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A canonical quantization of the free scalar field is presented for the six classes of stationary coordinate systems in

Minkowski space. The corresponding vacuum states are found to be restricted to two possibilities: Those in

coordinate systems without event horizons are the Minkowski vacuum; those in coordinate systems with event

horizons are the Fulling vacuum. The vacuum state is not in general the lowest energy state, but is stable due to the
presence of additional symmetries, and a particle interpretation remains valid. These vacuum states are not
compatible with vacuums defined by means of observer-based detectors.

I. INTRODUCTION

It is well known that the vacuum and particle
states defined by canonical quantum field theory
are not coordinate independent. This was first
discussed by Fulling, ' who showed that the vacuum
defined in a coordinate system adapted to a uni-
formly accelerating observer differs from the
usual vacuum of Minkowski coordinates. In fact,
it has since been shown that the Minkowski va-
cuum can be expressed as an infinite sum of
multipartiele states with a thermal distribution
according to the canonical definition of the ac-
celerating observer. ' These results have led us
to investigate the nature of the canonical quantum
field theory in other coordinate systems in flat
spacetime. In particular, "What other vacuum
states are possible?"

We restrict ourselves to stationary systems,
as only in such systems can the definition of
particle states be time independent. The sta-
tionary coordinate systems in flat spacetime have
been described in a previous paper. ' There are
six classes of systems corresponding to the six
distinct types of timelike Killing vector fields
in flat spaeetime, which have been classified
on the basis of the six types of stationary world
lines in Minkowski space. Quantization in co-
ordiriate systems of classes', B, and C has been
performed previously. Minkowski coordinates
belong to class A. , which are adapted to inertial
observers. P seudocylindrical coordinates, adap-
ted to uniformly accelerating observers, belong
to class B Quantizati. on in this system, discussed
above, yields the Fulling vacuum. Quantization
in rotating coordinates, belonging to class , has
also been carried out."' The vacuum defined in
this system is equivalent to the Minkowski va-
cuum. On the basis of these results we con-
jectured that vacuums-differ when one system

has an event horizon and the other does not. In
this paper, quantization in the remaining sta-
tionary systems is performed with results that
support this conjecture. In addition we find that
there are only two stationary vacuums in flat
spacetime: the Minkowski vacuum and the Ful-
ling vacuum. The Minkowski vacuum is found
in class 4, C, and D systems, which have no
event horizon. The Fulling vacuum is found in
class I3, E, and E systems, which have identical
event horizons.

The remaining sections of this paper are ar-
ranged as follows. In Sec. II we review the for-
malism of canonical quantum field theory that is
pertinent to the types of coordinate systems we
treat. ' In Secs. III through VIII we summarize
the' previous results and extend them to the re-
maining classes of stationary coordinate sys-
tems. In See. IX we discuss our results and
indicate why they imply that a vacuum defined via
canonical quanti, zation is not compatible with a
vacuum defined via Bn observer-based detector.

II. QUANTUM FIELD THEORY

The first step in quantizing the scalar field is
to solve the El&in-Gordon equation, which in flat
space is

M /=0,
for normal modes B.ppropriate to the coordinate
system in question. The coordinate systems we
are interested in are based upon a Killing vector
E which is timelike in Bt least some portion of
Minkowski space. In general, when a Killing
vector is present, normal modes may be chosen
to satisfy

&~4 =-&E4,

where 4& is the I ie derivative with respect to K.
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Now, the presence of a Killing vector further
implies that a coordinate system exists in which
the metric is independent of ~ne of the coordinates
and in which the Killing vector consists only of a
unit component in that coordinate direction. The
coordinate systems of interest are just such sys-
tems adapted to all such Killing vectors K. If we
call x' the coordinate associated with E, then
in such a system Eq. (2) becomes

8
0tg= —i

8x

Rv $ =ivy
&

then the positive norm is coincident with the sign
of the eigenvalue of g with respect to $,

S&g = —i(c,E —c2v)g,

1.e. , c,E —c,v & 0 for all positive -norm modes,
and vice versa. Modes are normalized on the
above-mentioned choices for Z.

The field may be quantized by defining a field
operator 4 and its conjugate momentum II, de-
fined as the projection of the vector density

so that g can be separated in the form

g =e l "U(x).
II& -+&/2+vP 8

8x" (9)

If there are additional independent gilling vec-
tors which commute with E and each other, the
coordinate system may be further specialized and

g further separated into exponentials in terms
of coordinates (x ', . . . ) associated with each
Killing vector. All of the coordinate systems we
deal with are adapted to at least one such ad-
ditional Killing vector.

Inner products are defined by

onto the normal to Z, and invoking the commuta-
tion relations

[C (x ', x ), rl ( x ', x')] =i 5 2( x -x'),
[e(x',x), e(x', x')] =O,

[ll(x', x), II(x', x')] = 0.

(1oa)

(lob)

(10c)

The field operator is expressed in terms of posi-
tive-norm modes as

( q„q,),= i ) q,f"q, dI'„,

where

(5)
Insertion of this expansion into Eqs. (9) and (10)
yields the usual commutation relations for a and
a~,

8 8fP gl/2gVv gl/2gVv
8x" 8x"

is the Wronskian associated with the Klein-Gordon
equation and Z is generally some spacelike hy-
persurface. For simplicity we shall always
choose for Z one of the x'=constant surfaces
associated with E. In fact, we can easily arrange
for the surfaces'x =0 to coincide in five of the
six systems treated.

The inner product (5) separates the mode func-
tions satisfying the Klein-Gordon equation into
modes which have positive or negative norm. If a
mode g has a positive norm (positive inner pro-
duct with itself), then g* has a negative norm.
This property is generally not coincident with
that of positive and negative frequency, which is
determined by the sign of the eigenvalue E in
Eq. (3). It is the former property rather than
the latter which is important in defining particle
states when the field is quantized.

In each of our coordinate systems the normal
to the x =constant surfaces is also a Killing
vector in the form g =c,K+c2V, where V is one of
the additional Killing vectors characterizing the
coordinate system and c, and c, are constants.
If v is the eigenvalue of a mode relative to V,
1.e. )

(12a)

(12b)

(12c)

[al a/] =5)/

[a„a,] =0,

[a'„a,') =0.

The operators a and a~ are therefore defined as
annihilation and creation operators, respectively,
and a vacuum state is defined by

a) ~0) =0

for all a„one-particle states by ~i) =alt ~0), etc.
The annihilation and creation operators may be .

expressed in terms of the field by

a =i gf2C, dZ„,
C

(14a)

a/~= —i q, f"e dZ„. (14b)

P~ = U„T""dE„, (15)

where T"" is the stress-energy tensor, is a con-
served quantity. Thus, if we define a stress-
energy tensor operator as

For each Killing vector U present, the classical
expression
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theri P~ defines an operator

(16)
( 0)„=—exp( -g cT zt V/~ a ~

f ) 0)„
where V» is the "pair-creation amplitude"

(24)

IJ„'T""dZ„.
C

(17)

The natural definition of energy is the quantity
9t-=Q». Insertion of Eq. (16) into Eq. (17) yields

=2K (18)

which is not generally bounded below, as E is not
generally bounded below for positive-norm modes. .

However, let us consider the operator

I/a=I Q Pyg &g/
2

(25)

(26a)

(26b)

and c is the vacuum-to-vacuum amplitude
„,„&0~0)„„which itself may be divergent. For a
boson field the existence of a ' is guaranteed.

Note that o, and P may be expressed as

«/=&««&c

'p
&

=
g ~ (Cy E/ —C2 V/)(Q&Q/ +8

& g/) . (19) III. CLASS-A COORDINATES

Matrix elements of Q& are positive definite. The
vacuum state thus represents the lowest state
of the quantity c,E —c,v. It also corresponds to
X=0=v. As E and v are good quantum numbers
for particle states, the vacuum state is not un-
stable, since by Eq. (19) it is the only state with
g=v =0

If we have two sets of modes «and g, available
for the field 4, they may be related by an ex-
pression

( 82 82 82 82
+M)g 0.

(8t 8g 8y 8z

Positive-norm modes in these coordinates are

1 0- je&& jlr. 'x
(2 )3/2(2 )1/2

(27)

(28)

Class-A coordinate systems are based on a
Killing vector field with components (1,0, 0, 0)
in an inertial frame. The most familiar class-A
system is rectangular Minkowski coordinates
(t, x, y, z). In these coordinates, the Klein-Gor-
don equation is

(«/ 4/ + Pg g4/ ) ~ (20)

If the two sets of modes have been normalized
relative to the same surface Z, then the coef-
ficients a and P satisfy the relations

where m'= ~k~ '+M' and a»0. This coordinate
system is static, so K and g are equal, so that
these modes are also of positive frequency. Thus,
the vacuum state in this system is the lowest
energy state. The field operator is expanded in
terms of these modes as

t

d ~la(k)4(k) +a~(k)g~(k)], (29)

Inserting Eq. (20) into the expression for a& in
terms of the field, we obtain the following Bo-
goliubov transformation relating a to a and at:

and the Minkowski vacuum is defined by

a(k) ~0) ~=0. (80)

g j
= Q+j~C~ — )~8~ (22)

When the coefficients P are zero, the vacuums
defined by both sets of modes are equivalent. If,
on the other hand, the P are nonzero, the two
quantizations are inequivalent, and, in fact, the
"old" vacuum will contain "new" particles, i.e. ,

Another class-A. coordinate system is obtained
by using cylindrical coordinates on the t =constant
hypersurfaces. In these coordinates (t, r, 8,z) the
Klein-Gordon equation is

8 1 8 8 1 8 8r ————, , —,+M'~/=0.8t g 8y' 8y y 8g 8z ]

0 a;a&0 =+ P)sP
old old jt j

(23)
Positive-norm modes in these coordinates, cho-
sen to be well behaved at x =0, are

This sum is not necessarily convergent.
The old vacuum may be expressed in terms of

the new vacuum as

A

2v (2(g)'/2
I(a)fe l Ills l~e~J (q~) (82)

where ~'=k,'+q'+M', ~&0, and, of course, they
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are also of positive frequency. In terms of thes'e

modes, the field operator is a[(q', m, k'„q, m, k,) = 5„-5(k,—k',),t)(q -q')

k = Q fqqqdk[k(, qm, ,k,)q(q, m, k,)
P(q', m, k'„q, m„k,) =0.

(38a)

(38b)
+a~(q, m, k,) g+(q, m, k,)].

(33)

Relating the modes [t) and P by a Bogoliubov
transformation, we find that(,«) 1 (k, —ik, 5(q —(k„'+k,')'~')

(2v)' '
)k q q

x 5(k, -k'),
P(q, m, k'„k) =0.

(34a)

(34b)

IV. CLASS-C COORDINATES

Class-C coordinate systems are based on a
Killing vector field with components (1+((x,zt
—ry, rx, 0), r&z. The most familiar class-C
coordinate system is rotating coordinates
(t, t, 8,z), where 8 =8 —Qt. In these coordinates,
the Klein-Gordon equation is

The latter result verifies that the vacuum states
in rectangular and cylindrical Minkowski coor-
dinates are indeed the same.

Thus, the vacuum defined in rotating coordinates
is just the Minkowski vacuum. In fact, the field
theories in rotating and in cylindrical coordinates
differ only by a redefinition of the energy of a
mode.

V. CLASS-D COORDINATES

Class-D coordinate systems are based on a
Killing vector field with components (I +[['x, zt
—zy, zx, 0). We have selected what we regard as
a "natural" coordinate system for this class,
null parabolic coordinates, defined by t = &p'g'
+(&x+a)t +y, x=2 et '+x —1/2z, and y= —,

' z't '
+(zx ——,)t +y. In these coordinates the Klein-
Gordon equation is

(
82 g2 g2 82

,zx, , +M' =0
et ey 8x' ey' ez'

(39)
Positive-norm modes in these coordinates, chosen
to be well behaved as g - , are

8 1 8 9 1Q= ———~—— —,+M' /=0
8g 8g «8«8«2 8g2 Bz

(35)

where 0 is a constant. Positive-norm modes
in these coordinates, again chosen to be well
behaved at «=0, are

with (~+mQ) =k +q +M and ~+mQ& 0. It is
evident that these modes are not generally of
positive frequency, and the vacuum will thus not
be the lowest energy state. The field operator
is expanded in terms of these modes as

k = P f qkq, q[aq( m, q)q(kq, m, k)
m

+a t(q, m, k,) g~(q, m, k,)].

(37)

The rotating modes [t) are identical to the cylin-
drical modes g when both modes are expressed
in the same coordinate system, if ~ is replaced
by +nsQ in the latter, so the Bogoliubov trans-
formation between the two sets of modes is

4 = dl dkPX [a(l, k, A.) g (I, k„X)
+a t(l, k„Z)[t)+(I,k„X)]. (41)

A Bogoliubov transformation between the modes
[)) and the rectangular Minkowski modes g yields

4
e '"'e '"e "+Ai(Z+o,x), (40)

4n Kl'

for /&0. In this expression, o, =(2zP)'~', y=o
x (k,' —l&D+ M'), and Ai is an Airy function. ' Unlike
the other coordinate systems treated, the hyper-
surface t =0 is actually a cecil surface, corres-
ponding to the hyperplane t =y in rectangular
Minkowski coordinates. Such a surface is not a
Cauchy surface for Minkowski space, strictly
speaking. However, it is a satisfactory initial
data surface for a massive field, and requires
further consideration only for a massless field.
This is the "front" form of quantization discussed
by Di.rac. '

Here, as in rotating coordinates, positive-norm
modes need not be positive-frequency modes as
well. Moreover, the energy + plays no role
whatsoever in defining positive-norm modes, that
being characterized solely by /.

The field operator is expanded in terms of the
modes g as
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1»t'2

1TKE 2gl

x 5(k, —JY,)5[l —(»() -k„)], (42a)

(42b)

VI. CLASS-B COORDINATES

P(l, k'„X;k) =0.

Thus, the vacuum defined in null parabolic
coordinates is again the Minkowski vacuum.

»8 = dEdk„dk, [bz(E, k„,k,)»t»„(E,k„,k,)
+btz(E, k, k,)g~z(E, k„k,)
+bi (E,k„,k,)»t»i (E,k„,k,)

+b~t(E, k, k,)(t)z*(E,k„,k,)].

The modes (t)„and (t)z are related to the rec-
tangular Minkowski modes»1) by the Bogoliubov
coefficients

(46)

Class-B coordinate systems are based on a
Killing vector field with components (1+»»x, »»t, 0,
0). A familiar class-8 system is pseudocylin-
drical coordinates (7, $, y, z), where $ =(x' —t')' '
and t =tanh" '(t/x), in which the Klein-Gordon
equation is

x 6(k, —k')5(k, —k',), (4Va)

a (E, )."„,k';k)=[2wtd(1 —e ' ))'"( *)

( g +M') (t =0.
Br $ 8$ 8$ By Bz

'
(43)

Positive-norm modes in these coordinates may
be chosen as

x 5(k, -k', )5(k, -k'), (4'7b)

sinh vE'»' ~'
e ' 'e ))"e' ~'K (Qg) (44)

p„(E,k'„,k'„k) = —e '
o» z(E, k', k'„k), '

P~(E, k'„, kt;k) = —e 'zc»~(E, k'„, k'„'k) .

(47c)

(4M)

where Q'=k„+k,'+M' and E&0. X»z is a Mac-
donald function, ' a Bessel function of pure ima-
ginary order and argument. As $ =(x' t')'~' is-
defined only for x& t ~, these functions are only
defined in the corresponding region of spacetime,
the right Rindler wedge; hence the notation Qz.
By defining negative values of g by $ = —(x' —t')'~'
for -x& ~t ~, we can define mode functions which
cover the left Rindler wedge:

Qne immediately sees that the vacuum in pseudo-
cylindrical coordinates, the Fulling vacuum,
defined by

b„(~)(E,k„,k,) ~0)z=0,

is not equivalent to the Minkowski vacuum. In
fact, since

e»z e»" e»" ff (-Qg). (45)
&sinhgE&'~'

2»»' $|»

or

y»»T —yI »» —t P py &-» (49)

The factor e'~' has a different sign here than in
(t)z because 8/Bv is past directed in the left Rin-
dler wedge, and thus the sign in the exponential
must be altered if we still desire positive-norm
modes to be given by E& 0. Then the mode func-
tions (t)z and (Ie)~ are also positive-frequency
modes.

The field operator is expanded in terms of the
modes (t)z and (t)~ as

V"(E~ k~, V.;E,k„k,) =-»e-"6(E -E')
x 6(k -k', )5(k, —k',),

(50)
yRB —yLL 0 (51)

the Minkowski vacuum (0)„is related to the Ful-
ling vacuum ~0)~ by

~0)„= —exp dEdk, dk, e 'zbtz(E, k„k,)b~t(E, k„,k,) (0)~.
1

(52)

Thus, the Minkowski vacuum consists of a mix-
ture of multiparticle Fulling states composed of
particle pairs, one each in the right and left Rin-
dler wedges, distributed ip. a thermal fashion.

I

The number of Fulling particles N„present in
the Minkowski vacuum diverges. Even the number
of monochromatic Fulling particles N (E) di-
verges.
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P„(~)(E', q, m; E, k„,k,) = 0 .
(54a)

(541)

VII. CLASS-E COORDINATES

Class-E coordinate systems are based on a
Killing vector field with components (1+«(x,«(t
—ry, vx, 0), «& r We .have chosen as a natural
coordinate system for this class pseudorotating
coordinates. In these coordinates (v, g, y, z),
where y =y -Q7', the Klein-Gordon equation is

8 8 ' 1 8 8——Q—sr sy ( sg ()(

8 8 2+M' /=0,
By Bz

where 0 is a constant. Positive-norm modes
in these coordinates may be chosen as

[sinh««(E+k, Q)] '~'

It is convenient to define modes in another
class-8 coordinate system, obtained by trans-
forming the coordinates y, z into polar coordinates
r, 8. Positive-norm modes in this coordinate
system are

(si~ E '~'
4)«= ( 2 s e '"e™~(q~)&«z(QI), (53)

with Q'=q'+M and E&0, on the right Rindler
wedge and (t)~ defined on the left Rindler wedge
in the same manner as (t)~. These modes are
related to the modes Pz and (t)~ in precisely the
same manner as the modes of rectangular and
cylindrical Minkowski coordinates:

u„(~)(E',q, mE, k„,k,)

t k, —ik„)i"6( q —(k '+ k ')'~')—
(2„)«~2 I( 'q "]~

" '
( — '),

P„(i)(E,k„,k'„E,k, , k,) =0.
(58a)

(581)

Thus, the vacuum state in pseudorotating co-
ordinates is the Fulling vacuum, and the two
field theories are identical up to a redefinition
of energy.

VIII. CLASS-F COORDINATES

Class-E coordinate systems are based on the
most general timelike Killing vector field, which
has components (1+Kx Kt —Ty 7'x —Uz Uy) in so)ne
inertial frame. We choose as the most natural
class-E coordinate system rotating pseudocy-
lindrical coordinates (r, g, «, 8), where 8 =8 gr, -
in which the Klein-Gordon equation is

Ii() - 8')2 1 8 ()—
(
—-Q —

~

———g—$' )(St ()5j g 8$ eg

+M~ y=o (")8 8
r 8«()««2 8/2

where 0 is a constant. Positive-norm mode
functions in these coordinates may be chosen as

slnh))'( + +m Q) «)«««™~jy

2'

As in the relationship between modes in cy-
lindrical Minkowski and rotating coordinates,
the mode functions Pz(z) and Qz(z) are functionally
equivalent if E is replaced by E+k„Q in the for-
mer. Thus, the Bogoliubov transformation be-
tween the two sets of modes is given by

()«„(~) ( E,k„,k'„' E,k„,k,) = 6[E - ( E +k Q)]

x 6(k„-k„)6(k, —k',),

x E ( «™««((() )]))) (60)

x e «z'e") ~e -"+If«(z.), -„)((L)&), (56)

q = dEdk„dk [bz(E, k„,k )(I)z(E,k„,k )

+ b t (E,k„,k,) P*„(E,k„,k,)
+ bi( kE„,k,) Pi(E, k„k,)
+ b~~(E, k„,k,) P~~( ,Ekk,)].

where (I)'=k„'+k,'+M' and E+k„Q &0, again
defined only on the right Rindler wedge. Mode
functions Q~ are defined on the left Rindler wedge
precisely as in Sec. VI. These mode functions
are not, in general, of positive frequency.

The field operator is expanded in terms of the
modes (t) z and Q~ as

qdq«[b, (E,q, m) y, (E,q, m)

+t)st(E, q, m) p*„(E,q, m)

+ b (),Emq) (t)~(E,q, m)

+ b ( «qE, m) P~(E, q, m)]. (61)

Once again, the mode functions Qz(z) are the
same as the modes (j))„(z) of Sec. VI if E is re-
placed by E+mQ in the latter. The Bogoliubov

where (L)' =q '+M' and E+mQ& 0, on the right
Rindler wedge, with ()t)z defined on the left Rin-
dler wedge as before. These modes are not
generally of positive frequency.

The field operator is expanded in terms of these
modes as
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transformation between these two sets of modes
therefore yields

c(~» (E,q', m; E,q, m)

=6[ E —(E+ma)]6„: 6(q -q')

(62a)

4&r &(»q'~m; E,q, m) =0, (62b)

so the vacuum state in rotating pseudocylindrical
coordinates is once again the Fulling vacuum.

IX. DISCUSSION

We have developed a canonical quantization of
the free scalar field in all of the classes of sta-
tionary coordinate systems in flat space. There
are only two possibilities for the vacuum state.
In those coordinate systems without an event
horizon, it is the Minkowski vacuum. In those
systems with an event horizon, it is the Fulling
vacuum. These two vacuums are not equivalent.
The presence of an event horizon thus appears to
play a key role in the definition of a vacuum state.
The vacuum state defined in each case, while not
in general the lowest energy state, is neverthe-
less stable, owing to the presence of a conserved
quantity in each case, associated with the de-
finition of positive-norm mode functions, for
which the vacuum is a minimum. The use of these
symmetries in this situation merely represents
a particular observer's explanation of the sta-
bility of the Minkowski or Fulling vacuum.

The clear distinction between positive frequency
and positive norm has been an important element
in our procedure. The latter property is the
critical factor in defining creation and annihilation
operators, and thus the vacuum and particle
states. The former property is associated with
energy, and in more conventional settings it is
believed that expectation values of the energy,
if not positive definite, must at least be bounded
below for a stable vacuum to exist. In our cir-
cumstances the presence of additional symmetries
h'as resolved this difficulty. Whether it can be
so readily resolved in a more general geometry
is at present unknown.

When does the distinction between positive fre-
quency and positive norm arise? In the particular
situations we have examined, there is no such
distinction when one can find an initial-value
hypersurface on which the energy-defining Kil-
ling vector is everywhere timelike. When no
such surface exists, then we find that the con-
nection between positive frequency and positive
norm disappears. The existence or nonexistence

s(E) = f e '*'(s(x(s))e(x(0)))ds,
~ OQ

(68)

where s is the proper time along the detector's
world line x(s). The Wightman function (4C) may
be evaluated relative to any vacuum of interest.
Evaluated relative to the Minkowski vacuum, the
familiar result is

( (') ()),=4,[(, ), (f, f,, ),] ( )

For inertial motion, . this becomes —1/4n'
x (s -iz)' and S(E)=0 for E)0, i.e. , the detector
"sees nothing. " For motion with uniform ac-
celeration $ ', this expression is —1/8m'$ '
&&(cosh[(s -iz)/g] -1) and the resulting spectrum
for S(E) is a Planck spectrum. More general
stationary motions yield spectra which are dis-
tinctly non-planckian. "

We have evaluated the Wightman function re-
lative to the Fulling vacuum and the result, ex-
pressed in pseudocylindrical coordinates
(&, h, y, z), ts

(C (x')C (x)&, =. 1

where

tanh '~
(2 tanh '(x)' —(v' —7 —iz)' '

(65)

(g' —g)'+ (y' —y)'+ (z' —z)'
Q .(5'+ 5)'+(y' -y)'+(z' -z)' (66)

of such a surface may therefore be the deter-
mining factor. As a case in point, we could arti-
ficially restrict the Killing vector defining class
C systems to be everywhere timelike by inserting
a cylindrical conductor of radius B(0 '. In this
case the identification of positive frequency and

positive norm is restored.
What alternatives are there to the above quanti-

zation procedure for defining a vacuum? Unruh"
suggests using a detector to define a vacuum state
for any observer as the state in which the de-
tector has no response. Aside from philosophical
grounds, a prime motivation for such a definition
is that this response, the Fourier transform of
the Wightxnan or autocorrelation function, which
is the spectrum of vacuum fluctuations, is in
accord with the results of canonical quantization
in both class-A and class-8 coordinate systems.

Let us consider this spectrum in more detail.
It is essentially given by
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For uniformly accelerated motion (g, y, and s
constant) this reduces to —1/4g'(s —ie)', and
thus the detector will indeed see nothing in the
Fulling vacuum. More general stationary motions
give Wightman functions which clearly have non-
vanishing Fourier transforms for E& 0. The cor-
relation between vacuum states defined via ca-
nonical quantum field theory and via a detector
is thus broken for more general stationary mo-
tions, and we must conclude that the two defini-
tions are inequivalent.
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