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The Lorentz-invariance conditions for Newtonian equations of motion for three particles are assumed to be
satisfied by sums of two-particle forces that satisfy the Lorentz-invariance conditions for two particles. Then it is

shown that a particle can be accelerated only by forces from particles that do not accelerate, provided every particle
has positive mass. There are, exceptional cases when one or more of the particles has zero mass. Relativistic
Newtonian mechanics for zero-mass particles is formuiated two different ways. When the equations of motion

specify the accelerations as functions of the positions and velocities, the result is the same as for positive-mass

particles. When the time derivatives of the momenta are specified as functions of the positions and momenta, the
result is that a particle can be accelerated only by forces from particles that do not accelerate continuously,

However, there are forces that change the magnitude of the momentum without changing the velocity, for a particle

with zero mass. They produce discontinuous acceleration when the velocity abruptly changes direction as the

momentum reaches zero and changes sign. For a particle accelerated by a force from a massless particle that

accelerates in this discontinuous way, there are two-particle forces with acceleration of both particles.

INTRODUCTION

The conditions for Newtonian equations of motion
to be Lorentz invariant are nonlinear equations for
the functions that give the accelerations in terms
of the positions and velocities at one time. ' ' As
soon as these conditions were formulated, '~' it
was realized that they require many-particle
forces for systems of more than two particles be-
cause the nonlinearity makes it impossible to
use sums of two-particle forces. ' However, a
proof was not published.

Here we state this property precisely and give
a proof. The point is to see if there are any ex-
ceptions, any two-particle forces that escape this
implication of the nonlinearity, so that forces in
systems of more than two particles can be sums
of these two-particle forces. The obvious trivial
exception is when a particle is accelerated by
forces from particles that do not accelerate; then
there are no nonlinear terms. Even exceptions of
only a technical nature, which are not particul, arly
meaningful physically, might be interesting be-
cause they would indicate what could and could not
be proved in more sophisticated formulations. In
Hamiltonian mechanics with constraints it was
shown recently that for a system of more than
two particles there are no forces that are sums
of two-. particle forces, and techniques were de-
veloped to calculate the many-particle forces. ' '

We consider two-particle forces, which satisfy
the Lorentz-invariance conditions for systems of
two particles, and we assume that sums of these
two-particle forces satisfy the Lorentz-invariance
conditions for systems of three particles. We show
that then a particle can be accelerated only by

forces from particles that do not accelerate, pro-
vided every particle has positive mass. There are
exceptional cases when one or more of the parti-
cles has zero mass.

For particles with zero mass we formulate rela-
tivistic Newtonian mechanics two different ways.
One way is to let the equations of motion specify
the accelerations as functions of the positions
and velocities. Then the result is the same as for
particles with positive mass. The other, way is to
let the equations of motion specify the time deriva-
tives of the momenta as functions of the positions
and momenta. Then the result is that a particle
can be accelerated only by forces from particles
that do not accelerate continuously. However, the
forces that cause no acceleration are not necessar-
ily zero. They can change the magnitude of the
momentum without changing the velocity, for a
particle with zero mass, because the velocity is
a vector of fixed length c, in the direction of the
momentum, and the magnitude of the momentum
is an additional variable independent of the velo-
city. If the momentum reaches zero and changes
sign, the velocity abruptly reverses direction, so
tht. re is discontinuous acceleration. Thus, when

a particle is accelerated by a force from a mass-
less particle that accelerates in this discontinuous
way, we find our assumptions allow two-particle
forces with acceleration of both particles. These
discontinuous accelerations can produce bound

states of two massless particles.

MASSIVE PARTICLES

Consider a classical-mechanical system of N
particles described by positions x", velocities
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v" =dx"/df, and Newtonian equations of motion that
give the accelerations as functions of the positions
and velocities at one time,

dv"/dt =f'(x~, x', . . . , x",v', v', . . . , v"), (1)

for n =1,2, . . . , ¹ We make these equations in-
variant for time translations by not letting f" de-

pend explicitly on time, for space translations by

letting f" depend on the positions only through the
relative positions x"-x, and for rotations by

letting f" be a vector function (that rotates as a
vector when x', . . . , x",v', . . . , v~ rotate). The
Currie-Hill conditions for the equations of motion
to be Lorentz invariant' are

8v~ +v 9 " 8x~ — v~„v~ 8 ff 8v + 8 ff 8vp+2v~p ~ +v~ ~p = 0
0=1 l=l ~=l r=l

(2)

for j,4=1, 2, 3 and n=1, 2, . . . , N. We use units
such that c =1.

Suppose the force on each particle is a sum of
Poincard-covariant two-particle forces, so that

N

f"= f""x"-x", v", v",

where f~ and f""are rotational-vector functions
that satisfy the Lorentz-invariance conditions (2}
for a system of two particles. We shall show that
the Lorentz-invariance conditions (2) for three-
particle systems imply that for each n and r
either f""or f" is zero; accelerations are caused
only by forces from particles that do not acceler-
ate.

By comparing the Lorentz-invariance conditions
for two-particle and three-particle systems we
find that

f rs Sfnr/Svr —P

for x t n, s cx, and s ee. The only common vari-
able on which both f"', and Sf"rjsvr, depend is v",
so the only direction that can be a property of both
these factors is the direction of v". For the dot
product (4) to be zero, the only possibilities are
that one factor is zero or that one factor is col-
linear with v" and the other factor is perpendicular
to v". Thus we see that either f"' is zero, or

3
Fs vr —0 (5)

or

f rs ccvr

or

sf""/sv" =P

for I =1,2, 8 in (6) and (7), with the proportionality
factor in (6) independent of I. If f"' is zero, then
f""must be zero to allover. for three-particle sys-

tems in which particles n and s cause identical
forces. Altogether this means f" is zero. We shall
show that either (5) or (6) implies f"' is zero.
Therefore, f" is zero in every case except the one
described by (7). We shall show that ('l) implies
f"" is zero. Thus in every case either f""or f" is
zero.

From (5} we get

f rs + (Vr)2fra —p (8)

MASSLESS PARTICLES DESCRIBED BY VELOCITIES

Almost everything done in the last section holds
equally well if one or more of the particles has

, zero mass and speed c. We still may consider

by changing n to z in the Lorentz-invariance con-
ditions for two particles, multiplying by v &, and

summing over j =1,2, 3. This implies f"' is zero,
if we assume the particle speeds

~

v"
~

are less
than g, which is 1 in the units we are using.

From (6), writing

mrs —+ vr
rS

and letting e" be a vector perpendicular to v" (for
example v" x v'), we get

a„,e"~
= 0

by changin. g n to x in the Lorentz-invariance con-
ditions for two particles, multiplying bg e &, and

summing over j =1,2, 3. This implies f"' is zero.
From (7) we see that

Sgnr /S&r —p

for / =1,2, 3 because in the Lorentz-invariance
conditions for two particles v" occurs only in

vr 8 ~~ 8xr
E-"1

This means f""is a function of only v". Then, to
be a rotational vector, f""must be proportional
to v", so f""satisfies (6) with rs changed to m,
which implies f~ is zero, as we have already seen.
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Newtonian equations of motion of the form (1).
If particle n has speed c, the variables v" are
restricted to

we see that
3

Vt Sfnt /SXt 0l g l (19)

(v")' =1 (12)

(since c is 1 in the units we are using}, and the
function f" must satisfy

v"' f"—0 (13)

to keep (12) from changing in time. The Lorentz-
invariance conditions (2) are the same, because
the restrictions (12) and (13) are consistent with
Lorentz invariance.

Almost all the results of the last section are
still valid because they are consequences of the
Lorentz-invariance conditions (2). The only ex-
ception is that when (v"}' is 1 we learn nothing
from Eq. (8), so we no longer have a proof that
(5} implies f"' is zero. However, to make the dot
product (4) zero we need not only (5) but also

8Ftr/svr &z.&r
2

(14)

for l = 1, 2, 3 with a proportionality factor indepen-
dendent of E. For the case we need to consider
we also have

(v"}'= 1,
vr. fr 0

(15)

(16)

We shall show that all this implies f"" is zero.
Thus it is still true that either f""or f" is zero in
every case.

After using (14)-(16) we have

(&nn &t'n) P vr Qf nr /Q&t' vnn P vn Sfnr /Svn

+ Sf r/nSvn + 2v ~ n+nvtrr fnr 0 (17)

remaining as the Lorentz-invariance condition
(2) for f"" in the system of two particles n and x.
Differentiating this with respect to v"; and using
(14}we see that

sf r/sn&r CC vr (18)

for i =1,2, 3 with a proportionality factor indepen-
dent of i. Then, differentiating (17) with respect
to z";, multiplying'by the ith component of a vector
perpendicular to v", and summing over i =1,2, 3,

Therefore, Bf""&/Bx", is zero for l = 1,2, 3. Then
f"" is a function of only v" and v", which means it
is of the form

f""=Av" +Bv"+Cv"x v", (20)

where, to make f""a rotational vector, A, B,C
are functions of only (v")' and v" v"„since (v")'
is 1. The parity-conserving part involving A., B
and the parity-violating part involving C must sa-
tisfy (17) separately. From the A, B part in (17)
we get a term 5&Q and terms proportional to
v"&v"t„v"&v"&, v"&v"~, and v"&v"~. Each of these
must be zero. Therefore, A is zero. The re-
maining terms are Bv"prI, and terms proportional
to v"&v"I, and v"&v"&. Therefore, B is zero. From
the C part of (20} in (17) we get a term

Cg e„,v,
/=1

and termsproportionalto(v" x v")&v"~, (v"x v~)&v"~,
and v"&(v"x v')n. Each of these must be zero.
Therefore, C is zero. Thus altogether f"" is zero.

MASSLESS PARTICLES DESCRIBED BY MOMENTA

We may also use relativistic momenta u", for
the particles n=1, 2, . . . , X, so that the velocities
are

vlf = ufo' 2+~ 2 &/2un

where m„ is the mass of particle n, , and (u"n, u")
transforms as a four-vector with

un = [(u")'+m ']'"
Then we use equations of motion

dun/dt =F"(x~,x~, . . . , x», u~, u', . . . , u") . (21)

As before, we make these equations invariant for
time translations by not letting F depend explicit-
ly on time, for space translations by letting F"de-
pend on the positions only through the relative
positions x"-x™,and for rotations by letting F"
be a vector function (that rotates as a vector when
x', . . . , x», u', . . . , u" rotate). The conditions for
Lorentz invariance' are now

N 3 E
n m, i~ 8~& 8 gn + um 2+~ 2 -&/2+fN eon 8&m ~I+ u 2+~ 2 &/28+t/t

e=& l=& m=1

+ [(u")'+ '] '" n„En -5 [(u")'+m 2] ' n(un F")=0 (22)

for j,0=1,2, 3 and n=1, 2, . . . , ¹ If the mass of
every particle is positive, this description in
terms of momenta is completely equivalent to the

I

previous description in terms of velocities. How-
ever, we are interested in the case where the mass
of one or more of the particles is zero. Then the
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two descriptions are not equivalent. For a particle
with zero mass, the velocity is just the unit
vector in the direction of the momentum, and the
magnitude of the momentum is an additional var-
iable independent of the velocity. Since the Fn

are functions of more variables than the f" are, we
can expect t'o find more solutions of the Lorentz-
invariance conditions for the Fn than for the f".
On the other hand, the Lorentz-invariance condi-
tions (22) for the F" are derived from the assump-
tion that the momenta transform as four-vectors,
and that is not implied by transformations of velo-
cities.

Suppose, as before, the force on each particle
is a sum of Poincare-covariant two-particle
forces, so that

Fn= Fn" xn- x", u", ur, (23)
r=l
Wn

for xWn, sWr, and son. By the same reasoning
we used to get from Eq. (4) to Eqs. (5)-(7), we
deduce that either Fr' is zero, or

~s ur —p
l (25)

or

or

~rs cc ur
l l & (26)

where Fnr and Frn are rotational-vector functions
that satisfy the Lorentz-invariance conditions (22)
for a system of two particles. We shall show that
the Lorentz-invariance conditions (22) for three-
particle systems imply that for each n and x either
F""causes no acceleration of particle n or Fr
causes no continuous acceleration of particle x.
As before, accelerations are caused only by forces
from particles that do not accelerate continuously.
However, the forces that cause no acceleration
are not necessarily zero. We find some that change
the magnitude of the momentum without changing
the velocity, for a particle with zero mass. In one
case this produces a discontinuous acceleration
when the velocity abruptly reverses direction as
the momentum reaches zero and changes sign.
Then there is acceleration of both particles.

By comparing the Lorentz-invariance conditions
for two-particle and three-particle systems as
before, we find that

~rs 8Fnr cur —P (24)
l=1

by changing n to z in the Lorentz-invariance con-
ditions for two particles, multiplying by u"&, and
summing over j =1,2, 3. Then

3

I'"'q = 8 u" E"' /K"q= 0
/= 1

(29)

for k=1, 2, 3.
From (27) we see. that

sFnr/s~r —p (30)

for / =1,2, 3 because in the Lorentz-invariance
conditions for two particles ur occurs only in

3

[(u~)2+yyg 2j-i/2

/gal~

sF« /s/~

This means Fnr is a function of only u". To be a
vector for rotations, it must be of the form

Fnr -~ unnr (31)

where A„, is a function of (u")2. Substituting this
in the Lorentz-invariance conditions, we find
they imply that either A„„is zero or rp„ is zero
andA„„iu"i is a constant. The latter means
du /dt is constant, either plus or minus, in the direc-
tion of u". Then the magnitude of the momentum
changes at a constant rate, but there is no change
in the velocity, not even a reversal of direction,
because the momentum cannot change direction or
even change sign. Thus either Fn" is zero or mn
is zero and F"r causes no acceleration of particle
Pl 4

ality factor in (26) independent of f. We shall show
that (25) implies F"' is zero and (26) implies
either F"' is zero or m„ is zero and F"' causes no

continuous acceleration of particle x. By consider-
ing three-particle systems in which particles n
and s cause identical forces, we conclude that if
F"' is zero, or if F"' causes no continuous accel-
eration of particle x, then F"n causes no continu-
ous acceleration of particle r. Altogether this
means Fr causes no continuous acceleration of
particle x. We shall show that (27) implies F"" is
zero or I is zero and Fnr causes no acceleration
of particle n. Thus in every case either Fn" causes
no acceleration of particle n or Fr causes no
continuous acceleration of particle x. However,
in some cases both Fnr and Fr are nonzero, and
in one case both cause acceleration, when particle
x has zero mass and a change in the sign of its
momentum causes a discontinuous acceleration as
the velocity abruptly reverses direction.

From (25) we get
3

[(ur)2+~ 2]&i2 p+r syrs /g r —p (28)

sFn r/s~r —0 (27) From (26), writing

for f =1,2, 3 in (26) and (27), with the proportion- Frs =A urrs (32)
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and letting e" be a vector perpendicular to u" (for
example u'x u'}, we get

~ 2[(ur)& y~ 2]-&l&&r (33)

by changing n to x in the I orentz-invariance con-
ditions for two particles, multiplying by e &, and
summing over j =1,2, 3. This implies either F"'
is zero or m„ is zero. If nz„ is zero, it is clear
from (26) that F" causes no continuous accelera-
tion of particle x.

Together with (26) we need
3

u" &F""/Bu" =0
Z

(34
g= 1

to make the dot product (24) zero. As an example,
suppose both F""and F""satisfy both conditions
(26) and (34), so one formula can be used for all
the two-particle forces in systems of two or more

(x"—x") u"/(
~

u"
~ ~

u"
~

—u" u"),

2[(x"-x") u"j[(x"—x") uJ

(35)

(36)

This force can change the sign of the momentum,
so there is discontinuous acceleration when the
velocity abruptly reverses direction. In fact this
can produce bound states of two massless parti-
cles.

massless particles. This means F"" satisfies
(34} and is of the form (31) to satisfy (26) with
zs changed to ri. I et us assume the equations of
motion (21) are invariant for space reflection as
well as rotation. Then 4„„in (31) is a function of
(x"-x")', (x"—x") u", (x"—x") u", (u")2, (u")2, and
u" u". The solution of (34) and the Lorentz-invar-
iance conditions is that A„„~u"

~

is a function of the
two variables
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