6"„C2,A), respectively.

which was first considered by Marshall and Ra-
mond.

In order to rewrite the configuration sum into
a partition function of (2.20), we must restrict
the shape of world sheets to that of a torus. In-
deed there are many other configurations of world
sheets. It is, however, sufficient to take into ac-
count only the configurations of a torus in order
to investigate the essence of the phase transition
due to entropy effects. If we take into account
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which is reduced to

exp Q dA=K(C, C;A)
c

(2.22)

(See Fig. 2.)

Let us comment on the number of ways to trace
a given torus in one direction. The factor 1/& in
Eq. (2.22) removes the overcounting in the choice
of the starting curve C out of a set of curves rep-

more complicated configurations, the critical
coupling of this phase transition will become
small, since these configurations give larger en-
tropy effects than a torus. Therefore, we neglect
these complicated configurations in the following
discussion. Restriction of the topological quantum
number to n =+1 comes from instability of strings
with IsI&1. Under the above-mentioned restric-
tions, Eq. (2.9) reads

exp exp i ——mn do&„x 8'""x. 1 2g

S =torus n=& g 2 S
(2.21)

FIG. 2. Configuration of world sheets contributing to
the parhtion function (2.25), where the two directions
for tracing the torus correspond to + = +1 andn = —l.

resenting the intermediate steps in tracing a given
torus. (The number of curves in the set is equal
to p/z .) However, there is another ambiguity
in selecting one set of curves representing one
way for a closed curve to propagate on the given
torus. This ambiguity corresponds to the number
of ways to parametrize a world sheet of a string,
and is attributed to the gauge degree of freedom in
the string theory. With respect to this problem
we must refer to the work of Kawai. ' By sub-
stituting Eq. (2.16) into Eq. (2.22), we obtain

exp P I dÃ= e ~ "Pk„[c]4„[c])
n o + C

' [,=(detfrc)-'

P -1 2

SC C QC* C exp i — dx, dx, „, -i —mS'„, x 4 C —M,' 4 C ' =-Z,*. 2.23
c - c c

Finally we obtain the dual form of the partition function of the Abelian Higgs model with many vortices a.s
follows:

ZH~ ~Z
P

Z*=- X)W„, x u, S4 C 4*C exp i xg~x + C~ C
1

C

(2.24a)

(2.24b)

where

(2.24c)

and p f[C] is defined by Eq. (2.20).
At the end of this section we remark that Eguchi

and Nambu have proposed a new approach to the
free string theory in which the area of the world
sheet plays the role of the evolution parameter. "
Our treatment of the string is very similar to
theirs.

III. EFFECTIVE POTENTIAL FOR STRING FIELD
AND PHASE TRANSITION DUE TO VORTEX

CONDENSATION

In this section we evaluate the effective potential
for the string field 4[C] at the one-loop level, and
discuss the phase transition due to the condensa-
tion of vortex rings.

The diagrams we are going to evaluate are given
in Fig. 3. Let us compare these diagrams with
those in scalar quantum electrodynamics discussed
by Coleman and Weinberg. " In scalar quantum
electrodynamics, if we take the Landau gauge the
diagrams having a vertex pt8„qA" do not contri-
bute to the effective potential. In our string theory,
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+ g +
e D„„,„,(x)=o, (3.1)

and we can show that the. diagrams having a vertex
of the type

a similar phenomenon occurs: After the Stueckel-
berg transformation'4 is performed, the propagator
of the W„„field, denoted by D„„,~,(x) satisfies

FIG. 3. Diagrams contributing to the effective poten-
tial for +[C] at the one-loop level, where a wavy line
and a tube represent propagators of W&~ and 4[C],
respectively.

@*jc] „ejc]w"(&)

do not contribute to the effective potential.
Proof of this statement is as follows: Let us

insert an identity

1= uB„(x)exp I
d'x 8 "W~ + [8'(8—„B„-a&„)+o.m'B„] I2n J m

(3.2)

into the integrand of the partition function (2.24b),
and perform the gauge transformation of Kalb and
Ram ond':

+[C]-exp -i —dx"B„(x) 4'jc].2g

C
(S.Sb)

W„-W,„-—(s„B„-sg„)1
(3.3a)

[In Eg. (3.2) B„(x) is an auxiliary field and o, is a
parameter. ] Then Z* [Eg. (2.4)] is rewritten as
follows:

Z~~ 8'„„g QB„g ~ 3 X)+ C~g~ C exp i dgg g + Z C
C

where

2~.*=--4 .. ~

~. (I „)'--,' '(W„,)",.(8 W„,)'--,'(s„B.-B.B„)"-.' ' (B„)"(s„le I)'-I(le I).

(3.4)

(3.5)

The essential point is that the auxiliary field B„decouples from the other fields and can be neglected in the
following discussion. Here we fix m' to be 2e'(Q)', where ($)=(2p, '/X)' . This corresponds to the expan-
sion around the value (2p'/X)'~'. Then the momentum representation of the free propagator of W reads

(3.6)
le

for an arbitrary n, and it takes a simple form for z =0, namely,

(3.7)

1I~.~p
—&gf ~) gvp) ~

1L„„,(k) = 2(g„Lp„k,) -g„L—~k k, i) .

(3.8a)

(S.ab)

Hereafter, we set n =0, so that Eq. (3.1) is satisfied. In the graphs having a vertex of the type

4'*[C] „, g [C]w"~(~),

4'*[C] or Qc] belongs to an external line and W"'(x) is replaced by the propagator of W~. Therefore, it is
sufficient to consider the following expression:
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Z(gd», l fdx, g (4[C])'4 e[C]C» (x-y),

where (4' [C]) denotes the vacuum expectation value of 4 [C]. Integration by parts leads us to

(e[C])* e[C]D„,„,(& -y)+ (e[C])*y[C]-s a„,„,(& -y), (3.9)
c&c ' c

Pts VS + ptt V8

where we assume that the curve C is sufficiently large so that we can neglect the influence of the functional
derivative on the length of C, fcdx, . On the assumption of

(3.10)(e[C])= 0,
5o~, x

Eq. (3.9) vanishes on account of Eq. (3.1). This assumption is similar to the assumption 8„($(x))=0 in
scalar quantum electrodynamics. " Eventually it is sufficient to consider the graphs with an internal loop
of W~, for calculating the effective potential for (4'[C]).

The relevant interaction for these graphs reads

—Z($4», )l $4», g( l~'I)4'»(x)1'I~[C]I*=- 4 x'~ 4'Z'[4». (x)]

with

4-=41 —"
I E(»'f4» I

14'[c]I*,
& c„,,

where we have used a formula

(3.11)

(3.12)

(3.13)

(3.14a)

(3.14b)

(3.14c)

1

Zfd»P(Cx)= f'4,'x P F» 'E(C, x),
C C t Cgt

and C„„denotes a closed curve passing through a point x in a fixed direction t. Now the effective potential
V(g, ) (g, denotes the vacuum expectation value of ]t),) ca'n be obtained up to one-loop level as follows:

e '('
)'(4.)=l,—,„,lM. '4.+(Z —, (-4l~'4. ) J, .»[c„.„,(4)]"

jf e'I'5A4( . d'k (,)
k'-m'(I+&, )

~2m& c([g](], (2v) k' —m

( e (I%2 3 t'

where the momentum cutoff A is identified with 1/a. For A»m, it is approximately equal to

V(g )= (-20e A + A m )]I) ——m ]I) In~ 2 ~+~m (I+/ ) In(1+/ ) (3.15)

Let us notice that g, is originally proportional to
I/e' so that the expansion of the effective potential
with respect to g, is considered as an expansion
in 1/e'. Then the dual-transformed model of the
Abelian Higgs model is suitable for the strong-
coupling expansion. The physical meaning of g,
is the sum of existence probability of closed string
C over a certain set of curves C„„. Therefore,
when the minimum of the potential V(g, ) indicates
])),e 0, the physically stable vacuum is filled with
magnetic closed strings. The phase transition
from the normal vacuum g, = 0 to the vacuum with
strings condensed ]1),4 0 can be characterized by
a mass parameter of ]t), in Eq. (3.15):

1, 2 3 m21
M =( )2A -20e +2 (3.16)

where the first term on the right-hand side of this
equation comes from the configuration sum of
closed strings (derived in Sec. II) and indicates
entropy effects, and the second term represents
the self -energy of the string due to radiative cor-
rections caused by the W „field.

Then there exists a critical coupling e,' defined

by

2— 3 m'
40 A

(3.17)

For e'&e,', the normal vacuum appears [(g,) =0],
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while the vacuum filled with strings [(g,) WO] ap-
pears for e'& e,'). The third term proportional to
(1+/,)' In(1+]]],) in the potential (3.15) prevents
(P,) . from going to infinity for e'& e,', if the sec-
ond term proportional to g,' ln(A'/m') gives a finite
contribution after renormalization. An interaction
term Km'g, ', necessary for this renormalization,
may be introduced for the following reasons: The
self-energy of a string with a higher topological
quantum number (n& 2) is roughly proportional to
n' and deviates from the simple sum of energies
of n strings. 7his deviation may be corrected by
introducing an interaction like Km'g, '. This inter-
action is also introduced in order to correct the
following overcounting problem. When two tube-
like world sheets share the same contour, two dif-
ferent graphs from the viewpoint of propagation
of closed strings correspond to one field configura-
tion.

It is also noted that (g,) becomes large as e
increases, because e appears only in the entropy
term The. immediate consequence of (g,) 40 is
the increase of mass for W„„. From Eqs. (3.5)
and (3.11), the mass for W denoted by m~ reads

(m~)' = rn'[I + (g,) . ] . (3.18)

This mechanism is analogous to the Higgs mech-
anism. In the Higgs mechanism the vacuum expec-
tation value of a scalar field generates the mass of
the vector field, while in our model, the vacuum
expectation value of a string field increases the
mass of the tensor field W~.

Now let us relate our model to the effective-
Lagrangian approach of 't Hooft and of Kogut and
Susskind. " In their model, electric confinement
occurs, if the dielectric permeability &(y) is as-
sumed to vanish sufficiently fast as

&(e) ~(V -e;.)" (~=I), (3.19)

&(4.) =(1+4.) '. (3.20)

For this purpose, we apply the inverse dual trans-
formation to Z~ [Eqs. (2.24a)-(2. 24c)). After re-
viving the integration over A„and performing the
integration over S' as

near a minimum point cp ~ of the potential. We
derive in the following a very important relation
between the dielectric permeability c and the quan-
tity g, representing the degree of vortex condensa-
tion:

1, 1
&W (x) exp i d'x ——m' W W'"+2mW (E""-J'~)

4 &(4.)

= '
e(il,)' exp(( f d x [-—,

' x(il, )(X""-J,"")']j,
we obtain the following expression for Z:

Z o[- Z

Z'= X)A.„~ X)4 C X)4~ C c, exp i d gZ& x + C~ C
c

(3.21)

(3.22a)

(3.22b)

and

-M, ' Ie[c]I', (3.22d)

d. (x)-=—2( —P( x'fdx(P "[C]e „, , PIC].. 2v I, '(' 5

exp c

(3.22e)

Equations (3.21) and (3.22b) show that c(g,) defined
by (3.20) plays the role of the dielectric permeabi-
lity. s(g, ) takes the value unity for e'g e,', while
it becomes smaller than unity as e increases be-

where

&~(x) = --'&(l.)(F -~. )'

+"le I'(A. )'+(s. Ie I)'- « le I), (3 22c)

d, [C] ((f dx) y=dx, 'g , '„', P[C]
'

I

yond e

At the end of this section we compare two repre-
sentations, Z' [Eq. (3.22)] and Z [Eq. (2.24)] from
the viewpoint of the dual transformation. The non-
vanishing expectation value of the Higgs field (((())

makes the gauge fields„massive in the original
representation Z' (Higgs mechanism), while it is
a multiplicative factor of the kinetic term in the
dual representation Z~ and behaves as a viscosity
for the velocity vector V„ in relativistic hydrody-
namics. As for the vacuum expectation value of the
string field 4 [C], especially g„ it increases the
mass of W„„ in Z* (analogous to the Higgs mech-
anism). On the other hand, in Z', g, changes the
value of the dielectric permeability c(g,) which is
a multiplicative factor of the kinetic term ——,'(E„„)'
and is considered as a viscosity for the electric
field.
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IV. PARTIAL CONFINEMENT POTENTIAL
FOR EXTERNAL CLASSICAL CHARGES

IN THE STRONG-COUPLING REGION
I

In this section we evaluate the potential between
two classical particles with opposite charges intro-
duced into the vacuum with vortices condensed.
For this purpose we simplify our Lagrangian in the
strong-coupling region e'» e,' [see Eqs. (3.22)
and (3.15)] into the following one:

J;"=Q !!"'(x+-I-!!"'(x--),
D" =(D)~ (i=1,2, 3),
J'"' =0 and D'&=0 (i,j =1,2, 3) .

Then Eqs. (4.4) and (4.5) are reduced to

Jex~
Q

(4.6a)

(4.6b)

(4.6c)

(4.7)

& = --'&(4.)(+..)'+~„'"'&"—V(0.), (4 1)
dP,

+ ~2(D)' = 0 (4.8}

V(g, ) = -c,g, +dg, ',
where

(4.2a)

c —= , (20e'A'-aA'm')e=
(4v)

=c(e2 s 2)

ce2
g2 &&gC

(4.2b)

where s (g,) = (1+g,) ', J„'"' denotes the external
electric current, and V(g, ) is the effective potential
for the string field g,.

The effective potential (3.15) evaluated in the
last section possesses the following properties:

(1) The gauge coupling e appears only in the
linear term for g„and the sign of this term de-
termines whether the vortices are condensed or
not.

(2) Even in the strong-coupling region e'& e,',
(g,) h, must be finite.

Keepi'ng these properties, we take the following
simple form for V(g, ) instead of (3.15):

Equation (4.8} shows that the introduction of the
electric flux D changes the vacuum structure:
g, in the presence of D is obtained as the mini-
mum of the following modified potential:

Vn(4$ =- V(P.) + 4D)'4. . (4.9)

Here 2(D)'g, is considered as an additionai mass
term for g, . Therefore, when (D) is sufficiently
large,

—,'(D)' & c, , (4.10)

the vacuum becomes normal [(P,) ~=0] (see Fig.
4). This mechanism is desirable for electric con-
finement, because the electric flux originating
from an external charge tends to flow in a thin

tunnel of the normal vacuum dug in the con-
densed vacuum. There are many solutions satis-
fying the two equations (4.7) and (4.8). In order to
find the physically realized solution, we must
compare the total energy

H= dg ~ 1+, D2+p (4.11)

and the positive constant d does not depend on the
coupling constant e.

We also comment on the absence of e' ~P ~'(A„)' in
(4.1) for e'» e,'. In this strong-coupling region,
the density of vortices is so large that e'

~
Q ~'

takes the value sufficiently inside the vortex.
Therefore, the mass of the A„ field can be neg-
lected in comparison with m.

Introducing the electromagnetic induction tensor
D„„by

(4.3)

we obtain the following Euler equations for our
model [Eq. (4.1)]:

and select the minimum-energy solution. In the
following, let us study three typical solutions:
(A) stringlike, (B) thick-tube-like, and (c) Cou-
lomb-type solutions.

( s }via
]a

8yD + gext pvv v (4.4)

——.'(D.„)'= 0. (4.5)
8

We put +Q charge at x =-l/2 and -Q charge at
x=+1/2, so that we have

[tea

FIG. 4. Relation between (g~);„and I DI with the
potential of (4.2a) in the strong-coupling region.
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A. Stringlike solution

This solution is axially symmetric. We use
cylindrical coordinates (r, 8, g) and put the exter-
nal charges +@ and -Q at z=-l/2 and z =+l/2,
respectively. The nonvanishing component D, is
assumed as follows:

d "4
lU =SU~ =—M2 —~

ZUO.
C

Here wo is defined by

(4.16)

Q l l
2 for 0 ~ 'v ~ w q

— ~» z ~
ww 2

r

g 0, otherwise .
(4.12}

l l0 for 0~X'~w
~

——~8~ 2,

otherwise.

(4.13)

Then the total energy measured from the vacuum
value reads

We further assume that ID,
r

for O~x~go and
-l/2~z~l/2 satisfies the condition (4.10). On
this assumption, the solution of Eg. (4.8) becomes
very simple:

The condition (4.10) is satisifed when the coupling
constant e is sufficiently large and an inequality

c, &4d holds.
The solution (A) obtained here represents an

electric string with the transverse width w& and
the potential between the charges is linear rising.
It is worthwhile to notice that w& is a width where
two forces are balanced: One force comes from
the string potential and tends to narrow the normal
region and the other force comes from the electric
field and tends to widen the normal region. This
phenomenon may be called the dual Meissner ef-
fe ct,' because the usual Meissner effect is ob-
tained by interchanging the roles of D and B and
the roles of g, and

r
Qr.

Hg(nr)= 2, r
+4' neo'1,

1 Q i' c,'
2 gw) 4d

which takes the minimum value

Hg= 2l
77w~

(4.14)

(4.15)

B. Thick-tube-like solution

To obtain a thick-tube-like solution, we choose
the nonvanishing components of D as follows:

Q l l
D = in the region I O-r=w, ——+ 5 g

7w 2 2 2 '

(4.17a)

Q nF —r' l l l
D = in the region II 0 i w ——~z ——+5 and ——5 z~-

2m6 w2y' 2 2 ' 2 2 ' (4.17b)

where we assume

w»wo (4.18}

The region II is divided into a normal region
(0-r ~ yP and a region filled with vortices (z, ~ r

so). From Eqs. (4.10) and (4.17b), the critical
radius z, is known to be the root of the following
equation:

in order that D, does not satisfy the condition
(4.10). We further assume 5 to be very small and
of the same order as the string width w» of the
solution (A). The r dependence of D„ is determined
so a.s to satisfy the conservation law of the elec-
tric flux.

In the region I, where the vacuum is filled with
vortices because of (4.18), the energy is given by

1/4 2

~,'+4M — —'~, -n)'=0.
cg wp

If we restrict ourselves to the case

wo ~

(4.20)

(4.21)

H = de —]+~ D2 D2 21 c 'r-
2d)

(4.19a} we obtain a simple solution

~2 Ce 2 (4.22)
Q~(l —25) 1 c, i Q 1

vgv2 2 2d) 16w d go
(4.19b)

The energy in the region II is evaluated as follows:
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q2 gg& 11
H !—

' ln ———+——
2n 6 ' 6' 4 go' 4gv4)

+ —' -'ln ——-+-
2m6 2d r,' 4 2 ao')

w2 1 5g2 y4 1g6t
x 21n 2+ +—

2
— 4+—

2 w' w' 6w' j. '

(4.23}

This is approximately equal to

rr=2&g 4
(4.24)

in the strong-coupling limit c,»d under the condi-
tion (4.21)

(4.11) consists of two parts H„and H„, where H„
comes from the condensed region

.= f. .
I x+1/ 2 I)pz

and H„comes from the normal region

d'x —1+~ D' (D')' (4.31}
2 2d 16d

d'x —'D'+ —'a„=f (4.32)
6& I x+1/2 I &p

C

In Eq. (4.22), we also use the cutoff 6 identified
with ~„, becausetheregion!x+1/2! (5 is extreme-
ly close to the external charges and the energy in
this region is considered to be common in all the
solutions (A)-(C) .

The most dominant terms with respect to p, /l and

6/p, of H„and H„are evaluated as follows:

sv =6 «x «w
C

In the same limit (4.25), H, reads

Q~ c, 6f
2gQ 2d w2

(4.25}

(4.26}

Q c& 1 1 1 Q' 2 1
H =—1+~

4w 2d& p, l 16d (4w)' 5 p,
''

Q' 1 1 c,'4m
H = ————+—' —(p ' —6')

p, 2d 3

(4.33)

(4.34)

Now the total energy H~ =H, +H„of the solution
(B) takes the minimum value

Q' ~c 25l&

2w6 4d r )

at eva'=26l. Consistency of this solutionwith(4. 21)
and (4.25) holds if

(4.27)

(4.28)

This solution (B) expresses a logarithmic poten-
tial.

Q 1 1 (4.29)

The normal region appears in the neighborhood
of external sources:

w'x+- & p,'=— (4.so)

C. Coulomb-type solution

The dielectric permeability (3.19) assumed by
't Hooft and by Kogut and Susskind excludes the ex-
istence of Coulomb-type solutions. '4 The dielectric
permeability s derived in our model [Eg. (3.20)]
takes the value less than the normal value unity
in the region where &D'&c, , but does not vanish
except for an extreme case e'=~. Therefore,
our model allows the existence of a Coulomb-type
solution.

The electric flux in the Coulomb-type solution
is given by

Then we have

c, 16 p, 'li
H. =8 +Hc o " 4mp, 2d 15 l ]~' (4.35)

which describes the Coulomb potential between the
external charges +Q and -Q. The approximations
used in deriving Eg. (4.35) are valid under the con-
ditions l'» p,

' and c,» d, which guarantees
p2»$2~w2

C

Now we compare three solutions (A)-(C) and

select the minimum-energy solution. The dis-
tance l„c, where the energies of two solutions (A)
and (C) coincides, is obtained on the assumption
lAc» p, as follows:

w'c 2 8 c, '"
lAc — — wo ~

p d 15 15 d
(4.36)

q' 8 t'c,»H (l =+~) =
27Two 15

(4.37)

The distance l„~, where the energies of the solu-
tions (A) and (B) coincide, is estimated as follows:

This is consistent with the assumption lAc» p, in
the strong-coupling limit. The stringlike solution
is realized for l &lAc, while the Coulomb-type
solution for l & lAc.

The solution (B) is solved only in the region
(4.28), where its energy is sufficiently larger than
the asymptotic value of the Coulomb-type solution
(C):

Q' 1 t'c, "4
H &

27MO 4M2 ( d

where we assume that l2» p '. The total energy
(C )3/4

~ -4~21@)! o. (4.38)
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1 Q' — c (4.39}

This length is sufficiently larger than l«charac-
terizing the transition from linear to Coulomb po-
tential, so that we exclude the solution (B).

Now, we obtain a partial confinement potential
in the strong-coupling limit c,» d: In the region
Es lAc, two charges are connected by an electric
string whose energy per unit length is equal to

to vortex condensation.
The next point is whether we can derive in the

strong-coupling region an effective action similar
to that of lattice gauge theories by considering
interactions of W„„with a closed magnetic string
or not. Characteristic features of lattice gauge
theories, confinement, strong-coupling expansion,
and others, come from the following cosine-type
action

4q c l'&' 1H(l= )=—'- —'I »=, ~

15m d) (4.40)

Finally, we give some remarks. Although we
have neglected it in this paper, there may exist
a kinetic term for g, . This, however, does not
change the essential feature of the potential be-
tween external charges. It only moderates the
transition between the normal region and the con-
densed region.

The aim of this paper j.s only to show the ap-
pearance of a linear potential between external
charges as a result of the condensation of the mag-
netic vortices in the strong-coupling region, and
we do not intend to obtain. qualitative results. The
qualitative study of our model is left to future in-

vestigationss.

V. DISCUSSION

In this section we discuss several points not
studied in detail in this paper. The first point is
on the renormalization problem or on the renor-
malization-group equations. We have used a mo-
mentum cutoff A for regularizing the ultraviolet
(UV) divergences. In addition to UV divergences
coming from the high-momentum region of the
W„„propagator, there also exist UV divergences
appearing from small variations of world sheets
of strings. Therefore, the renormalization should
include those of local field theory and those of
non-local field theory.

In order to consider this problem, it will be
helpful to examine renormalization in soliton
theories. The renormal. izability of soliton theo-
ries has already been studied by several authors. "
If we can renormalize our model and formulate
renormalization- group equations with respect to
the gauge coupling constant and the mass of the
vortex ring in a similar manner as was done in
the two-dimensional XY model, ~2 we will be able
to clarify the properties of the phase transition due

where we have used tentatively the notation 0." ex-
pressing the slope of the Begge trajectory of
meson states. When l &lAc, the potential energy
of the system becomes Coulombic. The asymptotic
value Ho(l =~), which is the energy necessary to
liberate one external charge from the other, has
the following relation with 0.'

=1
Slattice 2 cos e +pv +

X V&

(5.2)

where 8,(M') denotes the operator defined by Eq.
(2.15) and H,( M)is the corresponding operator
in a free string theory (1/e = 0) . On the following
assumptions,

(W„„)=0 and (W„„W"")=g„W, (5.3)

H,(M') can be replaced by H, (M'+ (2m/e)'m'W'}.
Although our, operator H', is identical to that of
Marshall a,nd 83,mond, that is,

FIG. 5. Diagrams contributing to the effective poten-
tial for W~„at the one-loop level, where the torus re-
presents a track of closed-string propagation.

=const+, g (——2[ca'E „(x}]'+ ), (5.1)
~v

which is periodic with respect to a shift, eaA (x}- egA„(g}+2v (a = Lattice constant). "
So far we have considered only the vacuum ex-

pectation value of 4[C], namely, g, . Even in this
ca,se the interaction of (E „}'with P, has introduced
terms with higher power of (E „}'into the action
through Euler equations [see, for example, Eq.
(4.3}]. Taking into account quantum flucutation
of +[C], we evaluate the effective potential for
5'„„at the one-loop level.

A set of graphs to be considered is given in Fig.
5, where the torus represents a closed path of a
string. Contribution of these graphs to the parti-
tion function is given by
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«'„(u)x'. (~)
c( )

[ ( I( )2]1/s (2 )21 ~.. —
[
-.

( )].
we replace IJ, by the following one H, ' for the sake of

'do'

( ) ( )
M[x(o)]

simplicity:

�

2@

do(-[g'(0)] P ~', (5.4)
0

(5.5)

which leads to the string propagator of Kaku and Kikkawa. "
The eigenvalues of the new operator B", reads

oo 3

)2=ps2+ QQ n(2m„„+ 1)2',
n Du=0

(5.6)

where e' are labeled by Euclidean momenta p~ and by the number of excitations pn„„ for the harmonic os-
cillator with n nodes in the p direction. Then, Eq. (5.2) is reduced to

J p '+ 2m[M +(2w/e) m'W ]'~'gn(2m„„+1)

I(2~)', „, p,'+2' Pn(2m„„+ 1)
I nQ

(5.7)

As is known from the dual transformation (3.21),
(mW„„) is identical to (s(g,)E„„)=(D„„).'7 There-
fore, (5.7) expresses a complicated function of
(E„„)s. Although this expression is as yet far from
the action (5.1), our present discussion is sug-
gestive for future study to connect lattice gauge
theories with the continuum gauge theories.

At the end we would like to suggest to the solid-
state experimentalists to search for materials that
may sustain the condensation of closed magnetic
vortices of Abrikosov' and then attempt to squeeze
external electric fluxes under suitable circum-
stances. Since the Landau-Ginzburg theory of

superconductivity" is identical to the Abelian
Higgs model studied in this paper, such an experi-
ment will lead to valuable results.
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