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The form of the interaction Hamiltonian between the apparatus and its environment is sufficient to determine
which observable of the measured quantum system can be considered “recorded” by the apparatus. The basis that
contains this record—the pointer basis of the apparatus—consists of the eigenvectors of the operator which
commutes with the apparatus-environment interaction Hamiltonian. Thus the environment can be said to perform a
nondemolition measurement of an observable diagonal in the pointer basis.

I. WHAT IS MEASURED IN A QUANTUM
MEASUREMENT?

Von Neumann® has shown that the unitary evolu-
tion alone suffices to establish a nonseparable
correlation between the state vector |A) of the
quantum apparatus @ and the state vector |¢) of
the quantum system § which is to be measured:

lA,)® |v)= {ZS:aSIAS)} ®{);cs|s>}

—>clan®|s). (1.1)

Here |A,) and |s) are basis vectors for the ap-
paratus @ and system 8, respectively, while IAO)
is the initial state of the apparatus.

Equation (1.1) seems, at first sight, to solve
the problem of measurement in quantum mecha-
nics. States of the apparatus { |A )} are now cor-
related with the states of the quantum system
{ Is)}. To the question “What has been measured
on $?7 one may be tempted to reply “The observ-
able S =Eses ]s)(s I, of course.” The apparatus
@, however, is itself presumably described by
quantum mechanics. Therefore, nothing can pre-
vent one from expressing the state of @ in terms
of an alternative orthonormal basis { |A b com-
posed of superpositions of states lAs>:

)= (A A A, (1.2)

In terms of this new apparatus basis the state
of the combined G35 system can be readily rewrit-
ten:

YedAage )= [a)e Dela,|A)]s)

=Y d,|A)® |n. (1.3)

This equation defines a set of Everett’s 7elative
states {|7)}, i.e., normalized, but, in general,
not mutually orthogonal states of the system $§
relative to the arbitrarily chosen basis set { |A )}
of the apparatus.? Does that imply that when the
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measurement is completed the quantum system
will in fact end up in one of the states { [V)} rather
than in one of the states ls)?

A particularly acute manifestation of this am-
biguity in the choice of the preferred apparatus
basis occurs when all the coefficients c; in Eq.
(1.1) happen to have the same magnitude. In that
case, whenever the set {IAT)} is orthonormal, the
set of the relative states {lr)} is orthonormal as
well. Then the apparatus by virtue of being corre-
lated with the state of the system contains not
only all the information about the observable
§=2e, |s)(s |; it must equally well contain all the
information about many other observables R
=2,f,|7Xr|, defined on the Hilbert space of the
system §. This is so despite the fact that R and
S do not, in general, commute. Yet we know that
quantum mechanics prevents one from measuring
simultaneously two noncommuting observables
with arbitrary accuracy. Moreover, everyday
experience convinces us that the choice of
“what has this apparatus measured” cannot be
made arbitrarily, long after the apparatus-system
interaction has taken place, as Eqs. (1.1)-(1.3)
would seem to imply. The “real-world” appara-
tuses constructed to measure momentum do mea-
sure momentum and not the conjugate observable,
position.

A question can then be raised: What does, in
the real-world apparatuses, determine this ap-
parently unique pointer basis { iA »}, which re-
cords the corresponding relative states { |p)} of
the system ?

Interaction with the environment is the key
feature that distinguishes the here-proposed model
of the apparatus from the manifestly quantum
systems. We argue that the apparatus cannot be
observed in a superposition of the pointer-basis
states because its state vector is being continu-
ously collapsed. It is the “monitoring” of the
apparatus by the environment which results in
the apparent reduction of the wave packet. Cor-
relations between states of the pointer basis and
corresponding relative states of the system are
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nevertheless preserved in the final mixed-state
density matrix:

22 ccx|ANAy @ sXs|

‘Z_‘, b,12| A4, | [pXp]. (1.4)

Hence, even though below we do not face the in-
soluble question of quantum theory of measure-
ment: “What causes the collapse of the system-
apparatus-environment combined wave function? ”
we do determine into what mixture the wave func-
tion appears to have collapsed.

In the following section we begin our discussion
describing a simple example of the interaction
between a pair of two-state systems—“bit-by-bit
measurement” —which leads to correlations of the
type described by Egs. (1.1)=(1.3). We will argue
that the nonuniqueness of the apparatus basis leads
to apparent nonseparability paradoxes of the same
nature as those encountered in the Einstein-
Podolsky-Rosen (EPR) experiment.

In Sec. III we will use the von Neumann equation
to show that the apparatus-environment interac-
tion Hamiltonian must couple in a nonperturba-
tive*” way into that apparatus observable that
is diagonal in the pointer basis. This in turn
determines relative states of the system which
can be considered “recorded” by the apparatus.
Section IV shows how the general results of Sec.
III resolve issues raised for the bit-by-bit mea- -
surement problem in Sec. II. Section V contains
a brief discussion of the most important new
concept introduced in this paper —pointer basis—
in the context of measurement theory and practice.
Conclusions of the paper are stated in See. VI.

II. A BIT-BY-BIT MEASUREMENT

To explore the physical consequences of the
nonuniqueness of the basis chosen to represent
an apparatus correlated with a quantum system,
it is best to examine a simple thought experiment.
Here we shall consider a two-state quantum ap-
paratus used to “measure” (the word “premea-
surement” would be more exact but less con-
venient) the other two-state system. (Two states
allow one to store one bit of information and
hence a “bit-by-bit measurement.”)

Three Stern-Gerlach magnets can be arranged
to first split, and then recombine, the spin-3
beam. This is the usual reversible Stern-Gerlach
setup (RSG).*° We shall supplement it by a bi-
stable atom acting as a (quantum) apparatus.

Such an atom, inserted along one of the two pos-
sible trajectories of the spin-3 particle provides
a possible, if impractical, realization of the bit-

by -bit measurement (see Fig. 1). This same ex-
ample has been recently employed by Scully, Shea,
and McCullen,'® who used a bistable atom as a
microscopic model of “Wigner’s friend.»**

During the passage through the first of the
Stern-Gerlach magnets, momentum and hence
position of the spin become correlated with the
eigenstate of the spin component along the z axis.
In particular, if a spin enters RSG in an initially
pure eigenstate |©)=(|4)+ |+))/V2 of the spin in
the direction x, then the splitting of the beam can
be represented by

lo)e [¢@F, M={|t)e|os @, N+ Ve |o,F, M2,
(2.1)

Here |¢(F, 1)), |o4,,(F,¢)) describe the time-
dependent position of the wave packet. In the third
Stern-Gerlach magnet, |¢f ) becomes identical
with |¢,), or, in other words, the two beams
correlated with spin states }f) and |0> finally re-
combine. If there were no measurements made
on the position of the spin or on the spin itself
i,nside RSG, the spin would leave in the pure state

o).

Insert now a bistable atom to serve as an ap-
paratus along the trajectory of the spin |4). Sup-
pose it is initially in one of its two states [= ).
Suppose, moreover, that the interaction Hamil-
tonian between atom and spin is given by

Hg =go@ =T )@ (|4 |+ [y o ((=x=]+|=X=]),
(2.2)

(a)

Y >

X ATOM

s
©)
®

v >

FIG. 1. (a) Reversible Stern-Gerlach setup. (b) Sche-
matic representation of the trajectory of the spin carrier
in the bit-by-bit measurement. Possible location of the
bistable atom given by an asterisk.
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where g is a coupling constant, v is a short-range
interaction potential, e.g., v( |t =% ,|) < 6(F -T,,),
and T,T, are positions of the spin and the atom,
respectively. With this interaction Hamiltonian,

it is not difficult to demonstrate that the final
state of the atom contains a record of the path

1
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of the spin, and hence the record of the value of
the spin itself. .

The evolution of the wave function |¥) of the
combined spin-atom system as it proceeds from
the initial, pure state can be written as

=@ |=)@ | ~{|H®|d1)+|HD|o)}®|=)/VT. (2.3)

When the spin-atom interaction begins, one must use the Schriodinger equation to calculate the effect of the

passing spin on the atom

in| @) =(Hg +Ho+Hg,) | 0) . (2.4)
This yields!®
W ={[H[at) =) +b(D) [+)]® |p)+ [N @ |=) @ |p)}/VT, (2.5)

where the time-dependent coefficients ¢ and b sa-

tisfy coupled equations
ina=ea+gbn(t),

. 2.6

inh=—eb+gant) . (2.6)

Here 2¢ is the difference between the energy of the
states |=) and |=), while

1) = [ @roE, 0 [uE-F)odF, 0. (21

For simplicity we shall assume € =0, and, for all
times, (¢(¥,#) |v(F -T,)|¢,(F,¢))=0. Now the
solution of Eq. (2.6) is straightforward:

a(t) =cosA(?) ,

.8
b(£) =—i sinA(d) - (2.8)
Here A is the action, measured in units of 7:
t
mA®) =g [ Aoat. (2.9)

After the spin has emerged from the reversible
Stern-Gerlach setup, A becomes a constant:
A=1im A(?) .

t—>
Consequently, the final wave function is given by 2
[ ) ={|# ®[cosA|=) —isind|=)]+| V) ®|=)}

®| /T . (2.10)

Clearly, the final state is still pure and no irre-
versible measurement, no collapse of the wave
function l\If} could have occurred. However, it is
straightforward to demonstrate that the illusion
of a collapse may arise when one considers the
spin and the atom as two independent systems.
This is best seen if A=7/2, i.e.,

[W={|He|=)-i|He|=)}2|¢)/v2. (2.11)

[

Now whenever the atom is found in the state Iz),
the spin is in the state I%), and vice versa. The
state of the spin has become nonseparably cor-
related with the state of the atom. This final state
with perfect correlation, Eq. (2.11), will be used
throughout the rest of this paper.

At first sight it might appear that the problem of
measurement in quantum mechanics has already
been solved. After all, the atom apparatus con-
tains a record of whether the spin (system) has
assumed the [f) or | ¥) state while traversing the
reversible Stern-Gerlach setup. This can be easi-
ly checked by measuring the state of the atom and
verifying that the spin can be found in the appro-
priate, correlated direction. This is represented
by projections |=)(=| and |=)(=|:

[=X=|®=|ne|=)3|e)/VT,
== | W ==i| )3 |=) & |®/VZ .

There can be no doubt that quantum mechanics pre-
dicts 100% correlation between the state of the
atom and the state of the spin.

The question “What has been recorded by the
atom apparatus?” becomes nevertheless apparent
when rather than using |=)(=| and |=)(=| one
employs projection operators corresponding to
the alternative basis:

[0 =(|=)+[=N/VT,

(2.12)

|-y =(]=) = [=N/VT. (2.13)
Clearly
[0 [0 ==if|[ D &(|) +i| @ | 9)/VE
=—i{|)® |3 |$)/VT, (2.14a)
and, by the same token,
|-X-1®=i{|-)®| I8 |e/VT. (2.14b)
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Here
|- =(|D+i|W)/VT

and (2.15)
| =(|=i|M/VZ

define a new basis for the spin spanned by its
eigenstates along the y axis. Thus, the wave func-
tion |\If) given by Eq. (2.11) can be equally well
written as

|8 ==if|H® |-)= |- @ |-)e|e)/VZ. (2.16)

Hence, there is also a 100% correlation between
the state of the atom and the spin in a basis com-
pletely different from the one used to correlate
the value of the spin with its position, i.e., |i),

| ¥). We have used a Stern-Gerlach magnet with a
field gradient in the direction z to measure spin in
the direction y. Moreover, we can choose what we
snall measure on the atom long after the spin has
ceased to interact with it.!3

Counterintuitive predictions of quantum mechan-
ics for this bit-by-bit measurement correspond
closely to the nonseparability of the “Einstein-
Podolsky-Rosen paradox.”'* For what is measured
on the state of the atom influences the state of the
spin. Moreover, even though the spin has been
split inside RSG into the two well-separated beams,
one definitely carrying [4) and the other |¥), once
these beams are recombined the atom can supply
definite and correct information about the spin’s
alignment (i.e., parallel or antiparallel) with re-
spect to other directions.

Wigner’s friend—to use the analogy of Ref. 10—
not only ends up in a superposition after taking a
look at the single spin passing through RSG, he
can also be led to admit that he has seen—inside
the RSG magnets with magnetic field gradients in
the z direction— spin aligned along the y axis.

This conclusion appears preposterous. For
quantum systems it has been nevertheless con-
vincingly verified in experiments stimulated by
the EPR paradox. Furthermore, if one denies
(in disagreement with original proposals of von
Neumann,! London and Bauer,'® and Wigner*!) any
special role to consciousness, there is seemingly
nothing that could keep one from describing an ar-
bitrary system, no matter how large, by a state
vector and Schrddinger equation. After all, there
is nothing in the laws of physics that would make
quantum mechanics applicable to a few-body sys-
tem but render it invalid for a truly many-body
system, even if it contains 10%® or more atoms as
long as it remains isolated.

III. POINTER BASIS OF THE APPARATUS

It is usually taken for granted that the apparatus
measured--perfectly or imperfectly—a particular
observable . For, human or nonhuman observers

who consult the pointer of the ideal apparatus
learn that the system is in one of the eigenstates
of P and not in some arbitrarily chosen “relative
state.” However, as we have seen so far, quantum
mechanics alone, when applied to an isolated,
composite object consisting of an apparatus and a
system, cannot in principle determine which ob-
servable has been measured. Below we shall argue
that the possibility of a natural choice of “what has
been measured” arises when one recognizes the
following: (a) The apparatus @ interacts with its
environment § via some specific interaction Ham-
iltonian ¥Cag. (b) The observer © consults only the
pointer of the apparatus and not the state of the
environment.

The apparatus-environment interaction can then
be regarded as an additional measurement estab-
lishing nonseparable correlations between the ap-
paratus and the environment. As a result, in-
formation about the environment (usually regarded
as “noise’”) obliterates the information about the
just premeasured quantum system §. However,
when the Hamiltonian 3Cgg commutes with the ob-
servable II of the apparatus, then this particular
observable will not be perturbed. Only the baisis
consisting of the eigenstates of Ii, the pointer
basis, will contain nothing but the information
about the quantum system itself. Moreover, the
combined @8 system is now represented by a mix-
ture diagonal in a particular product basis, con-
sisting of the eigenvectors of the pointer basis
of the apparatus and the corresponding relative
states of the system. ‘

One can anticipate the main result of this section
by saying that the pointer basis of the apparatus
@ is chosen by the form of the apparatus-environ-
ment interaction: It is this basis which contains
a reliable record of the state of the system §. This
in turn determines uniquely those relative states
of the system which are correlated with the ap-
paratus. Moreover, apparatus-environment cor-
relations do not allow one to observe the G8 com-
bination in a superposition. Instead, it becomes
a mixture diagonal in the basis constructed from
the pointer-basis eigenstates |Ap> and the corre-
sponding relative states of the system. Let us
stress that details of the state of the environment
itself are not necessary to determine the pointer
basis. The form of the apparatus-environment
interaction 3Cqs suffices for that purpose.

To verify the existence and further clarify the
role of the pointer basis {[A,}}, consider evolution
of the density matrix pga, of the three combined
systems: the to-be-measured quantum system
8, the apparatus @, and the environment §:

—ilbsa s =[Psas:ICs+ICa+3Cs +Csa+ Hag+3sg] . (3.1)
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The correspondence between the components of
the total Hamiltonian and the elements of the inter-
acting combination $@®& is evident from the nota-
tion. We purposely disregard the interaction be-
tween the environment § and the “rest of the
world.” This interaction is of no importance for
the choice of the pointer basis, at least as long
as it does not alter the form of 3qg. To write Eq.
(3.1) we have moreover assumed (1) that all the
interactions are pairwise, i.e., that 3Csqs=0, and
(2) that the environment § can be regarded as a
quantum system. Assumption (1) is customary
and clear, even though it may prevent one from
even an approximate treatment of the gravitational
interaction beyond its Newtonian pairwise form.
Assumption (2) deserves further scrutiny. One
should clarify what is meant by the “environment,”
i.e., which degrees of freedom of the Universe
should be taken into account in determining “what
mixture does the wave packet collapse into.”

We define the environment § as consisting of all
those degrees of freedom which contribute signi-
ficantly to the evolution of the state of the apparat-
us. For a given experimental setup one could de-
vise a criterion based on the average strength of
the interaction, or, alternatively, on the amount of
action exchanged between the environment and the
apparatus. The objective of such a criterion is to
exclude all those degrees of freedom whose total
contribution to the environment-apparatus interac-
tion can be, for all practical purposes, disre-
garded. Eventually, one can distinguish between
the immediate environment §—and include it in
the density matrix pg,, of Eq. (3.1)—and “the rest
of the world,” or a “remote environment ®” which
need not be taken into account. Interaction between
é and ® can be in general quite strong. As we
have already decided we shall not take it into ac-
count in Eq. (3.1). This additional term would
complicate our arguments, and our final conclu-
sion does not depend on whether we set it equal to
zero—*“decouple” the environment from the rest of
the Universe—or take it into account and consider
Psass rather than pgqe.. Having agreed that the en-
vironment may be in principle regarded as iso-
lated, we can introduce an appropriate basis sys-
tem |€) spanning its Hilbert space.

Three more assumptions of an essentially tech-
nical nature can now be introduced:

(1)3¢gg =0—the quantum system itself remains
isolated from the environment. If this assumption
is violated after the premeasurement has occurred,
then the apparatus will contain the information
about the state in which the quantum system was,
but not necessarily is, any more.

(ii) ¥Cgq acts only for a very short period of time.
During that time interval 3Cgq > 3Cqg and a correla-

tion of the form of Eq. (1.1) is established. After-
wards the interaction between the system and the
apparatus is effectively nil, i.e., 3Cqs > ¥sq, and

3Csq can be set equal to zero.

(iii) All the vectors of the pointer basis cor-
respond to the same degenerate energy eigenstate,
i.e., %a|A,)=E|A,), where E is not a function of
p. (However, the rAP) are not degenerate any fur-
ther.) This is equivalent to a physical requirement
that the measurement should not lead to the ex-
change of energy between the system and the ap-
paratus.!® All of these assumptions are stronger
than is absolutely necessary. Adopting them in
this form makes the following discussion much
simpler and allows us to concentrate on the main
idea rather than on the detailed and cumbersome
review of the subcases.

The density matrix of the § @5 combination
evolves then—immediately after the correlation
between the system § and the apparatus @ has
been established—according to the equation

~ilipsas =[Psas, 35+ 3a+3Cs +3qs]
=[psagr s+ Ha+3Cs] + [0sas Has) - (3-2)

The effect of the first commutator bracket can now
be disregarded. This follows from the fact that
the time evolution of the apparatus states {A’(t))

= exp[—(i/h‘)Et”Ap(O)) leaves the diagonal terms

of the density matrix invariant. Therefore, evolu-
tion of the apparatus @ due to 3Cq does not obliter-
ate the information about the system 8.

The second commutator [ ,3(qs] introduces cor-
relations between the apparatus and its environ-
ment. It will leave diagonal terms of the diagonal
terms of the density matrix invariant only if it
will commute with the very projection operators
|A,)(AP[ which are to appear on the diagonal. Con-
sequently, if ]A,) is to remain correlated with the
relative state of the quantum system 8, ¥qg must
satisfy

[:mag, Zn,lA,)(A,|]=o (3.3)
’ 4

for any arbitrary choice of coefficients 7,. Defin-
ing the pointer obsevvable,

=Y 7,454, , (3.4)
4

where we now require T, to be strictly real, one
can reexpress the above condition by stating that
the pointer basis {[A,)} is a complete set of eigen-
functions of the operator II that commutes with the
Hamiltonian 3Cqg:

[11,3Cas] = 0. (3.5)

The above condition can be interpreted by analogy
with quantum nondemolition measurements, con-
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sidered recently by Braginsky and his group,® the
Caltech group,® and Unruh.” There the to-be-mea-
sured quantum system is the Weber bar used also
as the detector of a gravitational wave. Here it
is the apparatus itself. There the measurement
is performed by a complicated setup designed not
to perturb, say, the eigenstate of the phonon num-
ber operator or some other suitably chosen ob-
servable. Here the “measurement” is performed
by the environment itself, and the apparatus-en-
vironment interaction Hamiltonian chooses the
pointer observable 11 as the one which will be
measured by the environment in a nonperturbative
fashion.

The interaction Hamiltonian can then depend on
only one apparatus observable—on .37 In parti-
cular, any interaction Hamiltonian of the form

scas= T 14,04, 8 (a2 0| + 297 |€0Ge]

(3.6)

does satisfy condition (3.5). Moreover, both |e)
and g{# may explicitly depend on time due to the
interaction with the remote environment ®. As
long as the interaction remains diagonal in the
pointer basis, it will not disturb correlations of
the apparatus with the states of the system relative
to the pointer basis.

Of course, the environment-apparatus interac-
tion that allows for the existence of the pointer
basis does not suffice to ensure successful func-
tioning of the apparatus. Premeasurement, which
correlates the quantum state of the apparatus with
the state of the system, plays an absolutely essen-
tial role. Moreover, if after the measurement we
expect the measured system to collapse into one of
the mutually orthogonal eigenstates of the mea-
sured observable P, then immediately after the
premeasurement the combined @8 wave function
should be of the form 23,b,|A,) ® |p), where {|p)}
constitutes that orthonormal basis composed of the
eigenstates of the observable . When the states
relative to the orthonormal pointer basis are not
mutually orthogonal, the measurement will be only
imperfect.

In this section we have established the main re-
sult of this paper: For the quantum systems known
as apparatuses, there exists some basis {IA,)}
not perturbed by the interaction with the environ- ,

ment. This so-called pointer basis retains the in-
formation about the outcome of the premeasure-
ment despite the imperfect isolation of the ap-
paratus from its surroundings. In the next sec-
tion we return to the example of the bit-by-bit
measurement to see how the interaction with the
environment can select the unique pointer basis.

IV. POINTER BASIS IN A BIT-BY-BIT
" MEASUREMENT
Consider the state of the bistable atom-spin
system—familiar from Sec. II—after a perfect
correlation between the two has been established:

|{I)={—»i|f>®|=)+I{)@lz)}/\/?. (41)

(Here and below we shall omit the cumbersome
and, for our purposes, irrelevant spatio-temporal
component of the total wave function, |¢(T,?)).)
The model environment consists of an additional
bistable atom, basis states of which are |€)= | =)
and |€’)= | =). Note that the states of the environ-
ment atom are denoted by normal “brackets”
rather than the usual “bra-kets.” This corres-
ponds to an implicit assumption that the environ-
ment atom can be distinguished from the apparatus
atom. The apparatus-environment interaction
Hamiltonian

Kas =g A+ [HF])
(|=)(=|-]=){(=]
®(|=)(=|+|=)(=|), (4‘2)

is nonperturbative with respect to the basis | =),
| = ) of the apparatus, but does influence the state
of the environment as well as the state of the sys-
tem in any basis other than | =), |=). JCas ob-
viously commutes with the “spin operator” o, =1II
=[=)(=]=|=)(=], as ag = £1(| = )(= |
+]=)(= ). ‘

Let us suppose, for example, that the initial
state of the environment was given by | =), so
that the state of the combined 8§ + @ + § system
immediately after the measurement has occurred
can be written as a direct product

|2y= [B)® | =)
={-iH®|=)+ [H®| =)} | =)VT . .3)
Now it is not difficult to show that this initial state
under the influence of the interaction Hamiltonian
JCag will evolve into

|@)={-i|t)® | =)®[cosA(t)| = ) - isinA(t)| = )] + [))® | =) ®[cosA(t)| =) + i sinAF)| =)[}/VZ . (4.4)

If we choose the interaction between the apparatus
and environment to terminate when A = /4, then

the states of the apparatus become correlated with
the two orthogonal states of the environment atom

r
|+) and |T) as follows:

@) ={-i|h® |=)® L)+ W& |=)® TNV .
(4.5)
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Here

|D= (] =)+i] = DT,
IT)= (| =)=i| = WAVT .

Now, if we act on the apparatus by means of the
projection operators |=){ =] or |=)(=|, we
find, as in Sec. II, spins in the corresponding
states [¥) or |4), respectively. This is readily
verified by checking that

[=)(=]®)=[He|=)e "IN,
[=)(=]|®)=-i|)®|=)® |[L)NT .

The environment has become correlated with the
state of the apparatus without perturbing the eigen-
states of the observable II of the apparatus.
Therefore, we can still trust the memory of the
apparatus concerning the value of the spin in the
direction z.

However, if we try to use projection operators
[+)(+ | or | =){- | [see Eq. (2.14)] in an attempt
to establish whether the spin was |~) or |~), we
find it impossible to accomplish, To argue this we
first calculate

143k [@)={-i[h® [T+ [H® e |+)/2,
[-Y-|®y={-iHe|T)+ [ |L}e|-)/2.
(4.8)

Clearly, [<I>) cannot be written as a sum of two
terms in the form

(4.6)

(4.7)

[8)=a,]S,)® |+)® |€,)+ a_|S)® | -)® |e).
(4.9)

Because of the correlations with the environ-

ment, knowing the state of the apparatus in the
[+ Y, ] - ) basis does not suffice any more to de-
termine the state of the system. Part of the in-
formation about the state of the spin has been
“transferred” from the apparatus to the environ-
ment. And both the environment and the appara-
tus are correlated with |[#) or |¥) states of the
spin.

We can therefore conclude that when the en-
vironment atom is present and interacts with the
apparatus via JCes given by Eq. (4.2), and the
amount of exchanged- action is 0.125 in the units
of i, then the apparatus-spin system will retain
perfect correlation in only one product basis
{|® ] =), [#® | =)} of the direct-product space.
Hence, {| =), | =)} is the pointer basis of the
apparatus, which will eventually appear on the
diagonal of the density matrix obtained by tracing
out “environmental degrees of freedom, ” i.e.,
the state of the environment atom. Measurements
made by the apparatus on a spin eigenfunction
along any other direction are to some degree
obliterated by the interaction with the environ-
ment. In particular, no information about the

orientation of the spin in the direction of the ¥
axis can be derived from the state of the appa-
ratus alone.

While calculations leading to the above conclu-
sions are certainly correct, one might object that
the assumptions of a particular initial state for the
apparatus and a specific amount of action ex-
changed between apparatus and environment are
unrealistically restrictive. For example, if the
apparatus-environment interaction were not term-
inated after A =0.125k, but continued forever,
then every once in a while the state of the system-
apparatus combination would become independent
of the state of the environment. This would occur
whenever A = + (n/4)h, where % is an integer.
Thus, we would again, once in a while, face the
paradox of not knowing what has been measured
by the apparatus. This objection is certainly
serious. One can show, however, as we shall do
in a following paper, that when the size of the en-
vironment increases, the state of the apparatus-
system combination becomes pure more and more
rarely, and a close analogy between that “memory
recovery time” and the Poincaré recurrence time
can be made.

V. DISCUSSION

Von Neumann, facing the necessity for the re-
duction of the wave packet, rejected the idea that
an additional quantum apparatus @', coupled to the
original @, can be of any help in resolving difficul-
ties of the measurement problem. For, he rea-
soned, the state of the combined $@@Q’ system, after
all the correlations have been established, would
finally evolve into )

A ® 4@ [pEedane ! Y b, 4@ p)
4

I ne
=235, 14p0 |4)0 |p).
! (5.1)
Thus @’ stands in the same relation to @ as @
with respect to §. The final $@@’ wave function
is still pure. No reduction of the wave packet has
been accomplished.
The reasoning of von Neumann presented above
is no doubt correct. Yet, the goal of this paper
is to show that when the environment §, playing
the role of the additional apparatus, is taken
properly into account the question “What mixture
does the wave packet collapse into?” acquires a
definite answer. It may be surprising that one can
say so much about the collapse without having to
specify where or how it takes place. The aim of
this section is to argue that the very question dis-
cussed in this paper, as well as many other phys-
ically interesting questions concerning the pro-



cess of measurement, can be answered without
having to decide whether, where, when, or how
the ultimate collapse occurs.

We have to agree with von Neumann that adding
more and more apparatuses only delays the mo-
ment when the reduction of the wave packet would
have to occur. This infinite regress can be term-
inated only if there are some entities in the Uni-
verse which can put an end to the unitary evolu-
tion, be it macroscopic objects of Copenhagen in-
terpretation!” or conscious beings preferred by
von Neumann himself,' as well as by other prom-
inent physicists.'™'® Alternatively, one could re-
sign himself to the unitary evolution predicted by
the quantum theory for the Universe. Then it is
the individual consciousness alone which appears
to evolve in a nonunitary fashion choosing a single
path in this labyrinth, “many world” Universe.
Both of these opposing views of the collapse prob-
lem have been criticized and defended. What is
important for us is that both of them agree on
one absolutely crucial point: To describe the
world “as we know it” there must be two distinct
types of evolution—the reversible, deterministic
one, which has been confirmed for the microworld,
as well as the irreversible, random one which
must provide for the choices experienced by the
consciousness. The two.interpretations differ
only as to where the boundary between the unitary
and nonunitary domains should be drawn. The
many world interpretation allows nothing but the
individual consciousness in the “random” domain.
The Copenhagen interpretation extends that do-
main to include “macroscopic objects.” Both in-
terpretations do agree that the boundary must be
there; “in the empty courtyard many a game can-
not be a game until a line has been drawn—. .. no
matter where—to separate one side from the
other.”!®

One may divide all the questions that can be
posed about quantum measurement into those
which have answers depending on where the line
is drawn, as opposed to the ones whose answers
depend only on whether the line is drawn. We
claim that the question “Which mixture does the
wave packet appear to have collapsed into?” be-
longs to the second category. Clearly, there is
just one pointer basis {]Ap)} in which the addition-
al measurement

|42)® |4o)® | 228 |y @ Thlape |p

Kot ~

2251400 4@ |p)
4 (5.2)

allows the equality

|6, |2= |3, |. (5.3)
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In an arbitrary basis { |[A,)} different from the
pointer basis, this equality will not hold; an ad-
ditional measurement by @’ will destroy the per-
fect correlation between @ and § established in
the first step:

[AD® 3¢ |A)® |s)

I ne,
223 4,|A0® |AY® |s) (5.4)
with
les [*# [dg|*. (5.5)

What has been measured on § by @ is no longer up
to an observer to decide. Already at the level of
the above equations the pointer basis {]Ap)} de-
termines the corresponding relative basis {|p>}
as the only choice. And the collapse of the wave
function has not yet occurred; both Eqs. (5.2) and
(5.4) represent, beyond doubt, pure states. In
this sense the above considerations answer a
question about the appearance of the collapse
without having to specify where one draws the
“line.”

In real-world apparatuses the role of the “ad-
ditional apparatus @’” or, equivalently, the role
of the “environment § ” is usually played by part
of the physical setup of the apparatus itself. For,
what we have called “the apparatus @” is just a
small part of the complete setup, which can be
fully described by a state vector in nondegener-
ate Hilbert space spanned by a set of basis vec-
tors {|A,)}. In contrast to this simplified model,
setups of real-world apparatuses are much more
complicated and demand extensive product spaces
to allow for a complete description. Out of this
vast product Hilbert space we have singled out
just one subspace, claiming it describes the
“pointer, ” and hence epitomizes the apparatus
itself. The rest of the apparatus setup described
by the remaining parts of the product space—by
far larger than the subspace used to represent
the apparatus proper—describes then a natural
immediate environment §. As long as the coup-
ling between the apparatus @ and its “built-in”
environment allows for the existence of the pointer
basis, the apparatus will be able to record the
corresponding relative states of the to-be-mea-
sured quantum system §. Therefore, part of the
apparatus setup, the built-in environment, can be
said to act as an interface between the apparatus
proper @ and the rest of the world.

The function of this interface is not to isolate &,
as one might have at first guessed. On the con-
trary, it proves advantageous to couple @ via a
well-defined and carefully controlled 3Cqg which
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leaves the pointer basis of the apparatus undis-
turbed. Consequently, the time evolution of the
combined 8@8 object preserves correlations be-
tween the pointer-basis eigenvectors |AP> and the
relative states |p> of the measured system §. The
difficulty of isolating large quantum systems,
stressed, by Zeh,' among others, and more re-
cently by Wigner,?*?! emerges as the crucial mo-
tivation: It proves easier to construct a con-
trolled coupling than to isolate.

Let us moreover note that in the context of
“many world” interpretation, Deutsch®? has re-
cently postulated existence of a preferred basis,
which he calls the “interpretation basis.” It is
determined by the requirement that, at the instant
of completion of any interaction, a measurement
has indeed taken place.

Finally, it is worth adding that situations where
a quantum system acquires a preferred basis be-
cause of its coupling to another system have al-
ready been discussed in the context of quantum
theory of measurement. Simonius® has noticed
that quantum systems, interacting with their
natural environment interpreted as a “background
of probes, like photons or particles,” will reveal
“classical” features, i.e., localization of mac-
roscopic bodies, localization of atoms within
molecules, and stability of metastable compounds.
Moreover, in the “Zeno Paradox”?* 2 metastable
states of quantum systems are stabilized by the
appropriate coupling with other quantum systems,
playing the role of external observers.

Each of the developments described in Refs. 19~

26 is intimately related to the existence of the
here-discussed pointer basis. We hope to give a
more complete discussion of this relation in fu-
ture publications.

VI. CONCLUSIONS

We have shown that the interaction between the
quantum apparatus @ and its environment § may
single out a preferred pointer basis of the appara-
tus. This will happen always when the interaction
Hamiltonian ¥Cgg commutes with an apparatus ob-
servable II. Correlations between the set of eigen-
functions of II and the corresponding relative
states of the system will then remain unperturbed
despite the evolution of the apparatus generated by
¥ag- The choice of 1T determines what states of
the quantum system § can be recorded. Thus, in
a certain sense it is the environment of the appa-
ratus which participates in deciding what the ap-
paratus measures: The pointer observable il of
the apparatus, the one on which the environment
performs the “nondemolition measurement, ” re-
mains the only one endowed with the maximum
information about the state of the quantum system
S.
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