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Einstein’s analysis of the Brownian motion of a mirror in a field of natural radiation played a crucial role, in the
first decade of quantum theory, in persuading physicists that the Maxwell description of the electromagnetic field
was inadequate, and that light quanta, with discrete momentum as well as energy, have a real existence. Here an
alternative analysis is given of this motion. We see that, if the spectral density of the radiation field is given by the
Planck spectrum plus the zero-point electromagnetic field, that is, by the spectral density of Planck’s second theory,
then the motion is correctly described in terms of the Maxwell theory, without any need for a quantum hypothesis.
An essential step in this analysis is to include Boyer’s correction to the Einstein model, whereby account is taken of
the radiative energy loss each time the mirror collides with the walls of the cavity.

I. INTRODUCTION

Einstein’s paper of 1909,' analyzing the motion
of a mirror in the field of radiation inside a cavity
at temperature 7', has become a classic.. It is
considered to be*~® the first convincing demon-
stration of a dual corpuscular-undulatory charac-
ter for the electromagnetic field, and also the
first indication that light quanta carry a momen-
tum Zw/c as well as an energy Zw.

There is some evidence that Einstein later found
this result unsatisfactory® because he had hoped
to prove that the mean-square impulse, (A®),,, on
the mirror could be explained entirely by inde-
pendent collisions with pointlike quanta of light.
But his main difficulty at that time was to con-
vince his colleagues that light quanta had any
pointlike properties at all. It follows that the
main thrust of his article was devoted to the
pointlike term in (A®),,. His statement that the
other term in (A%),, is the result furnished by
Maxwell’s electromagnetic theory seemed so
plausible that neither he nor anyone since has
calculated this term explicitly.

One purpose of the present article is to fill that
gap in Einstein’s argument. We shall find that the
Maxwell electromagnetic theory does indeed give
just the “wavelike” term in (AZ%),,. It becomes
clear why Einstein found this term something of
an embarrassment, if we compare his expression
for the mean-square impulse on a mirror with the
expression he found in 19167 for the mean-square
impulse on a two level atom. In the latter case,
only the pointlike term is present. This result
fits much more closely with the assessment
Einstein offered at the 1909 Salzburg conference,®
that the Maxwell equations should be satisfied only
for beams of radiation containing large densities
of light quanta.

There is further evidence that Einstein and
Hopf® considered the Maxwell theory inadequate
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in their article the following year. This article
was crucial in determining the outcome, in
Einstein’s favor, of a long polemic with Planck
over the latter’s attempts at basing his radiation
formula on classical electromagnetism. Einstein'®
and Ehrenfest'' had pointed out that it was not
possible to justify Planck’s choice of an entropy
function for radiation by considering the equilibri-
um of a linear resonator in the radiation field,
and that to find the distribution of energy over
frequency, it would be necessary to study some
system which is capable of emitting radiation at
several different frequencies. Einstein and Hopf
pointed out that a massive particle carrying a
linear oscillator constitutes just such a system,
owing to the Doppler shift of frequency arising
from the particle’s motion. By studying the im-
pulse transferred to such a system from the radi-
ation field they were able to show that a mean
particle energy of kT required the divergent
Rayleigh spectrum rather than the experimentally
observed Planck spectrum.

Boyer, however, has pointed out'? that Einstein
and Hopf’s analysis overlooked an important part
of the electromagnetic interaction, namely that
caused by the large accelerations which the parti-
cle receives during collisions with the walls of
the cavity. He has suggested a correction to
Einstein and Hopf’s equation of momentum ba-
lance, arising from the loss of energy through
dipole radiation during such collisions.

We shall see in this article that a similar cor-
rection can be made in Einstein’s analysis of the
moving mirror. This result confirms the con-
clusion arrived at by Boyer for the Einstein-Hopf
resonator. Both results indicate that it is the
blackbody spectrum of Planck’s second theory,®®
rather than the Rayleigh spectrum, which is fur-
nished by the Maxwell theory. This blackbody
spectrum differs from the original Planck spec-
trum by the addition of a temperature-independent
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term, which may be attributed to an energy of
Lhw in each cavity mode of oscillation. There is
some independent evidence!*~! for the existence
of such a real “zero-point” spectrum, and it has
recently been suggested!®~2° that it provides an
explanation for the results of the Freedman-
Clauser experiment®! which avoids the need for
quantum nonlocality.

According to the results reported here, there-
fore, Einstein’s victory over Planck, at any rate
on the basis of black radiation alone, was pre-
maturely awarded. Far from the Maxwell term in
(A%, being expendable, as Einstein hoped, it is
rather the pointlike term which may be dispensed
with.

Of course, it may be argued that the successes
of quantum theory in atomic spectra had already
made such discussions obsolete after 1913, and
especially after Einstein’s new expression for
(A%),, in his paper of 1916.” It must be admitted
that, although Planck’s theory has had a modest
revival in recent years under the title of sfo-
chastic electvodynamics,*~'" it has not been pos-
sible to progress far beyond Planck’s own ef-
forts®®+?® in atomic spectra. For a recent attempt
at the application of stochastic electrodynamics
to the hydrogen atom, reference should be made
to the article of Marshall and Claverie.?*

Nevertheless, this reexamination of the Brown-
ian motion of a mirror in a radiation field has, I
submit, much besides historical importance.
Einstein’s formula for {A?),, is still widely quoted
in the textbooks as evidence for the complemen-
tarity concept applied to light quanta. It is never
contrasted with the very different result for the
two-level atom, and this in spite of the fact that
the latter indicates an exclusively corpuscular
character for radiation. Finally, this analysis
shows that, while Planck himself did not succeed
in his attempt to derive his radiation formula from
Maxwell’s theory, such a derivation, making use
of Planck’s hypothesis of natural radiation, is
perfectly possible.

II. THE DIFFUSION AND DRIFT COEFFICIENTS

We consider a square mirror, of side a, which
is constrained to be parallel to the xy plane and to
move along the z axis. This mirror is perfectly
reflecting for light in the (angular) frequency
range (w,w +dw), and perfectly transmitting out-
side this range.

In the Einstein model, the motion of the mirror
is determined entirely by the radiation pressure
on its two faces. Thus the equation of motion is

MU, =mU, +dJ (2.1)

where m is its mass, v, and v, its velocity at
times ¢ and ¢+ 7, and J the impulse obtained by
integrating the radiation pressure over the sur-
face of the mirror and between ¢ and ¢ +7. It will
be convenient to introduce the notation

J=Jd; +Jg , (2.2)

where J, and J, are the impulses arising from
radiation in the z<0 and z >0 regions, respective-
ly.

Einstein gave the following value for the diffusion
coefficient J:

J=-Pu,T, (2.3)
where '
_3a L dp
“ e (p - 3wdw>dw , (2.4)

and p is the spectral density of the cavity radia-
tion corresponding to frequency w. This ex-
pression is valid for nonrelativistic values of ».

It is stated without derivation in Einstein’s origi-
nal article, but it can be easily derived from the
Doppler-shifted radiation spectrum, which is
given in his paper of 1916.” There it is shown that
the energy density of radiation with angle of inci-
dence 6, and with the appropriate frequency range
in the mirror’s rest frame, is

1640 90\(1 .32
F(6) 4(p+ccos0waw><l ccose)dw. (2.5)

We may deduce that
/2
(JL)“=a2'rf 27F(6)2 cos?6singds (2.6)
0 '
and

T
(JgYay = =T 21F(6)2 cos®gsingdg,  (2.7)
m/2
from which (2.3) is obtained.
The other quantity considered by Einstein is the
drift coefficient :

(A% 4 =T = (Da)) =20 = (TL)a)®) - (2.8)

For nonrelativistic velocities, it suffices to cal-
culate this quantity for a stationary mirror. For
further discussion of this point, reference should
be made to Einstein and Hopf,® Einstein,” and
Boyer.!? The appropriate expression for the fm-
pulse is

T a a
JL=2f de dxf dyTEk,, (2.9)
0 0 0

where TZ, is the contribution to the Maxwell stress
tensor from cavity radiation incident on the left
face of the mirror. To obtain an expression for
this tensor component, we must expand the cavity
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radiation field in plane waves:

&, 1= E B; cos(-%—ket+63,), (2.10)

with a similar expansion for the magnetic field B.
Here the wave number k runs over a discrete set
with density (V/87%)d%k (V is the volume of the
cavity), and the polarization index ) takes one of
two values. We shall suppose that the random
variables 6, are independent and uniformly dis-
tributed in (0, 27), and that the random variables
E,, are independent and hence?5-?® normally dis-

1

tributed, with zero mean. Then the stress tensor
component is

‘—'EZ (Eir Bk o= EgE g = EpE g
+ BB, = BinB g = ByinByin)
xcos(E-§-kct+9h)cos(lz"§—k’ct+Oi.x.},
(2.11)

where the prime on the summation indicates that
it is confined to w<kc<w+dw and £,>0.

Substitution of (2.11) into (2.8) and (2.9) gives,
after averaging over 6;,,

Y ’ > > :
(a?%) av ™ Z , Z F(k, k") «Eziszi'x' —EpEaan = EnEga tBaBin — BB - ByhByE'x‘» ’

Rk )

where

(2.12)

. . T T a a e a - - > . -
Fk,k')= L 5 f dtf dt’f dx [ dx' [ dy [ dy’cos[k:&=X')=kc(t-t')|cos[k'x-X")-k'c(t-t")]
167* J, o o o o o

(2.13)

2 (k= R1)? (R, - k 1P

2 [sm zalk - P’ )sm"’ a(k,— k!)sin®zct(k - k')
cAk-k')?

+(E-—-E,k~-k)]. (2.14)

To find the ensemble average in (2.12), we need the following averages for natural radiation?®;

' % .\ 8
; <EiixEm> = (5ij' ?) i Z(BmBij ’

2k, 87%c® 8mc’p

Z<E1k7«Blk7~>€ul P w V

(2.15)

(2.16)

Then, after summation over A, A/, the ensemble average in (2.12) takes the value

2(8n3c3p) (kk’+kzk’—k]ex—k A )
7 kR

(2.17)

Provided the bandwidth dw of the mirror is large compared with both ¢/q and 1/7, we may approximate

(2.14) with the narrow-line approximation:

F(E, k')-—”“—T 8(k, — k)o(k, - k1)o(k - R) . (2.18)
Then, replacing the integrations over K and k’ by integrations,
) , .
(a9, =12 T(C;f )2 f dEf K’ (ke — k1)0(k, — k1) k')(kk' +k”k;;:}‘k;_ kyky )2 4 (2.19)
=f££@dw. (2.20)

III. THE BLACKBODY SPECTRUM

Both the drift coefficient J, given in (2.3), and
the diffusion coefficient (A% ., given in (2.20),
are simple functions of p, and are proportional
to the product f7, where f is the area of the mir-
ror. The simplicity of these expressions owes
much to our having used the geometrical optical
limit, in which diffraction effects at the mirror’s

r
edge are neglected. Also the proportionality to

ST is a consequence of the way in which the various

plane-wave components of the radiation field in-
terfere. For this property to hold, it is essential
that we make the narrow-line approximation of
(2.18), which means that both 7 and a/c must be
large compared with the mirror’s reciprocal band-
width.

Along with the basic equation of motion (2.1),
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Einstein made the assumption, following the argu-
ment of his original Brownian motion paper,3®
that the average kinetic energy of the mirror
should take the constant value of 3.7 in a cavity
containing black radiation at temperature 7'. He
deduced the relation

(a3 =2kTPT. (3.1)

If we substitute the values of (A%, and P obtained
in the previous section, we find that
y dp_ mict

P= 39T 3wk T

02, (3.2)

and, with the additional assumption that p is zero
when w is zero, this leads to the unique solution
2
p =% ) (3.3)
which is the Rayleigh spectrum.

Between 1905 and 1911, Einstein, along with
Jeans and Ehrenfest, devoted a great deal of
energy to proving that Planck’s essentially clas-
sical treatment of blackbody radiation could lead
consistently only to the Rayleigh spectrum. Their
criticism centered on Planck’s use of the ad hoc
entropy function for radiation,

VW[ [m2c3p mcip
11203[( P +1) In (—h‘w3 +1

2.3 2.3
2 (B o

S(p) =~

W W

It was with this entropy function, along with the
thermodynamic relation

1355 _1

T’—ﬁ—[; =T (3.5)
that Planck first obtained his blackbody spectrum.

In his efforts to justify (3.4), Planck used Boltz-

mann’s method of “complexion counting” with a
cell size, in phase space, of 2r%. However, Ein-
stein and Ehrenfest claimed that such a procedure
implied discontinuity in the emission and absorp-
tion of light, thereby undermining Planck’s other
assumption that the processes are governed by
the Maxwell theory.

Einstein and Hopf’s paper,® in 1911, was crucial.

They proved that Planck’s hypothesis of natural
radiation, applied consistently to a certain clas-
sical system, leads to the Rayleigh spectrum with
no more reference to statistical mechanics than
that a massive particle, free of external force
fields, has an average translational kinetic energy
of $kT. They bypassed all previous discussion

of the entropy function because the classical sys-
tem they discussed, the moving linear oscillator,
had the property of emitting and absorbing radia-

tion over a wide frequency band, in view of the
Doppler shift caused by its motion.

Einstein and Hopf obtained the following values
of J and (A%, for their moving oscillator:

= 6nco 14,

I==5u (p'§d_£)m’ 8.6)
4n3cio

(A2>av = 5(4)3 pzT . (3 97)

In these expressions, o is a parameter related to
the natural linewidth of the oscillator. They be-
come identical with (2.3) and (2.20), if we make
the replacement

R 5wadw

47c? (3.8)

Hence the Einstein-Hopf particle gave rise to the
same equation, (3.2), for p as the moving mirror
studied here. We therefore seem to be led inevit-
ably back to the Rayleigh spectrum. The results
of Sec. II above simply seem to confirm the con-
clusions reached by Einstein and Hopf.

In his analysis of the mirror, Einstein kept
the classical expression for .7, and argued that,
in order to make Eq. (3.1) consistent with the
Planck spectrum, the mean-square impulse would
have to be

202427d 3 '
()= 55 w(p2+m2° f). (3.9)

TC

Without doing the classical calculation of the pre-
vious section, he recognized, ‘“on dimensional
grounds,” that such a calculation would give, up
to a constant multiple, the first term in (3.9). We
have now confirmed this dimensional argument
and found that the constant multiple is, in fact,
one.

It was, however, the second term in (3.9) that
received Einstein’s main attention. This term,
which dominates the first term at high frequencies,
he interpreted as collisions of the mirror with in-
dependent particlelike light quanta, each carrying
7iw and momentum %w/c. Such a description of
the electromagnetic field is, of course, very dif-
ferent from that afforded by Maxwell’s equations,
and accepted by Planck, and most other contemp-
oraries, in 1909, The discovery of this term
was, therefore, significant in persuading physi-
cists of the need for discontinuous processes in
the electromagnetic field.

But, as Boyer'? has shown in his discussion of
the Einstein-Hopf result, such a conclusion may
have been premature. Equation (3.1) is derived
from (2.1) by making use of the equipartition as-
sumption '

Im P =imw,..?) o= LRT. (3.10)
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However, all proofs of this result consider mech-
anical systems with a finite, though sometimes
very large, number of degrees of freedom, in
which the total energy, a function of a finite num-
ber of variables, is conserved. Now all collisions,
whether between molecules and molecules, mole-
cules and Brownian particles, or Brownian parti-
cles and cavity walls involve interactions which
are ultimately electromagnetic. So all such col-
lisions result in electromagnetic radiation and en-
ergy loss. Taking radiative energy loss into ac-
count, Eq. (3.10) is obviously not satisfied. For
example, just after a collision with a wall, a
particle’s average speed will be less than it is
just before its collision with the next wall.

To derive a version of (3.1) which takes account
of radiative energy loss at the walls,?? we con-
sider an ensemble of mirrors, and denote by @
the average rate of such energy loss. Then, from
(2.1) and (2.3),

17Q=3m{(v,—m™ P, T+mA)2) ,, —5m{v2,,.
(3.11)

We now substitute from (2.4) and (2.20), neglecting
the terms in 72, and obtain

_m3c*d® dp

d . S0P (v.2) ( 1 ap
Q= Zmw? CO\P TR MV P T swgg)|
(3.12)

Because of the factor »™! in @, we may still re-
place » v, ,, by 2T on the right-hand side of
(3.12), even though (3.10) is no longer strictly
satisfied. A more exact analysis would take ac-
count of the variation of the average kinetic en-
ergy of the mirror as it crosses the box, but this
replacement remains valid in the limit of large m.
Hence

m2c%a? 3rTw? d
Q=—2-7—n€-§dw[p2— n2c® (p—éwh_p)]' (3.13)

dw

To obtain an equation corresponding to (3.2), it
is necessary to know Q. A detailed analysis of
the electromagnetic interaction between the mir-
ror and the wall is out of the question, but, pro-
vided we make an additional assumption proposed
by Boyer, such an analysis is not necessary.

We begin by considering the case of zero tem-
perature, but we no longer suppose that the spec-
trum in that case is zero. Instead we take the
zero-point spectrum of Planck’s second theory,
which has been revived more recently under the
name of stochastic electrodynamics,***".

_ 't
po(w)"ﬂzcg .

(3.14)

This spectrum gives P=0 and (4%, #0. An un-

confined mirror is therefore accelerated by the
zero-point field to arbitrarily high energies,
which seems entirely natural in view of the re-
quirement of Lorentz invariance for the velocity
distribution. (For more on the Lorentz invari-
ance properties of this spectrum see Refs. 12 and
28.) We therefore obtain

_ 7.‘.202(12

Q= dwpg. (3.15)

Boyer’s assumption is, quite simply, that the
radiative energy loss at the walls is the same at
all temperatures, that is,

Q=@Q,-
In my view, Boyer’s attempt at justifying this
assumption [Ref. 12, the paragraph between Egs.
(26) and (27)] is not entirely convincing, and it
will require further investigation. His main
achievement was to see that @ is not zero, and
that this additional assumption results in the

Planck spectrum. This is seen by substituting
(3.16) in (3.13),

(3.16)

p— tpdp_ T
¥ dw  3RTw?

(0* = po”) - (3.17)
With the condition that p vanishes when w is zero,
the solution is

fiw

_ hw?
P53 coth

SHT (3.18)

which is the sum of the zero-point and the Planck
spectra. It is the view of stochastic electrody-
namics that radiation detectors register only the
difference between this and the zero-point spec-
trum, so, with the aid of Boyer’s assumption
(3.16), we have obtained a derivation of the Planck
spectrum based entirely on Maxwell’s electro-
dynamics.

IV. SUMMARY AND DISCUSSION

Planck’s first attempts, in the years 1893~
1900,33 to derive the spectrum of black radiation
were based on his study of a linear oscillator in
equilibrium with such radiation. He hoped to re-
place Boltzmann’s hypothesis of molecular chaos
by a similar one, that of “natural radiation,” ap-
plicable to the electromagnetic field, and hence
to construct an entropy function directly, follow-
ing Boltzmann’s H-theorem method for gases.

This method failed and so Planck “as an act of
desperation’33 was forced to adopt a more ad koc
approach. This was to guess the form of the en-
tropy function (3.4), and hence obtain the proba-
bility W of the equilibrium state by inverting the
Boltzmann relation to give



1514 TREVOR W. MARSHALL 24

W=exp(S/k). 4.1)

He then sought to justify the resulting probability
by a modified form of Boltzmann’s “complexion
counting,” which he could do only with the intro-
duction of the finite energy quantum 7Zw.

Planck’s critics, among whom Einstein, during
the first decade, was the most severe,? pointed
out that Planck’s entropy function was inconsis-
tent both with classical statistical mechanics and
with Maxwell’s electrodynamics, but, right up to
the Solvay conference in 1911, Planck insisted
that his theory was based on the latter and that
the former could not be applied to a system with
an infinite number of degrees of freedom.

Einstein’s view prevailed eventually over that
of Planck, and his analysis of the moving mirror,
together with his analysis of the moving oscillator
(Einstein and Hopf) were of crucial importance in
gaining him that victory.

According to the analysis presented here, and
originated by Boyer, this victory was prematurely
awarded. Planck was correct in insisting that
Maxwell electrodynamics gave an adequate basis
for deducing the spectrum of black radiation. He
was also correct in denying the relevance of clas-
sical statistical mechanics, or at least of the
equipartition law, to a system with an infinite
number of degrees of freedom.

Electromagnetic radiation in a cavity is, of
course, a system of the latter type, but, perhaps
even more importantly, it is, according to sto-
chastic electrodynamics, an openr system. This
means that it cannot be treated in isolation, so
that, for example, when the cavity is subjected
to adiabatic change, we can obtain incorrect re-
sults by ignoring the free entrance into the cavity
of zero-point radiation. For example the equilib-

rium condition,
AS=0, AU=0, (4.2)

on which equation (3.5) is based, cannot be valid
for this system.

This means that Planck’s own proof of his radia-
tion formula was indeed inconsistent, as his crit-
ics claimed, but that the foundation for a correct
proof, based on Planck’s original, pre-1900 pro-
gram, was in Einstein’s mirror analysis of 1909.

Finally, from the point of view of modern in-
formation theory, the correct entropy for a nat-
ural radiation field, if we assume that “natural”
means “Gaussian,” is simply

s=k [ 2 n [p@]do. (4.3)

Of course, if (4.2) were the appropriate equilib-
rium condition, the Rayleigh spectrum would fol-
low immediately. However, until a more com-
plete analysis can be made of the zero-point radia-
tion entering the cavity during an adiabatic change,
it is not possible to make a thermodynamical
analysis based on the entropy function. It follows
that, for the time being, the H-theorem analysis
developed here is the most general analysis pos-
sible.

Note added in proof. 1 have recently received
from Dr. A. Rueda of the University of Bogota,
Columbia, a paper [Uniandes Report No. AS 1349
(unpublished)] on the behavior of classical parti-
cles immersed in the classical electromagnetic
zero-point field. This paper takes substantially
the same view of the effect of wall collisions as
I have expressed in the discussion above following
my equation (3.13).
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