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Neutron-antineutron oscillations in an applied magnetic field
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The phenomenology of neutron-antineutron (n-n) oscillations in the presence of an applied

external magnetic field is developed. Conditions are derived for optimizing the growth of n

probability in a neutron beam. For the case of a space-varying field (precession around a field

axis), no "long-time" or "high-field" solutions exist. For the case of a time-varying field,

long-time solutions exist but with a quadratic growth coefficient about
3

that of the degaussed

(zero-field) solution. No high-field solutions were found to be better than the zero-field solu-

tions. However, it may be experimentally advantageous to apply a driving field instead of de-

gaussing to the levels required for the zero-field case.

Since Mohapatra and Marshak' have discussed
neutron-antineutron ( n n) o-scillation phenomenolo-

gy based on gauge models with spontaneously broken
local B —I. symmetry leading to large 48 =2, AL =0
nucleon transition amplitudes, some experimental
proposals'~ have been put forward to search for
neutron-antineutron mixing in a free neutron beam.
Iri order to make the experiments succeed, they all
have to degauss the earth's magnetic field to the or-
der of 10 ' 6 along the bean paths of meters or tens
of meters. It seems to be an expensive and a diffi-
cult process to shield the earth's magnetic field.

The purpose of this paper is to extend the
phenomenology of n -n oscillations in the presence of
an applied external magnetic field. The field may be
space varying (precessing around a certain axis) or
time oscillating. Our aim is to see whether the appli-
cation of such a field can enhance the probability of
oscillations or make their detection feasible without
the earth's magnetic field being degaussed.

In the presence of a static applied magnetic field,
the probability of oscillation is given by

We shall refer to Eq. (2) as the "zero-field" solu-
tion. For a typical experiment with thermal neu-
trons, t —10 sec and it would be necessary to de-
gauss the earth's magnetic field by a factor of 10 in
order for Eq. (2) to be valid.

We shall examine the behavior of P„- under condi-
tions of applied time- (or space-) varying magnetic
field at large scale times (cost is the scale time). We
denote these solutions as "high-field" or "long-
time" solutions. We obtain P,—from solutions to the
equation

't

N

dt N
I

Mp+ p, o. ~ B

Sm

N

Mp —pc7 B N

where W (W) are the state functions for neutron (an-
tineutron); 8 is the applied (varying) field, and Mo is

the neutron (or antineutron) mass.
The Mp can be eliminated by defining
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Then n (n) satisfies
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(p, is the neutron magnetic moment; 80, the static
field; and Sm, the mass difference between n + n and
n —n mass eigenstates). The maximum probability
given by Eq. (l) will be unmeasurable unless the
magnetic field is sufficiently small, in which case Eq.
(l) can be approximated by

P„(r) =(o) r)'- (2)
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Generally one must consider the spin components
of the n (n ) states, in which case n (n ) are two-
component vectors (spin up, spin down) and
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If the magnetic field has only one component, say

Bz, there is no mixing of spin states and n (n ) is
one-dimensional. In this case

P„-=n n

Since tps ))pi, we shall solve Eq. (4) perturba-
tively. First, we denote the unitary solutions
(Sm =0, no state mixing) as tii (for n) and as u; (for
n) T.he subscript (i) denotes the fact that, in the
case of spin mixing, there will be two such solutions.
In the case of a one-dimensional field, the subscript
can be ignored. Expanding in terms of the unitary
solutions
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we obtain for the expansion coefficient o.;, using the
orthogonality of the unitary solutions
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P„- becomes

Pe= Xoii2=(pi 't') X —
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We observe that at "small times, "
u; and n. can be

taken outside the integral of Eq. (5) giving

Pn =1 ("small" time)
co~2t

which is the zero-field limit.
We now apply the general procedure above to two

different cases:
Case I. Longitudinal driving field with no spin mixing,

B =Bp(1 rsintpqt)—
The unitary solutions (ti, u) are, respectively,

FIG. l. Plot of P„/ai~2t as a function of the ratio of
driving to the static magnetic field r for n (which is twice the
ratio of Larmor frequency to driving frequency) equals 1

and 2.

comes the periodic average
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The periodicity requirement is satisfied whenever

2QJg n=1, 2, 3, . . .
7l

The integral of'Eq. (8) is then a function of the
parameter r of Eq. (6).

Figure 1 shows a plot of P„/pp 't' as a fu-nction of r
(0 to 7) for n =1 and n =2. The optimal choice cor-
responds to n = 1, r = 1.84 for which the function
P„/pi t =0.34. -

Equation (4) can, of course, be solved numerically
to obtain Ps(t) as illustrated in Fig. 2 for the optimal

case (n =1, r =1.84). Here we have used tps

ti = e tr'" = n ( t) u = e+&(" (7)

~here

2fg ' 2f(t) = pint — sin', tpe= p, Bp/tt .
cog 2

CL

This gives

The integral of Eq. (8) wili go to zero as t ~ un-

less f(t) is periodic (say with period r) so that
f(t + r) =f(t) + n, in which case the integral be-

0
0 50

~ t/m.

FIG, 2. Plot of P„(t) for the optimal case n =1, r =1.84.



24 RAPID COMMUNICATIONS 1433

=20co and have plotted P„- as a function of a scaled
time (adust/n) T. he curve of Fig. 2 is approximately
representable as

P„—s-in2( JO 340. i t )

This gives
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An important consequence of the asymptotic
(t ~) solutions is that they are independent of the
magnitude of the applied field and therefore do not
require degaussing.

Case II. Rotating field c-onfiguration In. this case a
rotating field around the Z axis so co~ can be written
as
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~here

where oiz = p,Bz/g, air = p,BJt, and ru, is the rotation
frequency. The unitary solutions5 to (4b) can be
written as

If a unitary solution for n is used in Eq. (14) the
integrals become pure time-dependent phase factors
whose "periodic" averages are always zero; thus
there are no high-field solutions for this case.

Conclusions. We have considered the effect on n -n .

oscillations of applying a driving magnetic field. It
has been shown that applying a sinusoidally varying
field in the direction of the static field will produce a
quadratic growth (in time) coefficient which is, op-
timally, about a factor of 3 less than is obtained by
degaussing the earth's magnetic field; however, the
solution thus obtained is independent of field strength
and may provide a useful alternative to methods
presently being considered which require degaussing
of the earth's magnetic field by about a factor of
1000. The necessary condition is obtained simply by
picking a driving frequency (iuq) equal to 2pBO/g
where 80 is any static magnetic field. We further
show that no useful solutions are obtained for the
case of a space-rotating configuration of field.
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