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Some aspects of the linear system for self-dual Yang-Mills fields are discussed.

I. INTRODUCTION
E „= . F,'„=3A„—3„A +LA„,A„]. (2.2)

II. FORMULATION IN COMPLEX
FOUR-DIMENSIONAL EUCLIDEAN SPACE

We use the matrix notation for gauge potentials,
etc. , defined as

8& Aa
2i

(2. 1)

where T' are the generators of the Lie algebra.
For SU(2), T'=a are the usual Pauli matrices.
g is the coupling constant. Then,

In the past decade rich experience has been ac-
cumulated about many two-dimensional systems,
which are totally integrable. These totally inte-
grable systems have the following common char-
acteristics: (1) Bianchi-Ba. cklund transformations,
(2) conservation laws, local and nonlocal, and (3)
the corresponding linear system (or the inverse-
scattering formulation). For some of these sys-
tems, the S matrix has already been constructed
as a consequence of those conservation laws. '

Recently, the self-dual Yang-Mills equation has
been shown to have similar structures. Backlund
transformations (BT's) with parameters, ' nonlocal
conservation law, ' and the corresponding linear
system. ' Therefore, the self-dual Yang-Mills
equation serves as a beautiful example of extending
totally integrable systems into four dimensions.

In this paper we shall discuss one way of linear-
izing the self-dual. Yang-Mills equations using the
infinite nonlocal currents, the properties of such
linear systems, and the solutions to such linear
equations in the case of n instantons with (5n+4)
parameters. The connection with the linear sys-
tem of Belavin and Zakharov' and the Atiyah-
Ward' construction for the self-dual Yang-Mills
equation are discussed. This connection provides
a geometrical interpretation of the infinite number
of nonlocal conservation laws.

F =-'e, EQV 2 gVpty pter
(2.3)

are then valid also in complex space, in a region
containing zeal space where the g, are real. Now
consider four new complex variables defined by

v 2 y = x~ + 1 x2, &2y = x~ —xx2 ~

&2z =x, -zx„v2m=x, +fr, .
(2.4)

It is simple to check that the self-duality equations
(2.3) reduce to

E =E =0
yz y&

E +E =0.
(2. 5a)

(2.5b)

The equation (2.5a) implies that the potentials A,
A, (A, ,A, ) are pure gauges for fixed y, z (y, z),
i.e., we can find two N&&N complex matrices D and
D such that

A =D'D y)

A;=D 'D;,
A, =D-'D

„

A;=D 'D -,
(2 . 5)

where D —= 3,D, etc. The matrix D (D) is the
phase factor in the complex two-dimensional space
of y and z (y and z), and can be written as a path-
ordered exponential. The path of integration must
lie in the plane y, z = constants (y, z = constants)
and is independent of the path chosen in the plane.
Since fixing y, z for real g also fixes y and z, we
must use complex space. Since trA„=O, we have

detD =detD = 1. (2. 7)

For SU(N) gauge theory the gauge potentials A, are
real, i.e. , the matrix A is traceless and anti-
Hermitian.

Following Yang' we now consider an analytic
continuation of A into t.ompl eg space where x„
x„x„andx4 are complex. The self-duality equa-
tions
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We now define' a matrix J by

J=—DD ' (2. 6)

III. DERIVATION OF INFINITE NUMBER
OF NONLOCAL CONSERVATION LAWS

AND THE LINEAR SYSTEM

and

B -=J 'J B =-J ~Jy, y& z, g (2.9a)

(2.9b)a B +a,B,=O.

Note that gauge transformations are given by

Clearly det J=1. The remaining self-duality
equation (2.5b) can be written as

(z-'z „)„+(z'z, ),=0.
In summary, in this formalism the self-dual

equations (2.3) are replaced by the following two
sets of matrix equations:

Notice that "gauge potentials" B,B, defined by
Eq. (2.9a) are curvatureless and the self-dual
equation (2.9b) is a continuitylike equation. They
are very similar to the chiral equations. ' We thus
can use a method similar to Ref. 10 to construct
infinite nonlocal currents. Consider B and B of
Eq. (2.9b) to be the first conserved currents:

(s. i)
X'" exists because of Eq. (2.9b). Now we suppose
that the nth currents exist, i.e. ,

(3.2)

and

D-DG, D-DG

-G'A G+G'8 G,

(2. iOa)

(2. lob)

Then the (n+ l)th currents are
«(n+1) + (n) v& (n+1) + (n)

=+yX ~
)' z =+gX

(3.3)

(s.4)

where the matrix G satisfies detG =1. Moreover
the matrices D and D are 'determined only up to
the transformation

D —H(y, x)D,

8-m(y, z)D,

(2. 11a)

(2. 11b)

where M and M are% x N matrices depending on the
variables indicated and with unit determinant. 'The

transformation (2.11) has no effect on the gauge
potentials. Clearly the matrix J is gauge invariant
and transforms as

where ~ —= 9 ++„,u =g, ~.
Now we show that the V """s are conserved:

9 V
(n+i) + ~ V (n+z)

g g Z

= (a-u„+ap), )X'"' from Eq. (3.4)

=(o,a, +S,a;)X
" due to Eq. (2. 9b)

=-S„V," +S,V,
"

using Eq. (3.3)

=(-u,&+SP),)X'"'" using Eq. (3.4)

= 0 due to Eq. (2.9a) .

J-MJM (2. 12)
Now we can linearize the self-dual Yang-Mills

equation (2.9b), using the nonlocal currents, in
the following way. From Eqs. (3.3) and (3.4),

D = (Dt) ' and GGt =I, (2. is)

where the symbol = is used for equations valid
only on real space. However, this is a sufficient
condition and not a necessary one. Since we are
using complex space, it is often natural and use-
ful' to allow complex, i.e., SL(N, C), gauge trans-
formations even in real space. A necessary and
sufficient condition that we can choose a gauge so
that the potentials are real is' the existence of a
matrix M(y, z) depending only on y and z and with
a unit determinant such that

under (2. 11).
We conclude this section with a brief discussion

of the reality conditions. For an SU(N) gauge
theory the matrices A„must be anti-Hermitian for
real x„.This is usually achieved by requiring

~;x =~,x
—~;X =&&ZX .

(3.6d. )

(s. 6b)

To show that these equations are indeed a linear
system for the self-dual Yang-Mills equation, we
need to show that the integrability of X from Eqs.
(3.6a) and (3.6b) gives Eqs. (2.9a) and (2.9b).
Equations (3.6a) and (3.6b) can be rewritten as

(3.5a)

(s.5b)

Multiplying Eqs. (3.5a) and (3.5b) by x" (x being
a complex paramter), summing over n, and de-
fining

x
-=g x"x'"'

n=0

we obtain

JM ='positive-definite Hermitian matrix.
(2. i4)

(a; —p a, )x = pB,x,
-(a,-+ xa,)x =».x .

(3.7a)

(s.vb)
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x.=x,A(x~+y, &y-~, &), (3.9)

where A is an arbitrary matrix function of the var-
iables ),z +y, py —z, and y. Taking the trace of
Eqs. (3.7) and using detJ=1 (equivalently TrB„=O,
etc.) we see that detX is a function of Xz+y, Xy
—z, and p only. Thus we can always normalize

X to satisfy

Differentiating Eq. (3'. Va) by y, and Eq. (3.7b) by
z, we obtain, after some simple manipulations,

x(u,u, -u~„)x+(Sp, + 8&,)x =0. (3.8)

For Eq. (3.8) to be true for all x, we need ~,~
-m~=0, 8„B+8zB,=O, which are precisely
Eqs. (2.9a) and (2.9b). Therefore, Eqs. (S.Va)

and (3.7b) are the linearized equations for Eqs.
(2.9a), (2.9b), (3.7a), and (3.7b).

We shall now discuss some properties of the so-
lutions of the linear equations (3.7). Clearly x
is invariant under gauge transformations. The
matrix X is not determined uniquely by Eqs. (3.7).
To see this nonuniqueness, let X, and X2 be two
solutions of Eq. (3.7). Then

8;(x, 'x, ) = &x, '(~p, )x, 'x. —xx, '&.x.

xSE(X1 X2)

so that

(&„-+x&.)(x, 'x.) = o,
and similarly

(8g —x8„-)(xi'x2) =0 ~

Theref o,re

(3 Va)'- (&.-»;)X'=XX'&,,& ',
where Jt =J is used, or

[(3.—x &„-)x']J—xx'J', =0,
or

(8, -%8,)(x'z) —(x'z)z 'z.=o.
Similarly,

(3.12a)

x'(-I/X)&=&(xz+ y, xy —~, x)x '(x) . (3.13)

IV. SOLUTION TO THE LINEAR SYSTEM
FOR THE n INSTANTONr WITH (Pn.& 4)

PARAMETERS AND SOLUTIAN4
IN THEA( ANSATZ OF THER-GAUGE

FORMULATION

The 8 gauge was discussed in detail in Refs. 7
and 8. For completeness we briefly discuss it
again. In the R gauge for SU(2) gauge theory, the
matrices D and D are chosen to be lower and up-
per triangular, respectively,

and

1 1 0 1 ($ -p'
v

'
v

p 4& .0 1 J
(4. 1)

(3.Vb)'--(-X8; —8„)(x'~)- (x '~)~ '~; =0.
(3.12b)

Comparing Eq. (3.11a) with Eq. (3.10b), and Eq.
(3.11b) with Eq. (3.10a), we see that X '(X) and
X~(-I/X) J satisfy the same equations. From Eq.
(3.9), we have

detx =1 .
Note that Eq. (3.10) is consistent with the require-
ment X(X =0) =I, X '=I, which is implicit in our
definition of X.

Another property is that X '(&) and Xt(-1/Xp
satisfy the same set of the equations. We can see this
by the following arrangements. For g satisfying
Eqs. (3.7a) and (3.7b), x

' satisfy the following
corresponding equations:

X '(3.»)X '-
X 'l. (8;-x&„)XlX'=xX '~ '~„

or

1 1J=-DD

~p 0 +pp~

The self-dual equations (2.9b) become

(8 8-+Bg8g)1 Q+ '" '"
2

' "=0,

and

(4.2)

(4.Sa)

(4.3b)

-(8;—x8„)X-'=xX'J '~„.
Similarly,

(3.11a)

or

x '(3 Vb)x '-x '((~;+x8.)xlx '=&x '~ '~.

(8„-+»,)x ' = xx '& '~' (3.11b)

Now we take Hermitian conjugates of Eqs. (3.7a)
and (3.Vb):

P,„-=4,. p,.-= -0,„, (4.4)

which automatically satisfies two of the self-dual
equations (4.3b), and the third self-dual equation
(4.Sa) becomes

In the Atiyah-Ward A, Ansatz, which also coin-
cides with the Corrigan- Fairlie- 't Hooft-Wilczek
Ansatz, "
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1—ptP =0. (4.5)
8,X =8„(»'X)

=DD (8 D)D y +D 8„(D y), (5.2)
Now for Eqs. (2.9a), (3.Va), and (3.7b) we put J
in the A., Ansatz, i.e. ,

z-.z (p/~), - (p'/~). -+p„
(I/-O), i -(p/0», .-

and similarly for J 'J, . It turned out that we
could solve for y,

r

X =I+—1 Xp Xp8+(~-p)Q (4. 6)

where 0 has the expansion 8=+,y"8 " and satis-
fies

(4. Va)(8- p);=~&„,
(~- p) „-=-~~..

The (5n+4)-paramter instanton solution is the
multi-instanton solution for Eq. (4.5), i.e.,

(4.Vb)

(4.8a)/=1+/ c,/A, ',
(o) (o) (o)where R&

——y&y& + z&z&, y&
=—y —y&, z& =—z —z&, y&

and z, are complex numbers, and (.", are real
numbers.

First we can solve the A, Ansatz [Eq. (4.4)],

8;X =8;(DD 'X)

=DE '(8.-D)D-'~+38.-(D-'q)

=DA;(V-'g) +Da;(D-'X) . (5.3)

A;(D '~)+8;(D '~) -~3„(D'y) =~A, (D 'X). (5.4)

Now, defining

0=-D 'X

Eq. (5.4) becomes

(5.6a)hA, -A;)0 =(-x&, + &;)q.

For the other linear equation (3.7b), we obtain

(xA, +A, ) rP = —(y 3, + 8„)~P . (5.6b)

These are the linear equations of Belavin and
Zakharov. '

Note that g is not gauge invariant, i.e., rp
—C; 'g

under the gauge transformation (2.10). As with y,
Eqs. (3.9) and (3.12), we can derive the corres
ponding relations to g:

Substituting Eq. (5.1), (5.2), and (5.3) into the
linear equation (3.Va,), (8; —y8,)y =yJ 'J X, we ob-
tain

g, '$, =&hz+y, ~y-z, x), (5.7)
(4.8b)

(4.8c)

Substituting p of Eq. (4. 8c) into Eqs. (4.5a) and

(4.5b), we obtain

where g, and g, are both solutions to Eqs. (5.6a)
and (5.6b), and B is an arbitrary matrix function
of the variables indicated. After operations 'simi-
lar to Eqs. (3.10a), (3.10b), (3.11a), and (3.11b),
we find that P '(y) and P(-1/ X) satisfy the same
set of equations. Therefore, from Eq. (5.7), we
obtain

f xRf~yi
(4.9) g'(-I/X)gh) =&hz+y, ~y —z, ~) . (5.8)

Note that for these solutions dety =1, Xh =0) =I.
It is also interesting to note that the y has poles
in y with locations depending upon coordinates.
The infinite number of conserved quantities X

" is
precisely the coefficient of z" in the power-series
expansion of X(y).

V. CONNECTION VfITH THE BELAVIN-
ZAKHAROV LINEAR SYSTEM

Now we want to express Eqs. (3.Va) and (3.Vb)

in terms of the potentials A„,u =y, y, z, z, which
are expressed in D, D matrices in Eq. (2.6).
From Eq. (2.8) J=DD ', so

Z-'Z =D(D-'D 8 'D )D-'--
~ 9

In the A, Ansatz, from Eqs. (4. 1) and (4.6) for
D and y, respectively, we can calculate

1 1 8
(5.9)0=D 'X=

0'(-I/7. )y h) =
0

-~' e+-e(-IiD-~e(~)

For the n-instanton solution, Q and 8 are given by
Eqs. (4.8) and (4.9), respectively. So P, as a
function of y, has poles depending on coordinates
and it is well behaved at g=0.

In the A, Ansatz, using Eq. (5.9), Eq. (5.8) be-
comes

=D(A„—D 'D )D ' (5. 1)

(y+Xz)(z -Xy)
i

(5.10)
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for the one-instanton case of Eqs. (4.8) and (4.9).
Now we compare our g of Eqs. (4. 8) and (5.9),

with the one-instanton P given in Ref. 5 by Belavin
and Zakharov:

BZ 1
41(x~ (2R2 + l)l/2

„(R'+l) +~y—.+yz/~

—Xz +y /1

Xy —z /&

(R'+ l) —xyz —yz/x.
'

(5.ll)

It has only fixed poles in p. It diverges both at
j =0 and ~, and thus is unsuitable for expansion
either in power series of p" or g-" to obtain the
infinite conservation -laws. Note also that

tp'(~) j ' = Ip'(-~/x)1', (5. l2)

which corresponds to a special choice of 8=1 in

Eq. (5.7).

VI. GEOMETRIC COIVSTRUCTION
OF THE LINEAR SYSTEM

+( y- gZ ) & g+ XV (6. l)

Since Eq. (6.1) holds for all values of Z, the &'

term gives f =0, the y' term gives fi; 0, and-
the &' term gives f -+f„=0.From Eq-. (6.1),
which can be interpreted as curvatureless in the
complex variables y —pz and z+ py, the potentials
must be the following form:

or

(y Xi ( ~ (y-L-i)~

A~,„)——p6(

(6.2a)

(6.2b)

It has been shown by Ward' that self-dual Yang-
Mills fields in (compactified) Euclidean space can
be reformulated in terms of certain gauge fields
defined on the complex projective space CP.'
Mathematically this means that self-dual or anti-
self-dual gauge fields correspond in a one-to-one
fashion to certain vector bundles over CP', which
has been studied by mathematicians. In this sec-
tion we shall describe some results' "of this ap-
proach and its relation to our earlier discussion.

In Sec. II, the seU-dual Yang-Mills equations are
are viewed as two curvatureless conditions f„=0
and f-, =0 on th-e yz and yZ planes, plus a third
constraint equation f,„+f„-=O,see Eqs. (2.5a) and

(2.5b). Actually there are an infinite number of
such planes. All those pl.anes passing through a
given point can be characterized by a free com-
plex parameter y such that the three equations are
encompassed in one equation"

(6.8)
—8

Note that detx=x x, . I et us consider two spinors
QJ and 7T

tt
Qand p= (6.4)

I

cd 2 r2

Then it can be shown that the equation

(6.5)

two linear equations for x~, describe the so-
called P plane, i.e. , if (, and q„areonly two vec-
tors in this plane then $, $ =q q„=0and the ten-
sor $„q„—(„q is self-dual. Clearly ((d, v) and

(c+, cv) for any nonzero complex number. c de-
scribes the same P plane. Thus the space of P

planes is the complex projective space CP'. Each
P plane contains a unique gaea/ point given by

I

CO + 77

P
(6.6)

where Tr" -=(v ) =(e„Bv), e» ——e» ——0, and z»—
-e» ——1. The ~ planes through a given point x are
specified by (v„v,), and since (((, , w, ) and (c((, , cw, )
describe the same P plane, the space is just CP'
or the Biem8.nn sphere. I et us parametrize the
P planes by y = -v, /v, . Ward used this corres-
pondence between CP' and R to show the equiva-
lence between self-dual gauge fields in R~ (more
precisely on S') and certa. in "analytic vector
bundles" over CP'. The CP gauge potentials
(or the connection) are obtained from the R' poten-
tials by a "change of coordinates" (or pullback)
via Eq. (6.6). Then the self-duality of the R'
gauge fields can be shown to be equivalent to the
vanishing of certain components of the corres-
ponding CP' gauge fields. The vector bundle over
CP' is characterized by transition function cor-
responding to suitable coordinate patches on CP .
Note the R4 gauge field is self-dual. if and only if
the components of the field tensor vanishes along

(X&„-&;)() = -(X6, —~,-)0,

(((A, +A„)g = —(p, + 6,-)g .

Since the gauge potential. s are traceless, detqt =1.
These are precisely the linearized equations of
Belavin and Zakharov. ' This observation is also
the basis of Ward's formulation.

It is convenient ot represent the points in the
(complex) Euclidean space by a 2 x 2 matrix

x = x4 + 'Eo' ' x'

x4+ ix3 x2+ ix,

wx2 + 2 xg x4. zx3
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where g and g, are given by (6.7). The second
inequality in Eqs. (6.8a) and (6.8b) follows from
an argument similar to that used for Eq. (8.9).
version of Liouville's theorem can be used to show
that the right-hand sides of Eqs. (6.8a) and (6.8b)
are linear in y, which can therefore be used to
define the potentials as in (6.8a) and (6.8b). The
self-dual. ity then-follows from the consistency of
these equations. The factorization (6.7) of g is
not unique. However, using the Liouville theorem
it can be shown that this ambiguity is precisely
the gauge transformation of the potentials defined
by (6.8). Finally, two transition matrices g and

g'=egg~, where the matrices g~ and g~ are
functions of yz+y, yy —z, and y, and analytic
around Z =~(w, =0}and & =0(w, =0), respectively,
are "equivalent, " i.e., they give gauge equiva-
lent potentials.

We can now relate the Atiyah Ward approach to
the discussion of previous sections. Let us choose
w=(1, w, /w, ) =—(1, -y) for y O~ or w, WO, then the P
planes are given by

dern =0,

l.e. y

I dz dy 1' "dz —~dy
'
=0 ~

-dz gpss ~dg + gdz
(6.9)

Note that for w, «0, we need to take w = (w, /w„1)

the J8 planes [this statement is just Eq. (6.1)].
The CP3 "transition function" is then given in
terms of the "integrable phase factor in the
tl planes. " This transition function g(&u, w)

=g(~„&„w„w,}is a 2x 2 matrix [for SU(2) theory]
for which (i}g is a homogeneous function of de-
gree zero of ~„~„p„andg„analytic in a suit-
able region; (ii) detg=1; (iii) the function g(«, w),
which by homogeniety is a function of Zz +y, zy
—z, and Z(=-w, /w, ) only, is analytic in a suitable
annular region in y; (iv) g can be "split"

g(«, w)=q. (z, X) 'y, (z, X),

where $ and g, are analytic in suitable regions
containing p =~ and 0, respectively. In addition
g has some "reality properties" corresponding to

aA„=real. On the other hand given a matrix g with
the above properties the R4 gauge potentials are
given by

yA„A,=-q Q-8„—8;)g '= y, (ya —8;)y, ',
(6.8a)

= (-1/y, 1). Thus the planes y, z = const and y, z
= const are the P planes corresponding to y =0
and ~, respectively. From this observation and
Eq. (2.8) we see that, apart from the matrices M
and M [see Eq. (2.11)]D and D can be identified
with g (y =~) and g, (z =0), respectively. Fur-
thermore, if we ignore the analyticity (in p) prop-
erties of g, and t/j, then the Eqs. (6.8) are just the
linear equations of Belavin and Zakharov. ' The
solutions of Belavin and Zakharov [see Eq. (5.11)]
and also those of Arinshtein" do not have the analy-
ticity properties of either g, or g . However the
solution given in Eq. (5.9) has the required analy-
ticity property of g, and then gt(-1/Z) ' has the
analyticity property of. P, and the matrix'(-1/2)
x P(X} given by Eq. (5.10) is equivalent to the
transition matrix of the A, Ansatz of Atiyah and
Ward. '

VII. DISCUSSION

A great deal of results, both classical and quan-

tum, have been obtained in the study of two-dimen-
sional exactly integrable systems" using inverse
scattering methods. As we have seen, the self-
dual Yang-Mills field possesses many of these
features. The connection with the linear system
of Belavin and Zakharov' and the Atiyah-Ward'
construction for the self-dual. Yang-Mills equation
are discussed. This connection provides a geo-
metrical interpretation of the infinite number of
nonlocal conservation laws.

One of the goals of the classical inverse-scat-
tering method is the construction of solutions of
the equation of motion. For the self-dual [SU(2)]
Yang-Mills fields, Atiyah and Ward' proposed a
series of Ansatze, a specific form of the transi-
tion matrix, for the construction of instantons.
Though the Atiyah-Ward Ans~tze has not been very
useful for the construction of instantons, these
Ansatze have recently been used to construct mon-
opole solutions. General instantons solutions for
arbitrary gauge groups have been constructed by
Atiyah et al. ,

"using a somewhat different method.
Another result, which is important in the study of
the quantum theory of the inverse scattering tech-
nique, is the construction of action-angle varia-
bles. However, it remains to be seen whether any
analogous result can also be obtained for the self-
dual gauge fields.
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