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In relativistic theories of gravitation that use, besides the metric, additional geometric objects in the description of
the gravitational field, there exist two ways to obtain simplifying assumptions. One is to use symmetries of the

geometric objects involved and the other is to use their a priori physical role. However, these two methods are

related via the field equations; thus an arbitrary selection of simplify&ng assumptions may be inconsistent. We

illustrate this point in the Einstein-Cartan theory and show that (a) under a certain assumption we11-known solutions

of this theory use incompatible simplifying assumptions and (b) a new solution which is compatible with the

cosmological principle, and for which torsion cannot represent spin, exists.

I. INTRODUCTION

The Einstein-Cartan theory"' and the numerous
other theories of gravitation with torsion that
have been proposed lately' make it necessary to
study common features of the field equations of
these theories.

In this paper we shall consider the class of
generalized theories of gravitation which is de-
fined by the following requirements: (i) The
gravitational field is,described by the metric
g, ~ (signature +++ -) and some other geometric
objects (which we denote with the generic letter
8). (ii) The theory reduces to general relativity
when the extra geometric objects involved in the
description of the gravitational field vanish.
Obviously, this class of theories contains all the
aforementioned theories of gravitation.

It is reasonable to expect that the field equations
of any member in this class shall be at least as
complex as the corresponding equations of general
relativity. This implies then that we shall have
again to consider only special classes of solutions
which shall be derived by means of simplifying
assumptions.

One might suggest that these assumptions should
be sought in the symmetries of the gravitational
field. However, a new situation appears here
which is foreign to general relativity. As a rule,
the intr oduction of new geometr ic objects in the
description of the gravitational field is due to the
fact that we wish to geometrize properties of

matter other than inertia which is already geo-
metrized by the metric. Thus, the extra geo-
metric objects introduced have an a Priori physi-
cal role. For example, in the Einstein-Cartan
theory torsion is taken to geometrize (i.e. , to be
coupled to) the intrinsic spin density of matter.
Thus the spin part of the Poincare group changes
the geometry of space-time, just as the energy-
momentum part does. '

Now, it is possible to use the physical role of
these objects and to construct simplifying as-
sumptions without referring to the symmetries of
the gravitational field or the metric. Evidently
these assumptions do not suffice for the simpli-
fication of the field equations because they do not
involve the metric. Hence further assumptions
concerning the metric have to be introduced which
are, as a rule, symmetry assumptions as in
general relativity.

Summarizing, we have the following procedure
to simplify the field equations of these generalized
theories: (a) To simplify the metric, use sym-
metry assumptions, expressed in terms of Killing
vectors as in general relativity. (b) To simplify
the extra geometric objects S, use their a Priori
assumed physical role and/or additional sym. -
metries (not necessarily related to the ones
already assumed for the metric).

The purpose of this paper is to discuss the
general procedure outlined above. It will be
shown that, under certain circumstances, it can
lead to mathematical inconsistencies; further,
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it may exclude perfectly consistent solutions of
the theory. The reason for this is that the metric
and the other geometric objects 8 are related via
the field equations; thus it is possible that the
requirement that the metric admits a certain
symmetry implies that some (or all) of the objects
8 must admit the same symmetry. Evidently,
this induced symmetry introduces a new simpli-
fication for these objects (similar to the one of
the metric) which may be incompatible with the
simplification(s) introduced independently from
their a Priori physical role.

In the following we shall illustrate this point in
the Einstein-Cartan theory. In Sec. II we describe
briefly the Einstein-Cartan theory and show that
if Eq. (16) holds, then many and well-known solu-
tions of this theory are inconsistent because they
use imcompatible simplifying assumptions. In

Sec. IG we use the symmetries of the gravitational
field to simplify the field equations of the theory
without making any specific a Priori assumption
about the physical role of torsion. As a result
we obtain a new solution of the theory in which
torsion does not represent spin. Finally, con-
clusions are noted in Sec. IV.

II. THE CASE OF THE EINSTEINXARTAN THEORY

The Einstein-Cartan (or U, ) theory of gravita-
tion' is an extension of general relativity to a
space-time with an asymmetric (or Riemann-
Cartan) connection defined by the requirement'

Equation (1) gives'

I „=f;,) Z„, -
where

(3)

ls the so-called contortion tensor and Sabc =rcrabl
is the torsion tensor. From Eq. (3) we also have

bc I.bc]

The curvature tensor B,b,
" of L'„ is defined by

(4)

&,b, =28t,~ bl +2~ t,~,~~ blce

It ca" be s"ow" t"at +abed has essentially only one
contraction B,

&

=Bb,&
(not symmet—ric in general);

hence a unique curvature scalar B =-J3';.
The action in Einstein-Cartan theory is taken

to be (we take c=1)

i

—v' -gB+2 d'x(1
-Af

where V' —gB is the Lagrangian density of the
gravitational field and I„is the minimally cou-
pled Lagrangian density of the matter field(s)
g (indices supressed; @ =8m& where G is Newton's
gr avitational constant).

In general, 2 „=g „(p;g, ;g,b; g, b „S,b.') or,

Variation of the action I with respect to the metric
tensor p and the contortion tensor &,b' yields
the following set of fieM equations':

ab p ab (7)

(8)+abc -$7abc

where &'b =&"——,'g bR is the usual Einstein tensor
of general relativity, and

gabe —5abc + g~cf gg bid

In Eq. (7)

gab = &ab +y [ 4~ac &bd 2&acd&b + &ada& b
Ed cl cd cd

+ &+ab(47 d &ce +~de7 )j
—&ab+ I gab

(10a)

(1Ob)

where

(11)24 -g 5g„
0'b is the symmetric stress-energy tensor of
matter and reduces to the usual one of general
relativity when torsion vanishes.

In Eq. (9) the quantity

7' 8. N
a -4 ge~a (12)

S"Sd =S2) P.
(13a)

(13b)

Equations (13a) and (13b) define torsion in the
region of space-time filled up with a fluid whose

is interpreted as the spin angular momentum
tensor and at each space-time point equals the
sum of the intrinsic spin densities of all the
physical fields at that point.

We note that the Einstein-Cartan theory reduces
to general relativity w'hen torsion vanishes, hence
this theory belongs to the class of theories we
considered in the Introduction. The extra geo-
metric object involved is the torsion and its a
priori physical role is the geometrization of spin.

Most of the solutions of Einstein-Cartan theory
produced so far use this physical role to simplify
torsion. Thus, because spin is represented by
a spacelike vector s, (say) in physically interesting
situations, torsion shall be defined in terms of
a vector. This has led to the consideration of
convective torsion defined as follows:
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particles have intrinsic spin s and four-velocity
u'. [According to the second fieM equation (12),
torsion vanishes in empty space. ]

This type of torsion is simple to deal with
(because it has three nonvanishing components
only) and it has been used extensively in deriving
important and well-known solutions of Einstein-
Cartan theory. "' In all these solutions the sim-
plification of the metric is via symmetry assump-
tions as in general relativity.

Using the field equations we investigate the
extent to which the symmetries of the torsion are
related to the symmetries of the metric. Let g

be a Killing vector field, i.e. ,

L~g ~=p,

where L denotes Lie differentiation. It is well
known that Eq. (14) implies

L gab p

Also, because o'~ in Eq. (10a) represents the
stress-energy-momentum tensor [cf. Eq. (11)],
it is reasonable to require

(14)

(15)

gob —0

This requirement is strongly suggested by the
fact that the Einstein-Cartan theory is considered
a reasonable, slight modification of general
relativity. However, Eq. (16) is a strong condi-
tion on o,~ which, unlike the case of general
relativity, does not follow from the field equations
(7) and (14). Equations (15) and (16) and the field
equations (10b) now give the constraint

(17)L]A'~ =0.

What restrictions does Eq. (17) impose on the
form of the torsion tensor & We have not been
able to answer this question in full generality.
However, we have answered it in two physically
important cases.

First, there is the case of convective torsion.
Second, it is the case of torsion with two ir-
reducible parts only (cf. Appendix A), the vector
part ~S ~' and the antisymmetric part "S,~'. The
S ~ js important because S ~ is the type of

torsion which results if the gauge invariance of
the electromagnetic field' (or other gauge fields' )
is reestablished in a Riemann-Cartan space-time.
The "S„'is the type of torsion for which the auto-
parallels of the Riemann-Cartan connection j.",~,
defined by Eq. (2), coincide with the geodesics of
the Riemannian connection f~,}. In both these cases
we have shown that the torsion and the metric
must have the same symmetries. Thus symmetry
assumptions concerning the simplification of the
metric induce automatically symmetry assump-
tions simplifying the torsion. The proofs are

III. A NEW SOLUTION OF THE
EINSTEINWARTAN THEORY

We consider again the Einstein-Cartan theory
and make no a Priori assumption(s) concerning
the physical role of torsion. Having then no
alternative we construct simplifying assumptions
using the symmetries of the gravitational field.
Because the gravitational field is defined by both
metric and torsion, we require that a vector g

shall generate a symmetry of the gravitational
field if and only if

(18)

(19)

g~s Oy

Since both g,~ and S,~' are considered to be
cosmic tensor fields, Eqs. (18) and (19) are
compatible with the cosmological principle as
stated by Weinberg" and allow us to construct
analogs of the Friedmann-Robertson-Walker
(FRW) models in Einstein-Cartan theory. As has
been shown, ' these models are excluded if the
convective form of torsion is used.

The cosmological principle requires the exis-
tence of six Killing vectors generating the three-
dimensional maximally symmetr ic hyper surfaces
of homogeneity. Equation (18) indicates, as usual,

rather involved and can be found in Appendices
8 and C, respectively.

The fact that for convective torsion the metric
and torsion must have the same symmetries
imposes severe restrictions on the form of the
torsion. ' In particular, if Eq. (16) is assumed,
it proves that the solutions of the Einstein-
Cartan theory discovered by Kopzynski and by
Trautman, in which the singularity is avoided,
must be reconsidered. ' This reconsideration has
also been suggested in Ref. 9 on the assumption
that the cosmological principle still holds in a
Riemann-Cartan space-time. Here we have
shown that if Eq. (16) is assumed, this reconsider-
ation follows directly from the field equations.
Similar arguments apply to other solutions of
Einstein-Cartan theory using convective torsion. "

Finally, an especially interesting solution is
the one produced by Rosenbaum et a/. " In this
solution the metric is taken to be everywhere g,~

(i.e. , space-time is Riemann flat) and the torsion
is assumed to be of the convective form Eq. (13).
Thus, this solution corresponds to what one may
call "special relativity with tor sion. " However,
according to our results, if Eq. (16) is assumed,
then this solution is not possible, because in a
maximally symmetric four -dimensional space-
time convective torsion can never be form
invar iant. '
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that the metric has the Robertson-Walker form" o"= (p +p)u'u'+pg", (29)
do' =g dxadxb = -dt2 +R2(t)do2

where R(t) is the cosmic scale factor and

2
dy'ds2=, +2'2d82+r2 sin28 dp2,

1 -(yr2 (30)

where p is the energy density of matter and p is
the isotropic pressure. From Eqs. (27), (28),
and (29) it follows that

R'b =k(p+p)u'ub+ —2'k(p —p)g'b,

where n =0, +1 is the constant curvature of the
cosmic time hypersurfaces. Equation (19) and
application of the theorem of Ref. 9 give the
following nonvanishing components for torsion:

p
—=p + rakF'+Bkf',

p =—p+-,' kF' —kf'
(»)
(32)

S '=S 2=S 3=E
Ol 02 03

~u2 ~ms) —f ~

(21)

(22)

where F,f are arbitrary functions of cosmic time
t.

are the "effective" density and the "effective"
pressure, respectively. Equation (30) is identical
with the corresponding equation of general
relativity except that p, P replace the usual p and

P. In components Eq. (30) reads

Indices 1,2, 3, enumerate coordinates in the
maximally symmetric hypersurfaces of constant
time. In the comoving frame the four-velocity
u' has components (1,0, 0, 0). Using this frame
and Eqs. (21) and (22), we show easily that the
nonvanishing irreducible parts of torsion are

BR = --2'k(p+Bp)R,

RR +R'+ 2n =—2'k(p -p)R'.

The conservation law 'b, -
b

=0 gives

(PR') = BR'P . -

(33)

(34)

"8 ' =—'(6'u 6'u )Fab 3 b a a b

A$ c
ri cdu fab ab d

Hence

S, ' = 2 (6'u, —6'ub)F +ri ' ucf .

(24)

From Eqs. (23) and (24) it follows that torsion
can be associated with the four-velocity u' only
and not with a spacelike vector. " We conclude
then that this type. of torsion does not represent
spin.
'From Eq. (25) we find

c —2$ c 34$ c —2VS c AS c
ab b a ab b a b a

(26)

One important property of this solution is that
it does not violate the so-called "Weyl's postu-
late, " i.e. , that "free fall" takes place along the
geodesics of the metric. Indeed, using Eq. (26)
we find"

8'-=u' ub=u', ub=0.Ib bb

We turn now to the field equation (7). We find,
after a lengthy calculation,

gab l ctab~yc 8 Sa$b +ASacd ASb
C 3 cd

—(2 F2 y 2f 2)uaub y 2gabf 2

where Sa —=S' b.

Field equation (7) can be written
ab —k(Oab & gabOc ) +k (Aab 2~ gabAc ) (28)

From Eq. (16) it follows that o'b has necessarily
the form of a perfect fluid, " i.e. ,

(36)

IV. CONCLUSIONS

The recent efforts to generalize general
relativity have their roots in the desire to con-
struct a theory which will encounter in a unified
manner strong, electromagnetic, weak, and the
very weak gravitational interactions. All the
suggested theories, so far, are relativistic and
belong to the class of theories we considered in
the Introduction.

In the present paper we emphasized the great
care which should be taken in the construction
of solutions and the physical interpretation of
the extra geometric objects introduced by these
theor ies.

The results of Secs. II and III illustrate this
point in the well-known Einstein-Cartan theory.
Thus, in Sec. II we have shown that if Eq. (16)

Although the field equations (30) have an identical
form with the corresponding equations of general
relativity, the quantities they involve are dif-
ferent. Thus, in general, the physics they con-
tain shall be different from that of general
relativity.

The solution we found is not free of singular-
ities. To show this we use Eqs. (31) and (32) to
replace p and p in Eq. (33) and obtain

3R = ——,'k(p +Bp+-', kF')R .
~ a

Thus as long a.s p+Bp ~ 0, we have RjR&0 and
singularity is reached at some finite time in the
past. A detailed study of this solution is current-
ly under investigation.
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is assumed, then the well-known and important
solutions of this theory use inconsistent simplify-
ing assumptions. Further, in Sec. III we pre-
sented a new solution of the theory which is
compatible with the cosmological principle and
in which torsion does not represent spin. This
solution is excluded if the assumption that torsion
is coupled to intrinsic spin of matter is used.
Further, it is directly related to the standard
cosmological model of general relativity and can
be used for a direct observational verification
of the Einstein-Cartan theory.

The solution is defined up to two arbitrary func-
tions f,F which are not constrained by the first
set of field equations (7) of the theory. Bounds
on these functions can be found from the observed
values of the Hubble constant and the deceleration
parameter.

The method we employed to derive this solution
can be applied to any other member of the class
of theories considered in this paper and produce,
if it exists, a solution compatible with the cos-
mological principle. This solution may be ex-
cluded, (e.g. , as in Einstein-Cartan theory) by
the a Prim i.physical role assumed for the extra
geometric objects of the theory. Clearly, the
same remarks apply to solutions with other types
of symmetry.

Finally, another useful aspect of this method
is that if the theory uses a Lagrangian approach—
which is most probable —one may use the sym-
metries of the gravitational field to obtain con-
stants of motion and/or conserved quantities.
One case where this has been done can be found
in Ref. 15.

equations of the Einstein-Cartan theory (7) imply
that, if $ is a Killing vector of the metric, i.e. ,
Lzg, ,=p, then g leaves also invariant the form
of torsion, i.e. , L~S,~'=0. From Eqs. (10) and
(13) we find

L S2=0

Equation (B1) becomes, using Eq. (B2),

3L~(u'u, )S' —2L, (S'S,) =0

(B2)

Then contract with Sa and use that S2~ 0 ta obtain

3(L~u')S,u, -2(LiS,) =p. (B3)

Contract again with ub and use u, S' =0 to find

(Lqu')S, =0.

Equations (B3) and (B4) give

(B4)

L]Sb=0. (B5)

From Eqs. (Bl), (B5), and u'u =-1 it follows
that

L u'=Q.

Finally, Eqs. (B5) and (B6) imply

L S c=0.
ab

(B6)

(B7)

~
—,(A'g, —2'6'~A' ) =2S'S~+(S'S,)u'u,

=2(6'~+u'u, )S' —2S'S +S'u'u

where S,-=S,
~ and S' =S,S'. Let ( be a Ki]ling

vector Th. en Eq. (17) gives

2LgR6 +u'u )S ] —2L (S'S )+L&(S'u'u ) =0. (Bl)
Contra, ct a, b (use L&g =p) to find

APPENDIX A

c vS c+ &S c +AS c
ab ab ab ab

where

S '= —'(O'S -S'S )

S.b = ,'(S„' -S'«-» -S«5»),
AS c—Sab /abc) &

(A1)

(A2)

(A3)

(A4).

It can be shown that torsion can be decomposed
with respect to the orthogonal group in the follow-
ing manner:

APPENDIX C

Here we assume torsion to be of the form
c vS c +AS

ab ab ab

where S,b' and "S,b' are defined in Appendix A.
We prove as in Appendix B that if g is a Killing
vector, then from the field equations it follows
that L)S,b' =0.

We define a vector r' by
AS — g

abc ~abc/+

If Sab —=Sawe have
(S, =—S, 5).

Sab & ab &
a d Sab are called the "vector part, "

the "traceless part, " and the "antisymmetric
, part" of torsion, respectively.

APPENDIX B

We prove that if the torsion tensor has the form
of convective torsion defined in Eq. (13), the field

vS c L(6cS 6cS)ab 3 b a a b

Let r' =r'r, and S' =S'S,. Equation (17) gives

L,( S'S~B—26'„r' +2r'r, ) = P

or

f (L~S') S~+ 4~S'(L~S,) —6'~L~r'

+ (Lp')r~+r'(L~r, ) =0 .

(Cl)

(c2)
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Contract a, 5 in (Cl) to find

(C3)

Contract Eq. (C2) with S, to obtain

(Lqr~)S~+ fS2(L(S~) +2(r'S, )(L r )

+2rq[(L &)S ]=p. (C4)

Contract Eq. (C4) with S~ and r' to obtain, respec-
tively,

Case II: r'S, =0.

Equations (C5) and (C3) give

L r2-0

L S2=0

(C14)

(C 15a)

(C15b)

(r'S,)L (r'S, ) =-S~L r'.
Replacing this in (C13), we find Lp' =0 and the
proof continues as in Case l(a).

(r'S, ) [(L&r, )S']= -S'L r',
&'S'[(L&S,)r']+r'[(L r')S, ]+(re,)L y' =p.

Contract Eq. (C4) with r' and r' to obtain, re
spective ly,
' [(,S ) .]S,+ ~

( ~,),S,
-r~L~r +2r L~r~ =0,

(S'r,)[(L,S )r ]

Case 1: r'S, gp. Equation (CB) gives

(L~S')r, =0.

Equations (C9), (C5), and (C6) give

(C5)

(C6)

(CV)

(C B)

(C9)

Equations (C4) and (C6) become

4v S'L~S, +r, [(L(r~)S~]=0,

~4S2[(L,S.)r~]+r2[(L,r )S.]=0

From Eqs. (C14) and (C1V), it follows that

(~S —r )[(L S,)r'1=0.

We distinguish three cases.

Case II(a): &8' r'0 -0.

Then

(L(S,)r' =0.

From Eqs. (C15b) and (C19) it follows that

(C16)

(C1V)

(C16)

(C19)

[r'S' (r S.)2)L,r' =0.

Case 1(g): L,r'=0.

Equations (C11) and (C3) give

L~S' =P

Equations (C9), and (C12) give

(LqS )(S'+r') =0

(C10)

(C11)

(C12)

for all r'. Because S'+r' is an arbitrary vector,
this gives

(LqS,)(r'+S') =p.

Thus

L~S =p.

Equation (C3) implies Lp'2 =0 and Eqs. (C14),
and (C19) give (L~r,)S' =0. ft follows that L~r,
=0; thus L,S„'=0.

Case II(b): &4S' r' =0, S-'40. Equations (C6)
and (C14) give

L S =0.

Case l(b): r S' (r'S,)'=p-.

This gives, using Eq. (C3),

(S'+ z y')L,r' 2(r4S, )—L,(r'S, ) =0.

Equation (C9) gives

(r'S.)L («) =( 'r.S)[( L 'r) S]

and Eq. (C5) implies further

(C13)

(I,,S,)r' = (L,r, )S' =0.

From this and Eq. (C15) it follows easily that

L S '=0.
eb

Case II(c): S' =r' =0. Equation (C4) gives

r.[(L,S,)r'] = 0,
from which follows

(L~S,)r' = 0

and the case is reduced to Case 11(b).
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