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Model-independent analysis of experimental baryon magnetic moments
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Strong disagreement between experimental hyperon magnetic moments and simple model

predictions is exhibited in the function R(p, X+, ) =3(p~ —px+)/ (ps —py) =2.7+o.S, sn

order of magnitude larger than the broken-SU(6) prediction 0.34. This is shown to imply

quenching of contributions of nonstrange quarks in strange-baryon magnetic moments, relative

to contributions in the nucleon. The model-independent analysis includes SU(6)-symmetry
breaking, configuration mixing, relativistic corrections, and quark-diquark correlations.

The failure of simple constituent-quark models' to
explain' the new experimental values of X and
magnetic moments ' contrasts sharply with the re-
markable success of the naive constituent-quark
model in describing the nucleon and A magnetic mo-
ments"" and the hadron mass spectrum. " " The
underlying dynamical reasons for this success are not
understood and it all may be accidental, ' However,
there may also be a simple explanation which awaits
discovery from clues in the experimental data. This
paper presents a model-independent analysis of the
experimental data and precisely defines the frontier
between the regions where the simple model works
well and where it breaks down badly.

The discrepancies in the X and magnetic mo-
ments are shown below to indicate a quenching of
the magnetic moments of the nonstrange quarks in
strange baryons. The magnetic moment of the
strange quark, however, is not similarly quenched,
thus ruling out scaling factors determined by hadron
masses. 4 Furthermore, the successful mass rela-
tions" ' between mesons and baryons and the
baryon magnetic moment suggests that no such
quenching occurs in the color magnetic moments of
the nonstrange quarks which are responsible for the
hyperfine splitting in the simple models. The only
proposed model with the qualitative features suggest-
ed by these regularities in the data is the pion-
exchange model of Brown et al." The two-body
pion-exchange contribution affects only non'strange
quarks since strange quarks are not coupled to the
pion. Furthermore, the pion-exchange current car-
ries electric charge but is color neutral and contrib-
utes to the electromagnetic moment without contrib-
uting to the color magnetic moment and spoiling the
relations between hyperfine splittings.

Previous attempts to explain the discrepancies by
using linear combinations of baryon moments which
project out individual quark contributions' have not
given convincing results because of the large errors in
the X moments, particularly the X . The present

analysis chooses two functions of the baryon mo-
ments which approximately project out nonstrange-
and strange-quark contributions while avoiding large
contributions from poorly known moments with large
errors:

X
R(p, X+, =-) = =2.7 +0.8 (la)

Pgo+P«
R (,A) = =1.05 +0.04 (lb)

The quantity R(p, X+, ) defined by Eq. (la) is
predicted to vanish in the SU(3)-symmetry limit,
while the quantity R (,A) is predicted to be equal
to unity. The effects of SU(3) breaking are seen to
be very large for R ( p, X+, ) and very small for
R (,A). This contrast persists also in the broken-
SU(6) model"' which introduces SU(3) breaking in
the quark moments but not in the baryon wave func-
tions. The broken-SU(6) model predicts

R ( p, X+, )tb«&= (pp+3pq)l g~ =0.34+0.005, (2a)

R (,A) g„,= 9
—p,p/27 p, g = 1.06 (2b)

The agreement between theory and experiment is
now excellent for R (,A) and terrible for
R ( p, X, ). This striking contrast gives interesting
information about the underlying physics. The quan-
tity R ( p, X+, ) depends almost entirely on contribu-
tions from nonstrange quarks, whereas R (:,A)
depends almost entirely on the contributions from
strange quarks. The numerator of the relation (la) is

larger than the prediction of the simple model be-
cause the nonstrange quarks contribute less in the X
than in the proton. The denominator of (la) is
smaller than the model prediction because the contri-
bution of the nonstrange quarks in the is smaller
than in the proton. The stability of the expression
(lb) against SU(3)-symmetry breaking suggests that
the contributions of the strange quarks in the are
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not appreciably different from the contribution of the
strange quark in the A.

These points can be demonstrated quantitatively by
a model-independent analysis. The numerator and
denominator of (la) can be expressed in terms of the
individual contributions from each quark flavor

p,,—p, =fd(p) —s(X')]+fu(p) —u(X+)1

+[s(p)-d(X')l,

p,g —p = [ u (:-')—d(= ) l + [s(:-')—s (:- ) )

+ [d(=-') —u(=--) 1,

(3a)

(3b)

where u(8), d(8), and s(8) denote the total con-
tribution of the u, d, and s quarks, respectively, to
the magnetic moment of baryon B. These are gen-
eralizations of quantities introduced by Franklin and
Lichtenberg' with a different notation. They can be
defined precisely by the relation

Bp,gf (8) =qr
Bgf

(3c)

where qf is the electric charge of the quark field of
flavor f, and f= u, d, s, . . . . The magnetic mo-
ment of any baryon 8 is given by

p,s = $f (8)
f

(3d)

In fact our analyses of the relations (la), (3a), and
(3b) only require the equality of the sea-quark contri-
butions (3e) and do not necessarily require these to
vanish. The analysis of Eq. (la) below holds even if
there is a sea contribution to the baryon magnetic

These relations (3c) and (3d) are valid in any model
where p, ~ is a linear homogeneous function of the
charges of the quark fields. They apply not only to
all common constituent-quark models with arbitrary
summetry breaking, configuration mixings, and rela-
tivistic corrections but also to relativistic bag, parton,
and field-theoretical (quantum chromodynamics)
models. Even models with an appreciable gluon
component in the wave function are included because
the gluon field has no electric charge and does not
contribute directly to the electromagnetic current
even when it carries appreciable angular momentum.
Equations (3a) and (3b) hold in any such model
~here the contributions from heavy quarks, e, b,
t, . . . can be neglected.

For our analysis we make the additional assump-
tion that only contributions from valence quark fields
need be considered; e.g. , that contributions to the
nucleon moment from strange-quark pairs in the sea
can be neglected:

s(p) =s(n) =d(X+) =u(X ) =d(:0)=u(= ) =0 .

(3e)

moments, provided that this contribution is the same
for all baryons. Our analysis of (lb), however, re-
quires the vanishing of this sea contribution.

We further assume that the wave functions satis-
fy isospin symmetry,

s( )=s( )

u( ) =(—2+a)d( )

(4a)

(4b)

s(X+) =Ad( p),
2s(:)=—g2u( p),
u(X+) =q)u( p),
d(=- ) =q2d(p)

(6a)

(6c)

(6d)

The symmetry-breaking factors g~ and g2 express the

where the parameter e is introduced to include the
cases where the magnetic moments of the u and d
quarks are not exactly related by the factor —2 of
their charges. Attempts to include additional contri-
butions to the quark magnetic moments of this
type ' always assume the quantity e to be small, of
the order of a few percent. It has a negligible effect
on'our results. Substituting Eqs. (3) and (4) into
Eqs. (la) gives

~( X+ -) ld(p) —s(X+)I+tu(p) —u(X+)1
(I —.i3)d(=--)

(5)

In the usual SU(6) treatments the wave functions
of the two u quarks in the proton and X+ are as-
sumed to be i'dentical as required by SU(3), and the
contribution of the second bracket in the numerator
of Eq. (5) vanishes. The breaking of SU(3) is ex-
pressed by the difference between the d and s mo-
ments in the first bracket. Since the wave functions
of the d quark in the proton, the s quark in the X+,
and the d quark in the are assumed to be the
same, the contribution from the first bracket on the
right-hand side is just the fractional difference
between d and s moments given by Eq. (2a) and is
approximately —,. The strong disagreement by almost

an order of magnitude with the experimental result
of 2.7 given by Eq. (la) suggests that the second
bracket on the right-hand side cannot be zero and
that the denominator is smaller than predicted by the
standard model. Both the magnetic moment of the u
quark in the X+ and the magnetic moment of the d
quark in the are quenched relative to their values
in the proton. The only alternative to this quenching
is to make the first bracket large by reversing the sign
of s(X+) compared to d( p). Such reversal of a
quark spin is a very violent violation of SU(3) sym-
metry which does not seem reasonable in any model.

The necessity for this quenching effect is demon-
strated more explicitly with the use of SU(3)-
breaking and quenching parameters by the relations
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ratio of the strange-quark to the nonstrange-quark
moments, defined to be equal to unity in the SU(3)-
symmetry limit. In the broken-SU(6) models'

zero orbital angular momentum. There are two in-
dependent spin couplings, and the magnetic moments
for these cases have been shown to be'

(i = g2 =—3pA/p~ =0.66 +0.04 (7) po =pt(&6)sw cps 1/2 pc (9a)

=2.7 +0.8 (8a)

Ape
1

e2 1 —«1 d(p)
3p~ 6 pp

The quenching factors q~ and q2 are taken to be
unity in most models including broken SU(6). They
express the quenching of the nonstrange-quark con-
tributions in the X and: with respect to their contri-
butions in the nucleon. Substituting Eqs. (3)—(6)
into Eqs. (1) gives

( X+ )
I 41 Et(p) I 'll

q2(1 —«/3) d(p) q (1 —«/3)

pi = pt(~—&)s-i', cijs ll2 3 (p'o+p'b) 3 p'
1

(9b)

where the three quarks are denoted by a, b, and c,
and the basis states chosen have the spins of a and b

coupled to zero and one, respectively. For the
baryon octet, a and b are chosen to be the two non-
strange quarks in the A and X and to be the two
quarks of the same flavor in all other baryons. The
conventional broken-SU(6) value of the magnetic
moment is given by p,o for the A by p-, i for all the
others.

If additional SU(6) breaking is introduced by mix-
ing these two configurations, the resulting magnetic
moment is simply the weighted mean of the two mo-
ments (9)

= 1.05 +0.04 (8b)
p, = cos28 pi + sin28 po = pi —(p, i

—po) sin28 (10)
Equation (8a) shows explicitly the strong disagree-

ment with experiment when both quenching factors
ql and q2 are set equal to unity. If gi is taken from
the A moment as in Eq. (7), the prediction (2a) of
0.34 is obtained. A negative or drastically smaller
value of gi seems highly unreasonable. Thus
nonzero values of qi and q2 are required by this
model-independent analysis of the data and show that
the magnetic moments of the nonstrange quarks are
quenched in strange particles with respect to their
values in the nucleon.

The success of the prediction (2b) for the expres-
sion (8b) shows that the symmetry-breaking factor (2
is very nearly equal to the broken-SU(6) value (7)
and that there is no appreciable quenching factor for
the strange quark. This relation is highly insensitive
to the quenching factor q2, since the entire term in
which q2 appears contributes only 6% of the predic-
tion (2b).

The results are completely model-independent as
long as no other electrically charged constituents are
considered in addition to the three valence quarks.
They apply to models with arbitrary symmetry break-
ings, relativistic corrections, and configuration mix-
ings including gluon admixtures, as well as to models
with quark-diquark structures. In this connection it
should be pointed out that the results from SU(6)
wave functions are stable against configuration mix-
ing and large admixtures are needed to obtain appre-
ciable modifications of the SU(6) results. The contri-
butions from mixing are always proportional to the
square of the admixed amplitude; there is never any
linear term.

The stability of the SU(6) result can be seen by ex-
amining the expressions for the magnetic moments
of the most general three-quark configurations with

where cos8 and sin8 are the amplitudes for the two
configurations (9b) and (9a). There is no cross term
between the two configurations because the spatial
wave functions are orthogonal and the spatial overlap
integral vanishes. This can be seen by noting that
particles a and b are identical fermions and required
by the Pauli principle to be in an antisymmetric state
of all degrees of freedom, including space, spin,
color, and isospin. Since the two configurations (9)
have a and b in states with the same permutation
symmetry in color and isospin and opposite symmetry
in spin, they must have the opposite spatial symmetry
in the relative coordinate r, —r &. If one is spatially
symmetric, the other is antisymmetric, and the two
are orthogonal.

This analysis applies to.any model with no orbital
angular momentum including quark-diquark models.
Erroneous results can be obtained in the quark-
diquark model by failing to require the quark outside
of the diquark to satisfy the Pauli principle with the
quark in the diquark. Results from the original di-
quark model of Lichtenberg' must be updated to in-
clude quark statistics which was then an open prob-
lem because the color degree of freedom had not yet
been established.

For the case ~here a and b have the same flavor,
Eq. (10) can be rewritten

Pa Hc
p = p] 1

(1/4)
sin e

Equations (10) and (11) show that the SU(6) value
p, i is an extremum and that mixing reduces the abso-
lute magnitude of the moment for all two-flavored
baryons except the, which is the only case where

po/p» 1.
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The result that configuration mixing affects mag-
netic moments only by terms quadratic in the ad-
mixed amplitudes is general and applies also to ad-
mixtures with orbital angular momentum. The
magnetic-moment operator vanishes between the s-

state SU(6) configuration and all configurations with
orbital angular momentum. There are no linear
terms in the admixed amplitudes and the SU(6) mo-
ment is again an extremum.

In conclusion, present data indicate a serious
disagreement with simple quark models for baryon
magnetic moments which cannot be fixed up by sym-
metry breaking, relativistic corrections, configuration
mixing, or quark-diquark models. Some mechanism
for quenching the contributions of the magnetic mo-
ments of the nonstrange quarks in hyperons relative
to their contributions in the nucleon must be intro-
duced to fit present data. - Better measurements of

the X and X+ moments would give additional infor-
mation on this quenching. They could establish
whether the quenching increases with increasing
strangeness or is a constant for all hyperons. The
pion-exchange model" suggests that the quenching
should be viewed as an enhancement of the moment
of nonstrange quarks in the nucleon, since the nu-
cleons are the only baryons where a charged-pion
current between two quarks can contribute to the
static moment. In this case the nonstrange-quark
contributions to the magnetic moments should be the
same in all hyperons.
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