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Stability of massive objects in a new scalar-tensor theory
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%'e define a new scalar-tensor theory with an effective gravitational coupling constant depending on a scalar field.
The coupling is such that the gravitational interaction decreases with the strength of the scalar field. We show that
this is not sufficient to prevent the gravitational collapse of sufficiently massive dense objects.

I. INTRODUCTION

The existence of black holes is closely related
to the problem of singularities in space-time. In
general relativity the formation of black holes is
the consequence of the collapse of massive ob-
jects with masses greater than several times the
solar mass. It was discussed in the literature
whether in other theories of gravity, which are
in accord with present gravitational experiments,
the formation of event horizons or the collapse
of massive objects might not occur. ' ' Good can-
didates for theories with the latter feature may
be scalar-tensor theories, where the gravita-
tional constant G or the particle rest mass is
variable (i.e. , Bergmann-Wagoner theory, "
Nordtvedt theory, ' Brans-Dicke theory, ' "and
variable-mass theory, ""to mention just a few).
In general, in scalar-tensor theories the metric
is generated by a scalar gravitational field which
acts together with nongravitational fields (matter).
The scalar gravitational field itself is generated
by the nongravitational fields via a wave equation
in curved space-time. In this paper we discuss a
new kind of scalar-tensor theory of gravity, where
the gravitational constant depends on a scalar
field, which itself couples to the surrounding
masses via the curvature scalar.

The idea behind this model is that during the
collapse of a star which in general relativity
would form a black hole, in our theory a strong
scalar field might be built up, which should reduce
the gravitational constant until the collapse is
stopped and the whole system reaches a new sta-
ble configuration. In this paper we therefore look
for stable, time-independent solutions of the field
equations of'our theory, representing such a final
configuration with very large nucleon number,
surrounded by a scalar field. '4 If there exist such
solutions for any set of parameters, a time-de-
pendent treatment would be necessary to find out
whether a given initial configuration can reach
this state. If, however, it turns out that there
are no such stable end configurations if the nu-
cleon number exceeds a definite finite boundary,

( +-R)q) =0.

In order to obtain a more general theory, we add

a mass term and allow for an arbitrary coupling
constant p between scalar field y and curvature
scalar A:

+ —B+ p, +=0.p
6

(2)

This wave equation can be derived from the action
integral

+ yR —2yA -gd4x +I

this would already prove that gravitational col-
lapse is also possible in our theory, if the initial
star configuration has a mass large enough; no
further time-dependent studies are then neces-
sary. We shall show in this paper that the latter
case is true. Even when varying the coupling con-
stant between scalar and gravitational fields over
the whole allowed range, the effective gravita-
tional constant only varies within narrow bounds.
It is not reduced strongly enough by the scalar
field that stable solutions with arbitrary large
masses are possible.

Our paper is organized as follows. In Sec. II
we derive the field equations for the scalar field
and, the gravitational field from an action integral.
In Sec. III we make a static, spherically sym-
metric Ansatz for the metric and derive the gen-
eralized Tolman-Oppenheimer -Volkofi equation.
In Sec. IV we define a quantity which allows us to
measure the stabilizing effect of the scalar field.
In Sec. V we make some estimates concerning the
strong-coupling limit and the weak-field limit.
Our numerical results are presented in Sec. VI.

II. ACTION INTEGRAL AND FIELD EQUATIONS

The starting point of our considerations is the
conformally invariant equation for a massless
scalar field
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where we have added the Einstein action with the
~I

cosmological term and the action of the external
sources of the gravitational field I'"':

(p/6)(p
y+ [p(p -1)/12]y'

-p. y+-T"„+—'p, y — yl „yl" I
= 0. (7)

(P

with the external energy-momentum tensor 1'„„:
2 s(Z, t„l-g) s &(Z .~(„v'-g)

sg" ax'. sg""l,

y is half of the inverse gravitational constant

y=c'/16no

and A is the eosmologieal constant.
A first glance at the action integral (3) reveals

the following possible effects of the scalar field.
(i) Instead of y, now [y -(p/12)y'] becomes the

effective gravitational coupling constant. This
means that the gravitational constant, as mea-
sured, e.g. , by a Cavendish scale, depends on
the strength of the scalar field and hence may
vary as a function of space and time.

(ii) The effective mass [p, '+ (p/6)R]'~' of the
scalar field depends on the curvature scalar R.

(iii) A long-range scalar field gives a contribu-
tion to the cosmological constant -p. 2y2, so that
we also get an effective cosmological constant
A,ff =A + li'cp'/4y. Because of its smallness" we
neglect the cosmological constant. At the same
time the experimental data for A,ff give an upper
limit for the mass of the bosons.

The variation of (3) with respect to y and g„„
leads to the equations for the metric and the sca-
lar field:

~
y ——(p' ~(R„„--,'g„„R)
( p

= -2T,p -2[9
l pq l

U
—2gpv(q l aq

"-p'9 ')]

IH. SPHERICALLY SYMMETRIC FIELDS AND THE
GENERALIZED TOLMAN-OPPENHEIMER-

VOLKOFF EQUATION

To investigate the influence of a scalar field
on the gravitational collapse, we consider the
simplest system we can imagine. The investi-
gated object and therefore the metric shall be
spherically symmetric, nonrotating, and un-
charged. In the following we will call such ob-
jects stars. Because we are interested in stable
configurations, the metric will be required to be
globally time. independent. Under these assump-
tions, the most general form of the line element
ls

dS2 e (r)dt2 e X(r)dr2 r2~2 (8)

and the scalar field y is a function of r only.
The deflection of light in a scalar-tensor theory

is less than in general relativity, since the scalar
part of the gravitational field gives no contribu-
tion. (In a pure scalar theory the space-time is
conformally Qat and null geodesics develop as in
flat space. ) From solar-system experiments it
is known that the contribution of a scalar field to
the gravitational field must be small. We there-
fore make the assumption that far away from a
star the scalar field does not contribute to the
gravitational coupling constant. Hence the scalar
field must vanish at infinity":

y(r)-0 for r
For the energy-momentum tensor of the stellar

constituent matter we make the usual hydrodynam-
ical Ansatz:

T~ = diag(p(r) p(r) p(r) p(r))
P

+12[(& )ll~ll ~ gu~(9' )

Qp+ p, q7+-Rq7 = 0.P
6

By forming the trace of Eq. (4) one obtains an
expression for the curvature scalar:

(p/12)~ T p 2 0'l„P +p'+0'+& 0

(4)

(6)

In agreement with the field equations (4) and (5)
the invariance of the action integral against co-
ordinate translations gives"

T""
)

=0

If we now wish the scalar field to help stabilizing
massive stars, we have to require that the ef-
fective gravitational coupling constant decreases
as a function of the scalar field, i.e.,

P
eff ]2

This relation may be utilized to eliminate the
curvature scalar from the Klein-Gordon equation
(6):

Hence, because y2 is positive definite, p must be
negative.

In the following we therefore take into account
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only negative values of the coupling constant p,
i.e. , p&0. Inserting the Ansiitze (8), (9), and (10)
into Eqs. (4) and (5), we get the following set of
equations for the radial functions v(r), A.(r), p(r),
and q(r):

(12)

M(r)
r

with

M(r) -=e f ~ J~ e'f ~ r'(p+ -,' p. 'y') --',pry y'= 1
4&.ff

+r
~

———
q r(—py— dr2 (1 p, 2 p

(2 3 3

(14)
I

+fc, 1 1 p, 2 pe = exp + — ———
g7 ——

q7@ d~
2 y ff 2 6 6

(15)

y, and y„stand for

p

p
'y„, ='Y,ff -12 ~@9

Furthermore, we get

y+ ~' ~"+-V'+
2

~' e '+
12 ~e"e '-»'V »V&-3P+~'-~') =0

(17)

The last equation (17) is the generalization of the
Tolman-Oppenheimer-Volkoff equation o

p(r) M( )P 1 Lp ]r' p 4yM(r)

with

(17')

M(r) =- — pr'dr.1

Comparing (17) with (17') we discuss the various
terms: M(r) is the "gravitational charge, " i.e.,
the product of mass and gravitational constant.
In the presence of the scalar field we are not able
to.separate mass and gravitational constant, as is
apparent from Eq. (14). The term (1+P/p) is
identical in both equations and describes how grav-
ity acts on the internal pressure. The term

p—=m„+W(n), (19)

where m~ is the bare mass of the constituing nu-
cleons. In the case of incompressible matter no

work is done by compression. Neglecting thermal
energy (7 = 0), therefore the internal energy is
zero and the density p is proportional to the par-
ticle number density n:

&(R) = n(r)r'e ~'drdQ, (18)
0

where e~ 'x'dxd0 is the physical volume element,
n the particle number density, and R the surface
radius of the star.

The connection between p and n is given by the
following relation involving the internal energy
W(n):

means that pressure generates gravity. The action
of gravity upon the scale of length and time is
given by the factor e~. The last factor denotes
the gravitating part of the scalar field itself.

IV. GRAVITATIONAL BINDING ENERGY
OF MASSIVE STARS

Given a solution of the field equations, we can
define the bare nucleon number

=n = const for incompressible matter.
mN

(20)

Thus we can replace n by p/m„ in Eq. (18).
We now look for an expression which allows us

to decide whether collapse will be generally pre-
vented in our theory, or whether it is still the
fate of very massive objects. In general rela-
tivity the criterion for gravitational collapse for
stars built of incompressible matter is that for
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arbitrary but finite central pressure the mass
must be smaller than the critical bound":

2~6
)lrt
LVL (sp 35 ~

p

Anticipating our results we can argue as follows:
In our theory the scalar field decreases with in-
creasing central pressure, as shown in Fig. 3,
becoming zero in the limit of infinite pressure.
Therefore, the same criterion is applicable and
we can conclude that gravitational mass of a sta-
ble object is also bounded in our theory.

We must now distinguish between limited mass
and limited baryon number. In general relativity,
adding a baryon to a star leads to increasing mass
and decreasing radius. But, adding a baryon to a
star with scalar field we cannot necessarily ex-
pect an increase in mass and decrease in radius,
since the scalar field may grow and thereby re-
duce the effective gravitational constant, such
that in effect the gravitational charge, i.e. M,
decreases.

If we would succeed in assembling an arbitrarily
large number of baryons at finite mass and finite
radius, then possibly gravitational collapse need
not occur. This possibility, however, is rigor-
ously ruled out if we can show that the gain in
binding energy due to the scalar field is limited.
In order to establish such proof, we define the
binding energy of a star according to Eq. (18):

baryons could be contained in a star with gravi-
tational mass M well below the dangerous limit.

Of course, a proper investigation of the question
when exactly in this case a collapse would really
occur would require a time-dependent treatment
looking for the possible presence of instabilities.
We now shall investigate how a(b, M/M) behaves
in our theory. Since we will find that a(hM/M)
remains bounded, we will be able to conclude that
gravitational collapse will not be prevented by the
scalar field, except maybe in certain marginally
unstable situations.

V. APPROXIMATE SOLUTIONS

In this section we want to give some estimates
in order to understand the numerical results pre-
sented in Sec. VI. The analytical arguments pre-
sented below will not be exact, but sufficient to
see the finiteness of the effective gravitational
constant, to calculate its value for stars with
radius near their Schwarzschild radius, and to
find an expression which relates the effective
gravitational constant, -to measurab1. e quantities.

A. Strong-coupling limit

In the case of a large coupling constant

P» 00

Eqs. (6) and (7) simplify to

b, M m~N(R) —M(~)
M( )

(21)
(y')= —T" .2

p P
' (23)

We call the scalar field stabilizing if a star miN
scalar field contains more nucleons than a cor-
responding star without scalar field (i.e. , in gen-
eral relativity), but having the same asymptotic
mass M(~). Let N be the nucleon . number of a
star with scalar field, N of one without. The dif-
ference between their binding energies we call
~(~M/M).

Because of our boundary condition (9) the mean
expectation value of the scalar field over the
whole space should vanish, and we can deduce
from Eg. (23)

y'=o(l/p) .

But if y' is of the order 1/p, then for large p
(py') becomes a constant:

gM m„N(R)-M( ) m„N(R)-M( )
M( ) M( )

py' = const.
lsl--

(24)

„Ã(R) -N(R)l
M( )

(22)

The greater the value of 6(b.M/M), the more sta-
bilization we have.

As long as b, (b,M/M) remains bounded, gravita-
tional collapse will not be prevented for sufficient-
ly large baryon number, because the surface will
come too close to the Schwarzschild radius to be
stable. Only if we find arbitrary large values of
b. (b.M/M) can we hope that gravitational collapse
be evaded, since an arbitrarily large number of

This result is very important because it limits
the inverse effective gravitational constant y,ff.

lim y = lim y- —y'p

~ 6~co ~ 8~o0
(25)

Thus for large negative values of the coupling con-
stant p the stabilization (22) remains bounded
[from numerical results we find pep'= const for
-p 210' (see Fig. 1)j.
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d (M/r) gives the21 of a metric in orderspansion
th measurable parameters:following values for the measura

20-

10-

&PPN

2

=1+ ~9'
p —1+

yppN
2 ~

p we can set a limit on py, .By measuring pp p N w

(30)

2-
I I I I I I I

9
10 10 10 10

I I I I I I

]012
1

se of b' d' g energy with growing
(-8). For sm all p the growth increases ogari
and goes to a constant for —p &

B. Weak-field limit

) 1/2

q (r) =—' sin
I
—

l2 p&
vo & p

') we obtainand wl yth small compared to (—Py

""'= ~
""(( ) '(0)

with

2 )1/ 2' "'=(

(27)

(26)

at large x, wwe make a seriesIn the outer region, at g
expansion:

r weak gravitational fields weIn the case of very wea gr
' e
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(p/ 2)~p
~ [(p-i)/»5~' r [ (pp- )l»q'r

(26)
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12
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VI. NUMERICAL RESULTS
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This is in agreement with our conclusion in Sec.
V A that py'(0) should become constant for (—p)
going to infinity. For py'(0) we get from our nu-
merical results

—,~ py'(0) =0.17y 10-

Lj, (~Mj I op )

in good agreement with the estimate at the end of
the previous section. Figure 2 shows an example
for the scalar field inside and outside a star for a
given density, pressure, and coupling constant p.
The stabilization in dependence of the pressure
reaches its maximum for p(0) = —',p, for smaller
pressure (nonrelativistic stars) and for larger
pressure (radius approaching the Schwarzschild
radius) the stabilization decreases. This is
shown in Fig. 3. From this figure we conclude by
extrapolation that for stars like our Sun the scalar
field is so small that we cannot treat it numerical-
ly. (Indeed we found this conclusion to be true and
in agreement with our results in Sec. V. ) On the
other hand, we see that stars just before forming
a black hole have no scalar field, a result which
is in agreement with statements by Hawking' and

by Bekenstein. ' As maximal stabilization effect
we get

9-

7-

6-

4-

0 I

0 0.2 0.4 0.6 0.8 1.0 1.2

p(o)
P

&I ~ I=—40%.
~M j

This means that in the best case our stars contain

40% more nucleons than stars in general relativity

with the same asymptotic mass. Hence we con-
clude that our scalar field is not able to stabilize
every star.

VII. CONCLUSIONS

A scalar field coupled to the gravitational field

in the way presented here is not able to stabilize

q) [~e
.00050—

.OOOI 5—

.OOOI 0—

.00035—

.00030—

FIG. 3. The increase of binding energy in dependence
of the central pressure p(0) for different values of the
coupling constant p. It reaches its maximum for p (0)
= 3 p, for smaller and for larger central pressure the
stabilization decreases.

arbitrarily large masses against gravitational
collapse. Owing to the special form of the inter-
action, the scalar field does not couple directly to
the matter, but influences the gravitational field
via the post-Newtonian parameter"" ppp N. Pres-
ent experimental data" on the precession of the
perihelion of Mercury restrict the possible range
of the product pq&'(r =g) to values

I pv'(R)
I
-10 "y.

Since in the limit p-0 we get general relativity,
we can'be sure to match all experiments (today
and in the future) by adapted choice of the param-
eter p.

We suppose that quite generally the gravitational
collapse cannot be prevented by scalar fields if
the action integral is of the following form:

.00025—

0 2

km)

16 18 20

I'" = yR —~ p'y'+ 2g""y y, „+h y 8 v'-gd'x.

FIG. 2. The scalar field inside and outside a star of
radius 8 for a given density p, central pressure p (0),
and coupling constant p.

'This statement seems to be supported by investi-
gations on some of these theories, but we have not
been able to find a general proof of this.
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