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Dirac electron in space-times with torsion: Spinor propagation, spin precession,
and nongeodesic orbits
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The WKB limit of the noniterated Dirac equation in a Riemann-Cartan space-time is discussed. It is shown that
within this framework the behavior of a Dirac particle is dominated by the new connection
F„'„"= I"„„]—3Et„„,g'" formed from the Christoffel connection and the contortion. The relevant effects are the
following: (i) The normalized Dirac spinor is parallel propagated by I" along the particle s orbit. (ii) The same is
true for the spin vector. By this the gyrogravitational ratio is specified as well. (iii) The particle orbit is nongeodesic.
The respective "force" is of the usual form with the spin coupled to the curvature tensor 8' ~~~(.I") of the
connection I"„' " . The orbit is thereby defined by the streamlines of the conserved convection four-current obtained
from the Dirac current by a Gordon decomposition. The cumulative effects (ii) and (iii) can in principle be used to
detect torsion by measuring the spin precession of a massive spin-1/2 particle or by measuring its orbit in a Stern-
Gerlach type of experiment.

I. INTRODUCTION

Why does one study the Dirac electron in a Rie-
mann-Cartan space-time U4? Two facts link a U4

theory of gravitation with quantum mechanics:
(i) One basic motivation for the introduction of

the U4 theory is that general relativity in Riemann
space V4 turns out to be nonrenormalizable. It
has no correct quantum version within the usual
field-theoretical framework. On the other hand,
gauge theories have been successfully renormal-
ized, and U4 gravity can be obtained by a certain
type of gauging.

(ii) The second fact is that Riemann-Cartan grav-
ity shows its genuine influence on matter only in
quantum-mechanical effects when interacting with
massive elementary particles with spin. The usual
gravitational field equations in Riemann-Cartan
space-time U, (as well as in the special case of a
"teleparallelism" Weitzenbock space-time As)
agree on the macroscopic scale up to high orders
with Einstein's theory. ' Furthermore, independ-
ent of the gravitational field equations, gauge
fields (like the electromagnetic field) on the one
hand and matter with no net elementary-particle
spin on the other are influenced in a U4 by only
the Riemann-Christoffel part of the connection and
the curvature. '

Today, the appropriate structure of a quantum
theory of gravitation is still one of the important
open questions of theoretical physics. Although
we do not know the correct quantum version of
gravity as represented by space-time curvature,
we can treat the influence of gravity on quantum-
mechanical systems in an external-field approach.
This approach works well, for example, for elec-
tromagnetic fields in flat space-time. Thus, we as-

sume that a U, theory of gravity (or its special
cases (is the correct macroscopic theory of gravity
to use as a semiclassical approximation to quan-
tum gravity. There are reasons to believe that
embedding quantum-mechanical systems into the
appropriate curved space-time will represent cor-
rectly the influence of gravity as an external field
at least as long as (a) the effects of gravity are not
of generic quantum-field-theoretical nature (con-
taining, for example, radiative corrections),
which would call for a quantized and renormaliz-
able theory of gravity and (b) as long as the intend-
ed statements are macroscopic by nature. The
latter presupposes that all geometrical manipula-
tions which are necessary to give results an oper-
ational meaning refer to macroscopic clocks and
macroscopic length scales.

The two types of experiment described below,
a Stern-Gerlach-. type experiment and an experi-
ment to demonstrate spin polarization of spin-&
particles, fulfill the conditions (a) and (b).

In the following we discuss the Dirac field in a
classical background U4 geometry characterized
by a given affine connection F 8&. Our results
will therefore be independent of the field equations
for the metric and the torsion. It has been shown

by the author' that in the WEB limit in the limiting
case of a Riemann-Cartan space with vanishing
torsion (i.e., a Riemann space V,), the spin vector
8, of a Dirac particle is parallel propagated along
the particle trajectory with tangent vector u:

S, ,u' =0.

The subscript zero indicates the lowest order in
an expansion in S' [cf. (6.10)]. The semicolon de-
notes the covariant derivative with regard to the
Christoffel connection Qs). Hayashi and Shira-
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fuji' on the other hand have discussed the other
limiting case of a Riemann-Cartan space U4 with
identical zero curvature (i.e., the teleparallelism
Weitzenbock space-time A,). Their calculation is
based on a second-order wave equation derived
from the first-order Dirac equation and on a two-
component spinor. They obtained

S,",,u' = 3Z ~""~S,.u, +O(I), (1.2)

where K By is the contortion tensor. Rump f' was
the first to discuss the spin motion of a Dirac
electron in the full Riemann-Cartan space-time
U4. He obtained, with the algebraical method of
Corben, the operator equation of motion

w" =3K~""~(x}w ~, + 0(N), (1.3)
where zg" is an operator constructed in analogy to
the Pauli-Lubanski vector and the x' represents
three space and one time operator. The dot de-
notes the derivative with respect to an additianally
intraduced c-number proper time on which a gen-
eralized Heisenberg picture is based. Note that
(1.3) contains products of operators which may
not be equated to products of average values. Ac-
cordingly (1.3) cannot simply be read as an Ehren-
fest-type equation far quantum-mechanical mean
values. Despite the fact that there seems to be no
satisfactory procedure to link Corben's method
with the usual quantum mechanics, the method ap-
pears to have a certain formal power. It leads to
equations which, as we will see, successfully
"mirror" the equations obtained totally within the
usual quantum mechanics.

The aim of the calculations below is to give a
genuine quantum-mechanical derivation of (1.2) for
the full Riemann-Cartan space-time. This is done
by deducing the RX'B limit of the propagation equa-
tion for a Dirac particle. After a Gordon decom-
position of the Dirac current, this equation then
enables one to show how torsion, coupled to ele-
meritary-particle spin, forces the particle onto a
nongeodesic' orbit. The spin precession and this
nongeodesic orbit represent effects which, in
principle, could form a basis for a measurement
of the torsion.

To see how the linearly independent components
of the spinorial part of the WEB limit of the Dirac
wave function propagate and to demonstrate in de-
tail how the kinematical properties of the congru-
ence of streamlines interfere, we base the follow-
ing discussion on the first-order Dirac equation
itself, rather than on a second-order wave func-
tion.

(2.1a)

(2.1b)K~ey = K~I-By g,

where (&8) denoted the usual Christoffel, connec-
tion and K &y is the contortion tensor related to
the torsion 8 Hy by

~~8 =FL«] = -Kr~»y y (2.2)

We introduce covariant derivatives with the full
Cartan connection F,By and the Christoffel connec-
tion Qj and use the following notations:

( )ii =&."( ), (2.3a)

() g()()
V =V or V~~ (2.3c)

(2.3b)

and

A =A + r A'
II 8,6 Be

Both connections are metric:

V.g~8 —0.

(2.4)

(2.5)

Additionally, the completely antisymmetric Levi-
Civita tensor' satisfies

V, g"y'=0. (2.6)

To introduce spinors we define a tetrad field
h, (x) such that

Aha'=g (2.7)

(0) (~) (2) y(~ )p

which obey

(a b) ab

(0. 8) og

(2.8b)

(2.9a)

(2.9b)

(2.9c)

Spinor derivatives are given by

and

(2.10a)

V +=+ —+F, (2.10b)

where we have introduced the adjoint spinar +
=O~y") and

I' = —,
' (V, hg }h,y~ y'

By means af a set of standard Dirac matrices
(Ref. 9) y', we introduce the generalized Dirac
matrices

(2.8a}

II. DIRAC THEORY IN A RIEMANN-CARTAN
SPACE-TIME

A Riemann-Cartan space-time U4 possesses the
metric- compatible aff ine connection'

For the Dirac matrices y we then abtain

(((1 P (f + Fgq 7 + F(i P J F(f' 0

(2.11)

(2.12)
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V„y =0, (2.13a)

(2. 13b)

and the corresponding relation y .„=0when F 8&

is replaced by ("sj:
the tangent vector field u,

1 1
u„(x) = —p, = ——S, ,

uu =1.
(3.6a)

(3.6b)

i y"+()p + —y "K~~ + ——+ =0p s q m
J

(2.14a}

The Dirac Lagrangian minimally coupled with
regard to the U4 connection implies the Biemann-
Cartan Dirac equation (with c=1)

One consequence of (3.6a) used below is that u, .s
=u8. . We will see later in Sec. VII that the u
congruence describes the motion of the Dirac Mat-
ter in the completely classical limit in consequence
of

which can be written as

i yQ + —E~ y yay&+- —+ = 0 (2.14b)

(j'j, ) ' 'j =u +O(h}.

Because of (3.6a) and (3.6b) we find

u~. ~ u 0.

(3.'I)

(3.8)

The adjoint equation is

2 mi@ y" + —yy"K '+ —@=0.II p Cg

The Dirac current

(2.15)

So to order zero in }I (i.e., in the comPletely clas
sical limit), the trajectories of the Dirac current
in a Riemann-Cartan space-time are geodesics.

Equation (3.6a) specifies as well the remaining
kinematical properties of the u congruence:

(2.16)
lue' g ug + 3 8PO. Bp (3.9)

is conserved:
~ f}i 0 (2.1'l)

III. WKB APPROXIMATION

To obtain the behavior of the Dirac wave function
in the semiclassical limit, we introduce the 8KB
expansion

(3.10)P~g gala uotu By

and the expansion e and the shear a z of the con-
gruence are given by

e=u . , (3.11)

where P
& is the tensor projecting onto the space

orthogonal to u, ,

@(x)=exp[iS(x)/li]Q (- iS)"a„(x)
n=o

(3..1) 0~8=u(~. ), ) P~ Ps —
3 eP~8,

which imply

(3.12)

(y S, +m}a,(x) =0 (3.2)

(y S. +m)a, (x}=—y a„~ —
2 y K, 'a,

1 e 8 yy ap; c +I gy'jY Y Y ap.

(3.3)

and restrict ourselves to situations in which the
applicability conditions of a WEB approximation
are fulfilled. We may assume S(x) to be real. The
a„(x) are spinors. Inserting (3.1) into the Dirac
equation (2.14) and equating the coefficients of the
different orders of A to zero, we obtain for the
first orders

A,

0 tt}18) GP

0' =0

a~eu = 0.8

(3.13a)

(3.13b)

(3.13c)

a,(x) = P,(x)b„(x) + g(x)b»(x), (4.1)

where b„(x) and b»(x) are the two well-known lin-
early independent momentum-space solutions of
(3.2}:

IV. ALGEBRAICAL CONSEQUENCES

The WKB equation (3.2) fixes a,(x) only algebrai-
cally. Accordingly the general solution a,(x) has
the form

Introducing

p = —9 (3.4)

we obtain as a consequence of (3.2) the Hamilton
Jacob i equation

t

P")+m '~'
ol

p(')
P()+m

(4.2a)

Pt1tP m (3.5)

The timelike congruence orthogonal to the hyper-
surfaces of constant "phase" S(x) is described by
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0 0

1/2p"'
b

2m

p(') -Zp(2)
p(p) + ~

(4.2b)
bpl 0 ~ 02 0

(4 8)

with

(4.3)

The complex functions p,(x) and p, (x) in (4.1) are
still to be determined.

In a Riemann-Cartan space-time, local Lorentz
rotations of the tetrad are coupled with local spin
transformations. Equations containing spinors re-
main invariant if both transformations are per-
formed together. Accordingly these equations can
be verified without loss of generality by choosing
a particular tetrad field. The following choice
proves to be convenient: We restrict to an arbi-
trary but fixed world line of the u" congruence and
let = denote equality along that world line. (The
asterisk can be omitted if the respective equation
is invariant against tetrad spin transformations. )
We choose the timelike tetrad vector h (» parallel
to u,

(4.4)

which implies

b„y~b„=u",

bp, y" bp, =u",

o,y" bo, =0,

bp, y" bp, =0.

We find from (4.2) and (4.V)

, e
bo1y bo1.~

, e
bo2 y bo2

(4.Qa)

(4.9b}

(4.9c)

(4.9d)

(4.10a)

(4.10b)

0}C

bp, y'bp, , =0,

bp2y'bp1, . =0~

and with (4.5) also (for f =1, 2)

(4.10c)

(4.10d)

e+ 1 tc X,u =~u&, „&y y b«. (4.11)

For later use we note the following algebraical
relations which can be proven from (4.8) and the
particular form of our Dirac matrices:

Using parallel propagation with the Christoffel
connection, we then propagate the tetrad parallel
along the chosen u line [which is consistent be-
cause of equation (3.8)] and as well parallel into
the neighborhood of this world line. This construc-
tion leads to a tetrad field in a tube, which apart
from (4.4) fulfills on the world line

(4 5)

y y ho~= ~q o~abo~uy,
5 1 0'Sy6

where

&N8 z Le 8)

Similarly we find

KL- Byjy y y bpg 3z Kp By)o' bpg uy 08 y

(4.12)

(4.13)

(4.14)

Furthermore, referring to the choice (4.5) and

usind the kinematical properties (3.9)and (3.13}
of the u congruence, we obtain

P(p) q kg Oy (4.Va)

Note that in the neighborhood of the world line the
tetrad vector h(p) will in general not be parallel to
the tangent vector u of the congruence.

An immediate consequence is

(4.6}

V. SOLVABILITY CONDITIONS AND SPINOR
PROPAGATION

a,(x}=f(x)b,(x),

bb =1,

(5.1a}

(5.1b)

Because in general the u congruence will ex-
pand or contract, the density of the Dirac field will
vary and the absolute value apao of the spinor ap

will not remain constant. To separate out this
density effect, we introduce a normalized spinor
b, proportional to &p by

Pa, & @(p)

n 8
p,",h~ =en (o' 8+ —,

' eI' 8)h, hp.

(4.Vb}

(4.7c)

where f(x) is a real function which is given by

f'(x) =a,a = P,*(x}P,(x) + P*,(x}P,(x). (5.2)

With (4.4} the solutions b» and b„of (4.2) re-
duce to

In the following we will show how f(x), b,(x), and

ap propagate along the u world lines.
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bo; (y a, . + 4 K&,8&jy y y ao) =0.n 1 n 8 y (5.3)

Inserting into (5.3) the relations (4.8), (4.9), and

(4.10), which represent our knowledge of a, as far
as that was obtained before, we find

While the WKB equation (3.2) determines a,(x)
algebraically, the differential behavior of a,(x) is
restricted by the solvability condition of the WEB
equation (3.3) of next higher order in h. For a
given a,(x), Eq. (3.3) is an inhomogeneous linear
algebraical equation for a,. Consequently the con-
dition for the existence of a nontrivial solution a,
of (3.3) is that all solutions of the corresponding
transposed homogeneous equation are orthogonal
to the inhomogeneity. Comparison of the homo-
geneous part of (3.3) with (3.2) shows that the so-
lutions in question are the b„(x) and b„(x) of (4.1).
Therefore, as solvability conditions of (3.3) we ob-
tain differential conditions (i =1, 2)

VI. THE MICROPHYSICALLY RELEVANT
CONNECTION AND SPIN PRECESSION

(6.1)

It can be rewritten as

rg„'= („',)+ 3St„„)g''

(yves 3KLpuegg

~X
~p i/ 2K[ilk']p g

(6.2a)

(6.2b)

(6.2c)

The covariant derivative based on F„*," as connec-
tion is denoted by V*.

This new connection is metric:

The way a Dirac spinor is propagated in the
WEB limit in a Riemann-Cartan space-time can be
given a simple geometrical meaning. To do so we
introduce in addition to I'„,~ and (~~,) the new con-
nection

1 1 n 8 yP, ,u = ——eP, ——K, ,&,b»y y y b,P,
g n8 (6.3)

1 n 8 y
& Kg~By]bo&y 'y y b02Pz&

p u = ——ep —
4 K@8)gbp2y y y bp~p~

(5 4a)

and

gga8y6 0 (6.4)

1 8 y—
4 K),8y)bo, y y y bo2p2. (5.4b)

0

V, y'=0.
(6.5a)

(6.5b)

A consequence of (5.2) and (5.4) then is
Furthermore the following relations to the Chris-
toffel derivative V~~ will be useful:

f,u' = ——'ef. (5.5)
(v,*A )A'=A, ,A', (6.6a)

(6.6b)

The propagation of a0 is finally obtained by dif-
ferentiating (4.1) and using (4.11) and (5.4). The
result is

9 n8
Q0llz u = —

2
+0 +

2 Kpn8g&0 00u

The consequences of the preceding paragraph can
be formulated. In the quasiclassical limit of the
Dirac equation in a Riemann-Cartan space-time,
the spinor part a0 of lowest order in h in a HKB
exPQnsson ss ProPQgQted Qccordgng to

where we made use of the fact that according to
(4.8) b„(~ ~ )b„represents o.ne component of the
matrix ( ~ ~ ~ ). Additionally we used the generally
valid relation

3 1
—, KLney&=KLng&y+ ~ Kyn8 (5.'t)

Direct consequences of (5.5} and (5.6) are the

propagation equations for the normalized spinors
b,(x) and b,(x),

e(v*a )u'= ——a .0 2 0' (6.V}

(v+b, }u' =0,

(vga, )u'=0.

(6.8a)

(6.8b)

¹rmalizing a0 in |'5.1) leads to b0. The main re-
sult is that the normalized sPinor b0 is Parallel
Propagated zoith respect to the net connection
I',*8y along the u congruence orthogonal to the sur-
faces of constant phase S:

n8 e
bplle u

2 Ktn8 Jea' bpu

n8
b0lle u

2 Kpe8)c b0+ u ~

(5.8a)

(5.8b}

It is this equation (6.8) which determines the be-
havior of the localized physical quantities.

The WEB approximation to a Dirac solution 4(x)
describes a stream of "free" particles, i.e., par-
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ge 1 egypt=2'g ug (6.9)

represents the components of the spin of the par-
ticle. The tangent vector to the "orbit" of the par-
ticle as defined by the convection current is de-
noted as v . It is related to u by v'=u + O(h)
[compare (7.6)] and will be specified below in Eq.
('l. 5).

Introducing the %KB expansion we find

ticles which are influenced by metric and torsion
only. The spin density is related to ~ 8+ and the
particle number density to ++. Both are observer-
independent constructions. See Ref. 3 for further
interpretation. Accordingly the sPin vector

these three axes, we have the precession

S, =3S,xa, (6.16)

VII. GORDON DECOMPOSITION
AND NONGEODESIC ORBIT

Because of Dirac Eqs. (2.14) and (2.15), the. Di-
rac current j" of (2.16) can be decomposed in the
sense of Gordon decomposition into

j"=-ju+i~

with j„"defined by

(7.1)

which may be used to detect torsion. Note the fac-
tor 3 which is typical for the gyrogravitational
ratio if torsion is involved.

S'= —,
'

q '~'u, b,a„,b, +O(S) =S, +O(h). (6 1o) (q "+):,I
(7 2)

Because of (4.12) it can also be written in the low-
est order of @as

and j," defined by

s (6.11) jpc=2 (Rip+ —@@iit )+ 2
+a' +&~sq (7.3a)2' z 2'

which may be the more familiar expression in the
framework of a Riemann-Cartan theory.

An almost immediate consequence of the propa-
gation equation (6.8) is then

(V+S, )u' =0. (6.12)

Su.,u' = 3ZLu"'~S„u„.
0~& (6.13)

In terms of the axial-vector part a" of the torsion
or the contortion tensor

a"= —'gu eyZ6 l»yl~ (6.14)

the spin propagation equation can be written

Su u'= -3qu Bya S,su . (6.15)

How can this spin precession be measured? In
a Riemann-Cartan space-time the usual macro-
scopic gyroscope is Fermi propagated with re-
gard to the Christoffel connection QB). The most
direct test of Eq. (6.15) is therefore to compare
the motion of the spin vector with the motion of the
axes of rotation of three orthogonally oriented
gyroscopes. For the components with respect to

Equation (6.12) follows from (6.10).using (6.4),
(6.5a), (6.6a), and (3.8) or from (6.11) with (6.5)
and (6.8). In a Biemann Cartan spa-ce-time there
fore the localized Dirac sPin .vector is to the loco

est order in h of a WKB expansion parallel trans-
Ported neith resPect to the netv connection I'z„' of
(G.f) along the Particle orbit

Because the behavior of classical matter without
net intrinsic spin is governed by the Christoffel
connection Q&j alone, we decompose (6.12) using
(6.2b) to obtain a comparison:

or

j„= 2
. [(vg q') y —y vf y1,

S
(V.3b)

which mirrors exactly its Riemann-space analog.
These currents are conserved separately, j„"be-
cause of properties of VF,)V(z( and then j," by (2.1V):

(V.4a)

j&:u (7.4b)

v =( j,'j„) ' 'j, ,
v v&=1,

(V.5a)

(V.5b)

Introducing our WKB expansion„we find that j,
agrees to lowest order in 8 with the u congruence,
which is the completely classical limit of the or-
bit

Using the same arguments as used in Ref. 3 for
a Riemann space without torsion, one obtains
from the structure of (7.2) that j„"is the curl of the
spin density. (Since the spin of the electron is
coupled to a magrietic dipole moment, this curl is
equivalent to an electric current in Maxwell the-
ory. ) Because of its origin, j„has the meaning of
a magnetization current. The remaining part j,
of the total electric current j has accordingly the
meaning of a convection current. In correspon-
dence with their interpretations, both currents are
separately conser ved.

We relate our concept of particle orbits to elec-
tromagnetic measurements and therefore base the
definition of motion on the convection current. The
current j," of (V.3) defines a congruence of timelike
curves with tangent vector v,
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~ = 2j„=f u + —. u (a, a, —a, a, )
2

f 2[(V*b )bo —boV„*bo]+O(5 ).2' i
This, with (6.8), implies

(7.6)

s~ =21'*(sly', )~&+21'L~ ),'I ~8 (7.9)

The generalized Ricci identity for spinors then
reads

Vt~V)j+= 8 R s„~oy y" + —I"Los)" V~ 4,
(7.10a)

V$ V$g 4= —
8 R„*B„g@'y~ y ~ —I'(sj V*,K

(7.10b)
Because of these identities, the force equation
(7.8) can be given the form "

The particle orbit is nongeodesic. The force is
of the usual form but with spin coupling to t)te cur
vature tensor R*&&s of the new connection F,*s~ of
(G.I).

Macroscopic test bodies and light rays move on
geodesics constructed from the Christoffel con-
nection (&s). Macroscopic frames of reference
will be based on this. Accordingly, relative to
them, a Dirac particle will not move freely but
will experience the force given by the right-hand
side of (7.11). Its influence on the orbit can be
measures in a Stern-Gerlach type of experiment.

VIII. CONCLUSION

The question "How does one —at least in prin-
ciple —measure torsion'P" is not a new one. "
From the very beginning the recipe has been: use
the elementary-particle spin. But even for non-
vanishing spin density a macroscopic body will not
be affected by torsion, if the elementary-particle
spin integrates to zero. Such a test body is sensi-
tive to the Christoffel connection (&&} only. [See
Yasskin and Stoeger (Ref. 2) for this as well as

v, =u + . [(V*b,)b, —b, V,*b
]0 +O(h'). (7.7)

Based on this expression the nongeodesic behavior
of the s orbit can be given the form

v ., v'=(V,*v,)v'=2(Vf v,}v'

A
. ((V(~ V~+g bo}bo-b (V(~ V~gbo)]u'+O(k ).

(7.8)
To obtain the "force" .on the right-hand side,

we used (6.6a) and (3.6b).
We introduce the curvature tensor of the I"* con-

nection

for the previous literature. ] For spin-polarized
macroscopic bodies, the Papapetrou-type equa-
tions for motion and precession are of the usual
structure with (&&) being replaced by the Cartan
connection I'&8. But these equations contain am-
biguities and nondeterministic elements as Yasskin
and Stoeger (Ref. 2) have pointed out. Therefore a
genuine quantum-mechanical treatment of a mas-
sive spin- —,

' elementary particle itself seems to be
the only promising approach which rema, ins.

Quantum-mechanical measurements will refer
to macroscopic instruments which themselves re-
act only on the Christoffel part of the connection.
This has the advantage, that in most cases, the
measurements will directly reflect the influence
of the torsion.

Relevant effects which demonstrate the influence
of torsion on a quantum-mechanical system can
mainly be expected for quantum systems of macro-
scopic extension. Apart from superfluids and
supercurrents, these systems are most adequately
described in the framework of a 5'KB approxima-
tion. It is important to note that the contribution
to the torsion from the spin of the "measuring"
Dirac particle itself is of order h and thus falls
into the terms neglected in the approximation.
This is true for any Riemann-Cartan theory ob-
tained from variational principle by varying the
torsion. Furthermore, the WEB limit has the ad-
vantage of being free of the difficulties of interpre-
tation which are usually involved in a full Hilbert-
space treatment of quantum mechanics in curved
space-time. I

Our discussion above has led to the result that
the WEB limit of the Dirac equation in a Riemann-
Cartan space-time is dominated by the new connec-
tion I'„*, = ("„„]—3KL-„„&g': (i) The normalized
Dirac spinor is parallel propagated by 1 „*„along
the particle's orbit. (The orbit is thereby defined
by the streamlines of the conserved convection
four-current obtained from the Dirac curr'ent by a
Gordon decomposition). (ii) The same is true for
the spin vector. (iii) The particle orbit is nongeo-
desic. The respective "force" is of the usual form
but with the spin coupled to the curvature tensor
R*'s&s(F*) of the connection I'f, ~.

Two experiments are immediately related to the
results (ii) and (iii) above: (a) measurement of the
spin precession and (b) measurement of the orbit
with a Stern-Gerlach type of experiment. Both are
cumulative effects, They require solely that one
waits long enough or lets the particle travel far
enough.
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