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Perturbative predictions in quantum chromodynamics and other field theories are ambiguous because they depend
on the choice of renormalization scheme. “Optimized perturbation theory” has been proposed as the solution to this
problem. I apply the method to a simple, soluble model in order to illustrate its formalism and to demonstrate its

success.

I. INTRODUCTION

In conventional perturbation theory finite-order
results depend on the choice of renormalization
scheme (RS). Perturbative results are therefore
meaningless without a criterion for choosing the
“best” RS. Moreover, the right choice of RS can—
and therefore really musi{—depend on which physi-
cal quantity one is concerned with. A resolution
of this ambiguity has been proposed,!'* based on
the argument that, since the exact result is known
to be RS independent, the best approximation is
the one which is least sensitive to small changes
in RS. The same general idea, dubbed the “prin-
ciple of minimal sensitivity” (PMS), applies to
any situation in which an approximation scheme
does not respect the known invariances of the
exact result. Several simple examples were used
in Ref. 1 to illustrate the soundness of this cri-
terion. None of these examples, however, was a
field theory.

In this paper I demonstrate that the PMS cri-
terion works equally well in a field-theoretic con-
text. I study a simple, soluble model in order to
be able to compare the finite-order perturbative
approximations with a known exact result. It is
also possible to check the consistency of the for-
malism of “optimized perturbation theory,” which
uses the renormalization point ; and the g-func-
tion coefficients to parametrize RS dependence.

Specifically, I study perturbative approxima-
tions to the four-point function in the large-9t
limit of the Gross-Neveu (GN) model,® a (1 +1)-
dimensional model of 1 massless fermion fields
interacting through a four-fermion coupling. I
have nothing new to say about the physics of the
GN model, nor about the 1/91 expansion: I simply
use the model as a test-bed for ideas developed
for quantum chromodynamics (QCD). The GN
model is suitable for my purposes because it is
(i) soluble, (ii) vemormalizable, (iii) massless
(for technical reasons, Ref. 1 treats only mass-
less theories), and (iv) has a single, dimension-
less bare coupling constant. The model also has
many intriguing dynamical similarities to QCD,?
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but I stress that I am not appealing to such analo-
gies here: My main points—the consistency of
the RS parametrization of Ref. 1, and the validity
of the minimal-sensitivity argument—are inde-
pendent of the detailed dynamics. It is true that
the simple dynamics of the model is responsible
for the remarkable accuracy of perturbative re-
sults in my examples. However, the potential ac-
curacy is realized only if one intevprets the per-
turbative approximations correctly. My point is
that the PMS criterion is the most sensible, and
successful, interpretation.

At the outset it is necessary to distinguish two
separate issues: (i) the comparison of finite-
order perturbative approximations with the all-
orders (“exact”) result, and (ii) the comparison
of the all-orders result with the actual (“experi-
mental”) result, which includes nonperturbative
effects as well. The point is this: As in QCD,
the true vacuum of the GN model is not the pertur-
bative vacuum, but is displaced by an intrinsically
nonperturbative amount O(e~*/4?). This causes
dynamical mass generation® and is very important
at low energies. However, the nonperturbative
effects become negligible at high energies where
one would want to use perturbation theory. (Like
QCD, the model is asymptotically free.?)

“Optimization” uses the renormalization group
to try to approximately reconstruct the all-orders
result from a finite number of perturbative coef-
ficients. Since those coefficients contain no in-
formation whatsoever about nonperturbative ef-
fects, it would not be fair, in this exercise, to
compare the optimized results directly with the
“experimental” results. The questionis, first, how
well does finite-order (naive or optimized) per-
turbation theory approximate the “exact” all-orders
result; and, second, how large are the nonpertur-
bative effects? Both issues are interesting, but
the first is my primary concern. (I briefly dis-
cuss nonperturbative effects in the Appendix.)

In order to be brief, I shall assume that the
reader is familiar with Ref. 1, and Secs. II and
III of Ref. 3. All statements about the GN model
are takenfrom Ref. 3, even where not explicitly ref-
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erenced, and the qualifying phrase “to leading
order in 1/91” is to be understood throughout.*
Section II sets up the framework and explicitly
verifies the consistency of the formalism used in
Ref. 1. Section III discusses numerical examples,
which provide further support for the principle

of minimal sensitivity. The conclusions are sum-
marized in Sec. IV.

II. FORMALISM
A. The four-point function

As a prototype example of a physical quantity
in the GN model, I shall study the four-point func-
tion. Admittedly, this is a somewhat artificial
example, only indirectly related to experimental
quantities. However, I wish to avoid becoming
involved in a discussion of experimental physics
in 1+1 dimensions. Normally Green’s functions
would not be renormalization-group invariants,
but in the GN model the fermion field has no anom-
alous dimension, so the four-point function sat-
isfies a homogeneous RG equation,

o]
rm

which gives it (for the present purposes, at least)
the status of a physical quantity.
The four-point function has the form (see Fig. 1)

B(g)——)G -0, (1)

G(P,P,P;P,)®,, = - g*[D(s)6°,8°, — D)5, 6%, ],
(2)

where D(P?) is the o propagator and s= - (P, + P,)?,
u= - (P,+P,)?, with the convention:that all momen-
ta are incoming. I shall study two cases, cor-
responding to particles 1 and 2 being in antisym-
metric or symmetric combinations under the in-
ternal symmetry. Conveniently normalized and
expressed in terms of the couplant q,

a=g*n/m (=a/m), 3)
these are ‘
® (s u) =3ia[D(s)+DW)], (4)

| 2 |1 2
FIG. 1. The fermion four-point function to leading
order in 1/91. Particles 1, 2, 3, 4 carry internal-sym-
metry indicesa, b, c, d, respectively. (The minus

sign corresponds to the exchange of two identical fer-
mions).

&_(s,u)= [D(s) =D(w)]. 5)

2ia
In(u/s)

Radiative corrections to the four-point function
come only from the ¢ propagator D(P?) which it-
self is simply a sum of fermion bubbles (see Fig.
2). The geometric series is easily summed to
give exact (all-orders) results for &, and & _.
(In the next section we will compare the exact re-
sult with the perturbative approximations obtained
by keeping only the first few terms of the series.)
Explicitly, since the bare ¢ propagator is just
—i, one has

D(P?)= —i{l +[—im(P?)]+[~i(P*) P +---}  (6)
=—i/[1+i(P?)], (7)

where I1(P2) is the fermion bubble. In its unre-
normalized form '

2 d*k Tr[kE-P)]
L,(P*)=-g"t fzn)z HE-PF

z;f dy[ln(;(—l——i—l%ip—z) —2] , @)

where Ayy is an ultraviolet cutoff used to tempo-
rarily regulate the unrenormalized theory.

To renormalize the theory one performs a sub-
traction such that D(P?) satisfies a particular re-
normalization condition. A specification of a re-
normalization condition defines a renormalization
scheme (RS). The choice of RS is arbitrary, in
the sense that it does not affect the all-orders
results for physical quantities. The canonical
choice, hereafter called the GN scheme, is to re-
quire

D(P%)=-i at P?=— 2. (9)

Any other perturbative RS is equivalent to a re-
normalization condition of the general form

D(P?)=-i /¢t at P?=- )%, (10)
‘where ¢,
c=l+w,a+w,a®+---, (11)

is a (finite) ratio of renormalization constants.
Note that £ =1+0(a) is required so that D (P?)
=Dpae +O(a), Where Dy, =—i. [N.B. If the theory
is treated nonperturbatively, then other types of
renormalization conditions are possible, e.g.,

__@_..= —_—— 4 __O--
OO +

FIG. 2. The o propagator to leading order in 1/1.
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GN Eq. (4.22).°] Clearly each RS is characterized
by the set of numbersw,, w,, ws, ... (and by the
choice of 1) and it will shortly become clear how
this is equivalent to the RS parametrization used
in Ref. 1.

Imposing the renormalization condition (10),
the renormalized [1(P2?) is given by the subtraction

n(P?) =1,(P?) -10,(- p?) —i(t - 1), (12)
and so
D(P?)=-i/[¢ +aln(- P?/u?)]. (13)

Substituting into Eqgs. (4) and (5), one obtains the
exact results for ®,, &_:

exact _ -1

o el a7 6= ). "
exact _ 2a 1

& —ln(u/s)[c +3aln(s/u?) -(s-u)] ’

B. Different renormalization schemes

One can obtain the relation between the couplants
of different RS’s very easily. Since ¢, being a
ratio of renormalization constants, is momentum
independent, the relation

¢D(P?)=Dgn(P?), (15)

obviously true at P?=- 2, must be true at all
PZ2. This requires

agn =t 'a=all —wia+w,* ~wya®+---]. (16)

It is then simple to find the relation between the
B functions of different schemes:

(") E5-(e -at’), )

]
K3 I —agy =Bon (agy) =

where ¢'=3¢/8al,. (Note that, since . is the only
massive variable involved in the definition of ¢,
the w,’s cannot be y dependent, for dimensional
reasons.) In Ref. 3 it is shown that®

Bonlagy) = —agn” - (18)
Therefore,

Bla)=-a’/(t -at’)

=—a?/(1 — wya® - 2wsa® = 3wea® —--+). (19)

Thus in the notation of Ref. 1, where

Bla)=—ba* (1 +ca+c,a®+caa®++++), (20)
the g-function coefficients are given by

b=1, ¢=0, c,=wy, c3=2ws, (21)

Ca=3wa+wy?, e .

(An alternative way of obtaining these results is
to repeat the derivation of the g function in Sec.

III of Ref. 3 using the general RS.)

Points to note are (i) the coefficients » and ¢
are indeed RS invariant, (ii) the coefficients c,,
c3, . .. are related to w,, ws,... by a smooth
change of variables, and (iii) w, cancels out in
Eq. (19). The role of w, as a RS parameter is
taken over by T=In(u/A). As in Ref. 1, the scale
parameter A is defined by writing the integrated
B-function equation as

T=In(p/A)= La%—L*Tg%, (22)

where B(® (x) is the second-order perturbative ap-
proximation to the g function. In this case g (x)
=~ %, so that

-r=l€(a)5:;+j:dx[6(%)+%]- (23)

The A defined by Eq. (22) is scheme-dependent
(because B and ¢ are), but A’s in different RS’s
are related exactly by the Celmaster-Gonsalves’
relation, which involves only the one-loop rela-
tion between the two schemes. In particular, from
Eq. (16) one has

In(A/Agn)=w, . (24)

This equation, together with Eq. (21), shows ex-
plicitly how the labeling of RS’s by the parameters
(T, cs5 €35 - - . ) cOmes about.

The fact that physical quantities are independent
of RS is expressed by the RG equations

G (a
37 oT

6 _(8
ac; \oc¢;l,

rs(a)——)m 0 (=17,
(25)

+Bf(“)a%)‘“=° (j=2,3,...).

The first of these is the usual RG equation, i.e.,
Eq. (1) in different notation. The other equations
express the fact that ® is independent of all the
w;’s in Eq. (11), and applied to ®, or & _ they cor-
respond to the requirement

ase| =p@e-at). (26)

It is a straightforward mathematical exercise to
verify that Eq. (26) is satisfied, using the expres-
sion for the g, functions, Bjsaa/a c;, given in
Ref. 1:

B;(a)=-pB) j: [%J(;—)]-z-dx. (27)

One needs to use Egs. (19) and (20), and the fact
that, from Eq. (11),
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ag/ac,] = ; ak(awk/acj) Iu-
a kR

Because the exact results for ],, & _ in Eq. (14)
are exactly RS independent, one can evaluate them
using a special, convenient choice of RS, e.g., the
GN scheme (¢ =1), with u=~ Agy [for which ¢
~agn(n~ Agy)=~ =]. One thereby obtains

(Rexact . 1_ + 1
¥ In(s/Agy®) In(u/ReyN®)’

(28)

exact _ 4 1 1
R Y [m(s/AG,f) ‘m(u/ixcﬁ]'

J

Yer=— [w, +31n(us/ )], Y42 :""J,,12 - Wyt -l%lnz(s/u)

III. NUMERICAL EXAMPLES

A. Perturbative coefficients and invariants

This section is concerned with the comparison
of the all-orders results in Eq. (14), or equiv-
alently, Eq. (28), with low-order perturbative
approximations. Expanding Eq. (14) gives per-
turbation series for ],, & _:

(R,,=a(1 7,10 +y+.2az+. ), (29)
(R_=az(1 +7’_,1a+7_'2a2+' ° ) )

with the low-order coefficients given by

(30)

v 1= =[2w,+3In(us/p)], 7_ .= Fw,In(us/p®)+3w,® - 2w, + [In?(s/p?) +10°(u/ u?) +1n(s/p?)n(u/p?)].

This shows explicitly the RS dependence of these
coefficients. One can now form the RS invariants
p1, pp for both ®, and ® .. The invariants are con-
structed from the coefficients »,, 7,,... and the
RS parameters 7, c,, c3,... according to formula
(5.8) of Ref. 1:

P a=T =7, =In(p/A) +[w, + $1n(us/p)]
=4+In(us/R*) +w,
=7;’1n(us/.7\(;N4), (31)

where the last step uses the Celmaster-Gonsalves’
relation, Eq. (24). (It is convenient to adopt the
GN scheme as our “reference” scheme, in the
sense of Ref. 1.) Similarly

p_1=7—3r_=1In(us/Ag?) . (32)
For the third-order invariants one obtains

Ps 257, 2+ =7, == 1n%(s/u), (33)

P_2=7_s+2c,— 37, P =5 1n(s/u), (34)

using ¢, = w, from Eq. (21). As expected, all de-
pendence on the RS has canceled in Eqs. (31)-(34).

B. Second-order approximants

The second-order perturbative approximation
corresponds to (i) truncating the perturbation
series for &, _ at second order, and (ii) replacing
a by its second-order approximation ¢(® (defined
to be the solution to the g-function equation trun-
cated at second order). Thus,

R® = @@V (1 +7,a?), 35)

where N=1, 2 for R =®,, ®_, respectively, and
with

r
a®=1/7=1/In(u/R). (36)

(Notice that the situation is considerably simplified
because the second g-function coefficient ¢ is zero
in the GN model.) Since 7, is related to 7 by

7 =N(t —=p,) (37)

[see Eqs. (31) and (32)] ®‘® can be written as a
function of a? as

R® =(@®W(1 +N -Np;a®). (38)

This is like considering ®® as a function of re-
normalization point ;1 : it is just algebra to con-
vert from p—7-a®.

The optimum second-order result corresponds
to the stationary point of ®®, which from Eq. (38)
is given by

a®=1/p,, &Q=1/p,". (39)

One can also, of course, obtain the above results
by mechanically substituting into the formulas in
Ref. 1, which greatly simplify when ¢=0. In fact,
because ¢=0, the optimization condition corre-
sponds to 7, =0, i.e., the PMS criterion becomes
equivalent to requiring the next-to-leading order
correction term to vanish (the “fastest apparent
convergence” criterion).

From the expressions for p, ;, p_ , in Egs. (31)
and (32), one finds the optimized second-order
predictions for &, and & _ to be

(R(;‘:)opt= 1/[% 1n(us/l_\gu4)] ’ (40)
QP =1/[51n(us/Aey)] -
Note that I have chosen to write the predictions in

terms of Agy as the free parameter of the theory.
I could equally well express the results in terms
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of the A of some other scheme by using the Cel-
master-Gonsalves relation: the content of the
predictions would be unchanged, although the alge-
bra would be less compact.

Comparing Eq. (40) with the exact expressions
in Eq. (28), and noting that the “optimized” result
corresponds to maximizing &), one can see that
there are Rayleigh-Ritz—-type inequalities

(Riz) S(Rixact , (R(-Z) g(P‘e;xa\ct X (41)

[One may assume In(s/Agy?), In(u/Agy?) >0 be-
cause the use of finite-order perturbation theory
presupposes s,u > A%.] Therefore, in these ex-
amples, the PMS criterion does yield the optimum
result in the strictest sense of minimizing the
error |®™*® —-®(®»|. Note that for s =y the op-
timized result is actually exact. If the physical,
kinematic variables u, s are made progressively
more unequal, then perturbation theory becomes
steadily worse. This is expected: for u>s (> A%
perturbative coefficients become dominated by
large In(u/s) terms, making finite-order results
less trustworthy. At some point one would need
to switch to an approximation scheme which re-
summed these large logarithms.

As illustrations I show in Fig. 3 the numerical
results for a case in which the physical variables
u, s have values such that Vsu = (10A y)?, and
u/s=10. I have deliberately chosen a situation
rather unfavorable for perturbation theory: the
mean energy is not very high (so the effective
couplant is rather large; @=1/In10~0.43), and the
two scales u# and s have a sizable ratio. Neverthe-
less, the second-order result is surprisingly
good, when evaluated at the optimum point. One
can consider other examples with different values
of the kinematic variables u,s. In particular, it
is easy to see what happens if one varies u/s keep-

ing Vsu fixed: The second-order result remains
the same, but, as u/s departs from unity, the ap-
proximation increasingly underestimates the exact
result (see Fig. 3).

C. Third-order approximants

Third-order results depend on RS through the
choice of renormalization point y and also through
the fact that the third g-function coefficient ¢, is
different in different schemes. Again it is con-
venient to change variables ;- 17— a{®), where the
relation between 7 and ¢ (shorthand for ¢(® in this
subsection) is given by

5 1 f dx
= (3) - __éx .

=K% (q) Ste | Tred (42)
1
—+V¢, tan~'(/c,q) for ¢, >0
K (43)

_l 1 1/2 1+( Czi)llza

o 3(lez ) lnl—(|ca|)1 2, for ¢,<0.

One can examine (R(f,)_ as a function of RS (i.e.,
of a, ¢,) as follows. First fix the physical vari-
ables and calculate the invariants p,, p,. Choose
values for ¢ and ¢,, and evaluate 7 from the above
equations. Then evaluate »,, 7, from

71=N(T =py),
=Ney + 3NN +1)(1 = p,)?

[which follow from the definitions of p,, p,; see
Eq. (5.11) of Ref. 1]. One can then construct
& (a, ¢;) from

R® =g (1 +y,a +7,a%) . (45)

Repeating the procedure for various values of g,

(44)

T T T I 1 T T i - 1 I T T 1 T T 1 =
- a2 -
L R2 /50U = (104g) 1 R®  Jau=(10K)? .
f— (u/5=50) i) 7
EXACT (u/s=10) EXACT (u/s=10)
le— (u=s) d E(us=s) -
’ os a=a®(O\ ] [ 0.8 a=a%mn]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(a) (b)

FIG. 3. Second-order perturbative approximations to ®, and ®. as functions of RS. [See Eq. (38) with N= 1,2, re-
spectively.] The stationary point of these curves represents the optimum result. In the example shown here, the kine-
matic variables s,u are given by Vsu = (IOAGN)z, u/s=10: The exact result is then represented by the horizontal line.
(The approximant depends only on sz, while the exact result also varies slightly with u/s: Exact results for two other

cases, u=s and u/s =50, are also indicated.)
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¢5, one builds up a picture of the scheme depen-
dence of ®®.

The curves in Fig. 4 have been obtained in this
manner. The example shown is that used earlier,
i.e., Vsu= (10Agx)?, u/s=10. Figure 4(a) for the
N =1 case is directly comparable to Fig. 7 of Ref.
1. The figures show that the surface ®® (a, ;)
has a flat region around a saddle point and that
the flat region is wheve the function best approxi-
mates the exact vesult.

The optimized result corresponds to the value
of ®® at the stationary point, whose exact posi-
tion can be located by solving the optimization
equations [Eqgs. (5.13) and (5.14) of Ref. 1]. This
is fairly straightforward to do numerically —es-
pecially so because ¢=0. The results, expressed
in terms of the percentage error, are given in
the last column of Table I (which also quotes re-
sults for the case where u/s =100).

Table I presents a comparison of the optimized
results (PMS) with two other suggested ways of
dealing with the RS ambiguity. The “canonical”
scheme follows the spirit of “momentum subtrac-
tion”,”® and corresponds to the GN scheme with
the “intuitive” choice of p2=vsu. (Of course, in
QCD the identification of a “natural” scheme is
much less clear-cut.”'®) The FAC (fastest appar-
ent convergence) results correspond to absorbing
all the correction terms into the couplant?, i.e.,
adjusting the RS such that », =%, =0. Like the PMS
criterion, ' this recognizes that the RS can be ad-
justed according to the quantity being calculated.
It often gives somewhat similar results, a pro-
perty that is enhanced here because ¢=0. How-
ever, the FAC criterion can go rather disas-
trously wrong in other examples.! "

The cases considered in Table I are for &, and
® _ at an average energy vsu =(10Agn)?. When
u/s =1, all three methods (canonical, FAC, PMS)
give the same result, which is, in fact, exact.'®
For larger u/s (=10, 100) perturbation theory
becomes worse in each method, as expected.
Nevertheless, the PMS results are consistently
better —often substantially better—than the re-
sults of the other methods. In fact, in view of
the size of the effective couplant g~ 0.5, the PMS
criterion is doing a remarkable job of anticipating
the higher-order behavior of the series.

IV. CONCLUSIONS

Optimized perturbation theory is remarkably
successful in the GN model—in that low orders
give very accurate approximations to the all-
orders result.*® (I continue to leave aside the
separate question of nonperturbative effects; see
the Appendix.) There are two reasons for this
success. One is that perturbation theory is in-
trinsically well behaved in the GN model—so one
can potentially obtain very accurate results from
low orders. The second reason is that the PMS
criterion realizes this potential by making best
use of the information contained in the low-order
results. '

The point is this: “Optimization” is essentially
a precise formulation of the old idea? that the
renormalization group® can resum the ln(energy/
@) terms in a perturbation series. This idea is
especially powerful in the GN model, because all
the essential physics is contained in the lowest-
order, fermion-bubble diagram: Higher orders
are basically repetitions which ensure that the

T T T T T I T T T T T T 1 2 T T I
(3) c,=~1/2 (3) Cp=-1/2 C,=0
- R ~ 2 2, .50 4 F ; -
= 2 - > 2 c,=1/4
p T AElORe S s a1 [ vEstoK S ) I
- uwesl0 ST wssto — j /1 VR
EXACT ... P e EXACT o
....... 5 A
L 1t P 1
- 4 2 T .
- ., 1 F -
- cel™ 4} g
I~ T r T
[ 3 1 (3) i
0.5 a=a” H b 0.5 a=a .
i 1 o 1 1 1 1 1 1 1 1 1 1 1 1 1
(a) (b)

FIG. 4. Third-order perturbative approximations to ®, and ®. as functions of RS. (See Sec. IIIC with N=1,2, re-
spectively.) At fixed values of the physical variables Vsu= (101\:3«)2’ u/s=10] the third-order approximants are func-
tions of two RS parameters a,c,, while the exact result is a constant. The approximations are most nearly constant in
the vicinity of their saddle points, i.e., near a=0.45, c;=3% for ®, and near a=0.45, cy=7 for ®- (for the precise
values, see Table I). As expected by the PMS argument, this is where the approximations are most accurate.
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TABLE I. Percentage errors of third-order perturbative approximants in various schemes,
Canonical refers to use of the GN scheme with u®=+vsu. FAC corresponds to choosing the RS
such that 7, =7,=0. PMS refers to the optimized result, in the sense of Ref. 1. (In the latter
cases the values of the RS parameters a, c, are shown: the canonical scheme corresponds to

the fixed values a=0.434, cy=0.)

Vsu=(10A gy)? Canonical FAC PMS
REY w/s= 1 a =0.434 ¢;=0 Exact
=0.465 "a =0.464
- _ o a . B q
o u/s= 10 0.39% ¢y =0.331 0.30% 0y =0.497 0.22%
* a =0.634 a =0.605
u/s=100 -6.25% c,=1.325 9.55% c,=1.994 5.60%
u/s= 10 —0.39% @ =0.449 1369 @ =0449 ) 1169
/D) ¢,=0.166 ¢, =0.221
- =0.504 a =0.505
= —6.25% g .83% * .
u/s=100 6.25% 0y =0.663 0.83% ¢y =0.882 0.32%

full result is RS invariant. [For the s=u case
this is literally true, and so the second-order
result is actually exact, when optimized. For
s+ u there are In(s/u) terms in addition to In(Vsu/
w2) terms, so the optimized result is not perfect.]

The GN model is extreme in this respect, but
it is not a false guide. Although in more realistic
theories higher-order terms do contain new phys-
ics, they also consist largely of repetitions of
lower-order physics. With the wrong choice of
RS, these recurrences, which grow combinatoric-
ally, can easily dominate the numerical size of
high-order terms. Thanks to the renormalization
group, one can identify a RS in which these trivial
repetitions are most suppressed: They are not
needed if the approximant already satisfies the
RG-equations (i.e., is stationary with respect to
small variations in RS).

It is a striking feature.of perturbative approxi-
mations that they do have a stationary point, when
considered as functions of RS. The qualitative
behavior seen in Figs. 3 and 4 is common to all
massless, renormalizable field theories.! The
PMS argument says that the value of the approxi-
mant at its stationary point is what the (otherwise
ambiguous) approximate result actually means.
Just Zow accurate the approximate result will be
is plainly a model-dependent question. The exam-
ples discussed here say nothing about the accuracy
of perturbative approximations in QCD: They do
tell us something about what perturbative approxi-
mations mean—and they strongly support the PMS
interpretation.
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APPENDIX: NONPERTURBATIVE EFFECTS

The “exact” results quoted in Eq. (28) have singu-
larities at u = Agy® and s=Agy®, and therefore
cannot be physical. In fact, as mentioned in the
Introduction, there are nonperturbative effects at
low energies which smooth out the singularities.
Dynamical mass generation modifies the results
in Eq. (28), replacing In(s/A ;\?) by B(s, M*?), and
ln(u/]\GNz) by B(u) Mz)s where?

B(s, M2)=<

s +4M2\ Y2
)

<(s +4M2)1/2+\E)

N +am7z 75 /"

(A1)

The dynamically generated fermion mass M is
not predicted absolutely by the theory, but its re-
lation to A, the free parameter of the theory, is
calculable. In fact, since B(s, M?)- In(s/M?) as
s— o, one finds that M=Agy. (N.B. In terms of
the couplant, M= pexp[-1/agy(u)], so M is in-
trinsically nonperturbative.®) The function B(s,M?)
is essentially the fermion bubble with a massive
fermion. It is monotonic, beginning at B(0, M?)=2
and tending to its asymptotic value In(s/M?) from
above, with 0(M?/s) corrections.

For large values of s, therefore, the nonper-
turbative effects are suppressed by a power of
M?/s. Formally, they are negligible compared
to the error involved in truncating the perturba-
tion series O((1/lns/M?)*°"). However, in prac-
tice the situation may be the reverse. Perturba-
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tion theory, when optimized, converges so fast in
the GN model that I chose rather low energies
for illustrative purposes, in order to make the
truncation error clearly visible. However, at
those energies the nonperturbative effects are

still very important, so the examples are physical-

ly unrealistic, although this does not matter for
my purposes. For larger s the nonperturbative
effects become smaller much faster than the per-
‘turbative truncation error.

It is interesting to note that the nonperturbative
effects are simply accounted for by doing pertur-
bation theory as if the Lagrangian had contained
a fermion mass term. Possibly by using con-

stituent quark masses (presuming the constituent-
current difference to be due to nonperturbative
effects), and perhaps a phenomenological gluon
mass, one can account for some of the nonper-
turbative effects in QCD.

Also note that, even though ®, and ® _ are not
analytic in the couplant, they have convergent
perturbation series. The series does not, how-
ever, converge to quite the right answer —it
misses the O(e~%/%) nonperturbative terms. Con-
trary to popular myth, the Dyson argument!® does
not prove the divergence of QED or QCD pertur-
bation series: it does prove that perturbation
theory is not the whole story.
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