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Extended hypercolor theories have been plagued with inherent flavor-changing effects occur-
ring above experimental levels. The problem may be alleviated in a scenario in which hyper-
color interactions are not asymptotically free. Then the scale of broken gauged family symmetry
may be higher than before. The masses of the pseudo-Goldstone bosons of hypercolor may
also be increased.

One of the hopes of a fundamental theory of
quarks and leptons would be to relate their masses in
some natural way to the mass scale of weak interac-
tions. Theories with elementary scalar fields and ad-
justable Yukawa couplings shed no light on this ques-
tion. But there is another class of theories which in-
corporate new strong interactions' (hypercolor) to
provide the mass scale for the weak interactions. By
extending the theory in some way it is possible to
have naturally small quark and lepton masses appear
in an effective Lagrangian below the hypercolor scale.
Such an extension can involve new gauge interac-
tions, with their effects suppressed either by their
large mass relative to hypercolor' or by their weak
couplings. Extended hypercolor theories involving a
new heavy mass scale will be labeled hypercolor side-
ways (HS) theories.

But besides the fermion-mass terms in the effec-
tive Lagrangian, one also has to consider the four-
fermion terms. In a realistic theory incorporating
several generations, these effective terms can in gen-
eral be flavor changing (EG =0, I, or 2).3' But
there are already strong experimental restrictions on
such terms. The most stringent restriction' applies to
the coefficients of the AS =2 operators, which must
be less than

2
(106 GeV) '.

In the context of HS theories, explicit flavor-
changing currents in fact must be present to avoid
light Goldstone bosons. The coefficient of a AS =2
operator expected from a simple sideways exchange is—1/2M where M absorbs the inverse coupling,
M —= g& 'M&. It is also reasonable to take M~ as the
mass of the sideways gauge boson which feeds a
mass to the down quark. The standard expression is

2M2

The hypercolor condensate (O~DD ~0) —= mH' is es-
timated by simply scaling up quantum chromodynam-
ics. It is fairly safe to assume that mH lies between
200 and 400 GeV. This yields M = (2—6) x 10~

5, t

(I (((t t(L, UL, U(( + I ds di DL, Dr(

+ I";(eJ,eL(EL, Es) +H.c.

Since it is possible to choose fields to diagonalize 1 ",
I'~, and I' it can be shown' that the couplings of the
neutral PGB's are flavor conserving, up to order
mf'/FH'. But monophagy may not be as easy to real-
ize as first suggested. It is not sufficient to require
that sideways gauge bosons only couple each type
(u, d, e) of fermion to the same type of hyperfermion.
One must identify symmetries to forbid additional
terms. The unbroken gauge symmetries below the
sideways scale is GH x SU(3) x SUL (2) x Ur(1).
This symmetry does not forbid the undesired terms

X (I",, ds, dL(EL, E((+ I ('es, ei,DL, Ds) +H.c.
5,1

One can imagine some additional global symmetry
respected by the sideways breaking to prevent these

GeV. This discrepancy with the experimental 4S =2
situation is a challenge for this type of theory, as em-
phasized in Ref. 5.

Note that this is a discrepancy in the real part of
the coefficient of the 4S =2 operator. Experimental-
ly, the imaginary part is suppressed by a further fac-
tor of —10 '. Thus the above discrepancy will be far
more severe unless the imaginary part is naturally
suppressed by some other mechanism in these
theories. For now, such a suppression is assumed.
(It occurs in the model of Ref. 6.)

In HS theories, a single exchange of a neutral
(color-singlet or -octet) pseudo-Goldstone boson
(PGB) can also produce 4G =2 operators. To suffi-
ciently suppress these, ' the mass of the PGB must be
& 6 x 10'8 GeV, where 8 is a "Cabibbo-suppression"
factor. This seriously conflicts with standard esti-
mates of PGB masses. One can ensure that 8 is suf-
ficiently small by imposing "monophagy. " This re-
quires that the only fermion-mass-generating terms
take the form
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terms. But this symmetry would eventually be bro-
ken by hypercolor, resulting in a light axion. Avoid-
ing this leads to the statement of Ref. 3 that there
must be some kind of (hyper)quark-(hyper) lepton
unification above the sideways scale. As an example,
the easy way to accomplish this is via a Pati-Salam
SU(4). [It is assumed that SU(4) breaks to SU(3)
color at the scale of the sideways breakdown. 6] Then
SU(4) and sideways effects combined will give rise to
the above terms. There is also no a priori reason why
I and I" should be simultaneously diagonalizable.
Thus with monophagy lost one returns to the prob-
lem of suppressing AG =2 effects from a single-PGB
exchange.

But there is a scenario in the context of HS
theories which may circumvent these problems. Hy-
percolor in these theories is usually taken to be
asymptotically free. The breakdown of hyperflavor
symmetry well below the sideways scale can then be
attributed to the rise of the hypercolor running cou-
pling constant gH(k) at lower momentum scales. But
the latter property is not unique to asymptotically free
theories. The P(gH) function may instead be as de-

ypercolor

FIG. 1. An example of p(gH) for the new scenario.

picted in Fig. 1, with hypercolor being "born" in the
region with P(gH) negative. gH(k) again continues
to rise at smaller momentum scales. But the high-
momentum properties of the theory are now
governed by the fixed point gH. This has implica-
tions on ordinary-fermion-mass generation.

A characteristic fermion mass can be defined by

y5mf = '—
J ~ 2 2 J d x e'~(ys. (01 T[H(x)H(0)110)}2w ~ p2+Ms2

In the limit ~p'~ ~ the operator-product expansion gives

Jfd4x e'~(y5, (0~ T[H(x)H(0) ] ~0) }= U(p, mH, gH) (0(HH(0) ~0) = m~3U(p, mz, g&)
ys

(2)

mH is being treated as the renormalization point.
Standard renormalization-group analysis9 of the Wil-
son coefficient function U gives

'

/p
'

lyHH(gH)+y(gH)l
lim U(Kp, mH, gH) =
g~oo Kp mH

(4)

yuH and y are the conventionally defined anomalous
dimensions for the operator HH(0) and the inverse
of the hyperfermion propagator, respectively. Using
this asymptotic form in Eq. (2) is justified if
y =—pe(gH) +y(gP) is 0 & y" & 2, in which case
momenta of order M » mH dominate a convergent
integral. If one sets

c csc =1

I

the sideways scale M for given mf and mH. y' & 0.7
yields M &10 GeV for mH=300 GeV, mf =10
MeV, and ng =1. The point is that coefficients of ef-
fective flavor-changing operators induced by a side-
ways exchange are characterized by I/M'. Box dia-
grarns have also been considered. So from the previ-
ous discussion, M 10 GeV sufficiently suppresses
all flavor-changing processes induced by sideways ex-
change.

Note that the above analysis has been made some-
what easier by assuming that gH(M) = gH. Then
anomalous dimensions are constant over the impor-
tant range of integration. But it is clear that this is
not a required assumption for the effect noted.

An important question for this scenario is whether
the hierarchy between the sideways and hypercolor
mass scales remains natural. From the definition of
p(gH) one has

then the result is
P+H H=exp-

mH 'H(~ p(g„) (6)
1

mH AM ~
mf =

2M2 mH

y & 0 is precisely what is desired in order to raise

where gH(mH) is the running coupling necessary for
the spontaneous breakdowri of hyperflavor symmetry.
P(qH) is completely unknown in this region and it
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does not appear unnatural to have M/mH —10~. But
it is interesting that arbitrarily large hierarchies are
not to be expected.

But what effect does this scenario have on other
predictions made by these theories~ One change will
be in the masses of pseudo-Goldstone bosons. A
single exchange of a gauge boson, whether of a typi-
cal sideways mass or of SU(3) x SUL(2) x Ur(1),

will induce terms in a phenomenological Lagrangian
for PGB's. ' These terms, when expanded out, are
the PGB mass terms as well as multilinear PGB cou-
plings. The coefficients of these terms are propor-
tional to the difference in vacuum energy for two dif-
ferent vacuum orientations, for which the gauge gen-
erator is broken and unbroken, respectively. This is
represented as

de 2

~
d4x. ~(0~7 [J;(x)J,„(0)-J„(x)J„„(o)jl0) .

2 " (2m)4 p'+Mz' (7)

Here, Jb" and J„"can be any pair of broken and un-
broken currents. If Mz =M~ is typical of the side-
ways scale then one can proceed as before. The
result for 0 & y JJ (2 is

mH gsM &JJ
S 2M'2 mH

(8)

only from this source. This is the PGB most
dangerous for flavor-changing processes. The result
was m 0 & 2 GeV. '0 " Now in the new scenario, this

can be used to place a lour bound on any PGB mass
receiving a contribution from this source. Thus

HAJJ
—= yJ&(gH) is the common anomalous dimension

for the J"J„(0)operators. M'—= Msgs ' and gs need
not be identical to M and gs. By comparing Eqs. (5)
and (8) one can see that, roughly speaking, Cq will
be larger in the new scenario if yJJ & y'. This is
plausible since if the only set of diagrams contribut-
ing to Eq. (7) had the form of Fig. 2, then one would
have yJJ =2y'.

A lower bound on M', M' & 300 TeV, was ob-
tained" in the case that the gauge boson was of the
Pati-Salam SU(4) type (as in the model of Ref. 6).
This translated into an upper bound on the mass of
the neutral, color-singlet PGB, which receives a mass

R

FIG. 2. A class of diagrams contributing to Eq. (7).

1

3 x10' GeV gsM
mpos & (2 GeV) M' mH

(9)

Such a bound can arise in any scheme in which effec-
tive four-hyperfermion terms are produced from a
symmetry breakdown at a scale M' well above the
hypercolor scale. If as =1 and M'=106 (10') GeV,
then the lower bound is 65 (20), 425 (210), 2800
(2200) GeV for yJJ =1, 1.4, 1.8.

The coupling of a PGB to fermions should be the
same, m~/FH, as before. This is because Eq. (2)
gives the coefficient of the PGB-fermion term in the
phenomenological Lagrangian. ' The surprising pos-
sibility is that the flavor-changing effects due to PGB
exchange are suppressed simply by large PGB masses.

A question which remains to be investigated in this
scenario is the behavior of the running coupling con-
stants of SU(3) x SUL(2) x Ur(l) above the hyper-
color scale. Because hypercolor is not asymtotically
free, it does not appear sufficient to calculate the p
functions to lowest order in the hypercolor interac-
tions (i.e., one loop with N, E, U, or D). It is possi-
ble that the p functions feel the effect of hyperhad-
rons above the mass scale of hyperhadrons. For ex-
ample, the large number of colored hyperhadrons
may make the SU(3) running coupling grow above
the hypercolor scale and become strong at the side-
ways scale. This would make it more plausible that
SU(3) emerges from the breakdown of a strongly in-
teracting gauge theory at the sideways scale.

A model which may realize this scenario is present-
ed in Ref. 6. Here the gauged symmetry breaks from
SO(6) x SU(4) x SUL (2) x SU„(2) to SO(3)
x SU(3) x SUt, (2) x U „(1)at the sideways scale.
Both SO(6) and SU(4) are asymptotically free,
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whereas the SO(3) (hypercolor) is not. Other choices
for hypercolor were not permitted. 6

In summary, this scenario may effectively remove
two features of HS theories which previously charac-
terized these theories: low-mass PGB's and flavor-
changing effects. The failure to observe Higgs scalars
and PGB's at expected energies could be taken as a
signal for this scenario.
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