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Logarithmic approximations, quark form factors, and quantum chromodynamics
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The structure of perturbative quantum chromodynamics in kinematic regimes characterized by two large but
different mass scales is investigated. The double-leading-logarithm approximation is reviewed, and the roles of the
various elements of this approximation are emphasized. In particular, the question of whether a suppression of cross
sections in the limit of small angles and large ratios of kinematic variables is predicted by the theory is treated at
various levels of approximation. Improved analysis suggests that no suppression is predicted. It is argued, however,
that a definitive answer can only arise from an exact analysis.

I. INTRODUCTION

An area of considerable interest and develop-
ment in the last two years is the perturbative
study' ' of the behavior of quantum chromody-
namics (@CD) in processes characterized by two
large but very different momentum scales. There
are two examples of such processes which are of
particular experimental interest. The first is
lepton-pair production in hadronic reactions where
the total energy s, the pair mass Q', and the pair
transverse momentum squared Qr' are all large
(compared to 1 GeV'), and the ratio s/Qr~ is also
large. In the simplest case this process can be
viewed as proceeding through the annihilation of
a quark-antiquark pair into a virtual photon and
any number of gluons. The second example is
electron-positron annihilation into hadrons where
the total energy 8' is large and hadrons are simul-
taneously observed at relative angles approaching
180 such that the relative transverse momenta of
the hadrons are sizable but much smaller than 8'.

These limiting configurations are most easily
understood by first considering the simple kine-
matic regime where all momentum variables are
large and all ratios are of order unity. For the
case of lepton-pair production this corresponds
to very large Qr', comparable to s, and for lepton
annihilation to the detection of hadrons at relative
angles well away from 0 or 180'. In this regime
straightforward, low-order perturbative analyses'
of QCD are adequate to understand the structure
of the theory and most of the features of existing
data.

As one moves into the kinematic regions where
ratios become large and relative angles small or
nearly 180, the infrared structure of the theory
ensures the emergence of logarithms of these
ratios or angles. Order by order in perturbation
theory the leading contributions in this limit have
the form n," ln(1/q)]'", where o, is the strong
coupling constant and the large ratio (small angle)

is denoted by 1/q(q), q «1. . The approximation
of keeping only these leading contributions, called
the double-leading-logarithm approximation
(DLLA), is by now well understood. ~ These con-
tributions correspond to the emission of W soft,
collinear gluons which, by virtue of their soft na-
ture, are emitted independently. This indepen-
dence ensures that the sum over N yields an ex-
ponential Sudakov-type' form factor:

C~n
EDLLA(YJ) exp ln

2w q'
The factor C~ is the "Casimir coefficient" for
the quarks, equal to z for SU(3). The form factor
has the interesting feature of being strongly
damped in the limit g-0, while any individual,
fixed order ter-m in the perturbative expansion is
divergent in this limit. In this approximation the
experimental quantities mentioned above will be
a low-order divergent perturbative result multi-
plied by Eq. (1.1). [essentially a derivative of Eq.
(1.1)]. Thus, as functions of q, they will exhibit
a maximum at an q value intermediate between 0
and those values of g appropriate to low-order
perturbation theory [i.e. , when Eq. (1.1) is es-
sentially mity] and a zero (dip) as q goes to 0.

The question which is central to this paper is
whether such a peak is actua, lly a prediction of
the full theory. To answer this question the role
of nonleading contributions must be considered.
The leading contributions, order by order in e„
have conspired to cancel at g=0 leaving this re-
gion open to dominance by nonleading terms. In
this context nonleading refers to contributions
smaller both by powers of [ln(1/q)] ' and powers of
q as q-0.

It is also necessary to note that in practice,
experiments are performed at finite energies
where large ratios and small angles correspond
to transverse momenta which, in fact, are not
typically large on the scale of 1 (Ge&)'. Since the
connection between the incident and produced had-
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rons and the quark and gluon degrees of freedom
of the perturbation theory, in either the initial
or final states, involves a summation over rela-
tive transverse momenta corresponding to the
nonzero size of hadrons, there exists a range of
ratios and angles [1/q e s && (1 fm)'] where the de-
tails of any perturbative analysis, no matter how

elegant, will be lost in the smearing effects of
this summation process. In the present work
this question is largely ignored except to note that
no phenomenological significance can be ascribed
to the precise limit g= 0 in the perturbation theory.

It is in the context of the above-mentioned phen-
omenological and theoretical interests that the
present paper attempts to study the structure of
the nonleading pertuxbative contributions. In Sec.
II the relevant details of the DLLA are reviewed
and Eq. (1.1) derived. The shape of cross sections
in the DLLA is discussed. The specific approxi-
mations which are inherent in the DLLA are em-
phasized in Sec. IG. Of particular interest is the
role of approximate transverse-momentum con-
servation. The use of the Bessel-Fourier trans-
form to exactly conserve transverse momentum,
which has already been studied by several au-
thors" is discussed in detail in Sec. IV. The li-
mitations of the results of Sec. IV are covered in
Sec. V with special. attention to the role of energy
conservation. Finally Sec. VI includes a review
and a discussion of results.

These results include the observation that, while

nonleading logarithmic contributions assoc iated
with an exact treatment of transverse-momentum
conservation serve to fill in the zero at q = 0, there
are further nonleading contributions associated
with energy conservation which may be of com-
parable influence but more difficult yet to treat
precisely. Furthermore the usual "soft" approx-
imation to the full gluon-emission matrix element,
while adequate for the DLLA, is not sufficient for
the degree of precision desired here. To treat
properly the question of whether a small-q peak
is actually predicted by the perturbative analysis

The calculation of the double-leading-logarithm
approximation (DLLA)' ' to the process of hadronic
lepton-pair production (Drell- Yan process) at
small transverse momentum and to the measure-
ment of energy-energy correlations in electron-
positron annihilation near the back-to-back con-
figuration have been discussed in detail in Ref.
4. Only the important features of the analysis will
be reviewed here.

From the standpoint of perturbative QCD it is
both convenient and sufficient to study simply the
process of quark-antiquark of total energy s anni-
hilating into a virtual photon with large mass
squared Q' and transverse momentum Qr relative
to the quark/antiquark direction plus any number
of gluons as illustrated in Fig. 1. This eliminates
the, for the present purposes, irrelevarit compli-
cations of treating the distributions of qua, rks in
hadrons for the complete lepton-pair production
process. The electron-positron process is related
by crossing. The specific cross section to be cal-
culated is

do' ™~
dQr' 0

Q ') d2c

s)dQ'dQ '' (2 1)

a close analog of the energy-weighted correlation
function for the lepton annihilation process. This
cross section is insensitive' to those perturbative
corrections which serve to renormalize the quark
distributions within the incident hadrons. For the
process qq-y*+Ng this cross section has the
form (all parton masses zero)

of QCD will require a much more complete analy-
sis than presently appears practical. Stated more
succinctly, the question of the absence or the
presence of a peak, which is surely very subtle
when studied in momentum space, remains subtle
also when considered in Bessel-transform space.

II. THE DOUBLE-LEADING-LOGARITHM
APPROXIMATION IN TRANSVERSE-MOMENTUM

SPACE

1 do' d'k 2 N1d .". dk 0
( )

& +I & —. g(&, + v, )+~I P +,)I Q v )- (2.2)

where, with the quark (antiquark) four-momentum
labeled p, (p~),

4pnPs=(p, +pm), so=, kg" —= &)p, + I gp, +kr),9s
(2.3)

and n is the fine-structure constant. The 5 func-
tions inside the product ensure massless gluons.
The final g function arises from the constraint that
Q be positive and is the remnant of overall energy
and longitudinal energy conservation. 'The trans-
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form (p, 8,)s and kr, kr in the full expression
for D, . The vector n~ =p~ +p," defines the non-
covariant planar gauge chosen to simplify the
structure of the calculation. The final result is,
of course, gauge independent. In the chosen gauge
the result in Eq. (2.4) arises solely from the "lad-
der" diagrams.

To the extent that the p,, integrals are treated
symmetrically, as they formally are in Eqs. (2.2)
and (2.4), the replacement

FIG. 1. The annihilation subprocess qq y~+N g. The
quark I'antiquark) has momentum pg (p2) and the large
mass virtual photon y* has momentum Q with component
QT transverse to the quark-antiquark axis.

verse-momentum-conserving 6 function was used
to write the argument of the 8 function (Q'/s) in
the form shown. The only other relevant restric-
tion not explicitly indicated is that p, , 8, ~ 0 cor-
responding to positive energy (outgoing) gluons.

The squared matrix element M ' describing the
emission of N gluons is, in general, a complica-
ted function depending on all. the 0, , p, , and kT.
in a coupled fashion. However, it is largest when
the 8, and p, , are small («1), i.e., when the gluons
are soft. In the limit of small 8& and p&, the most
singular part of M can be expressed as(N)

--- 1 1 1 =- 1
hlLD Qf g i ~ ~

i=1 I i
(2.6)

is correct. Thus the most singular part of the
matrix element, Eq. (2.4), can be written in a
totally factorized form.

The restriction to small ~; and p, further guar-
antees that the 8 function can be simply replaced
by independently, comp/etely factorized limits
on the 8; and p. , integrals. Thus in this approxi-
mation of small p, and 0, , the p,, and 0, integrals
and integrands are completely factorized. In or-
der to actually evaluate the integrals an upper
limit must be chosen since it is no longer supplied
by the 6 function. While the specific choice is ir-
relevant to the result for the leading-logarithmic
contribution, the choice will affect nonleading
terms. This question will be discussed in detail
later. For the present the simplest choice is

n 2
N&

. s
v (2n ~ k,.)D,

(2 4) 0(g p, (2.7)

where, in this limit

(2.5)D]=s p) .
/=1

This approximation to M ignores terms of the

corresponding to the maximum individual value
allowed by the 8 function (Qr'=0). This is an
overestimate of the actually allowed 8, p, phase
space. Evaluating the IL(,

&
and 0, integrals yields

the "soft gluon" cross section as

oodQr „„N!I, v
& YY ~kr) kryo

(2. 8)

(2.9)

(2.10)

where e, is treated as fixed for now.
The last step necessary to obtain the DLI A is to observe that the maximum number of large logarithms

arises from the regions of integration where the 0 are strong ordered, i.e. ,Tf

k '«k '«k '=Q '«s
Tg TP- '''& Ty T

where (a, b, . . . , c) is any permutation of (1,2, . . . , iV) The sum ove. r permutations yields a factor N!
times N nested integrals with the 5 function affecting only the last (largest kr, ) integral. Alternatively
the sum over permutations can be used to write the N kT, integrals as independent integrals with upper
limit Q and to replace 5+4, +Q ) by +&5(kr, +Qr). In either approach the result is

(N)

m

Q, p s/Qr' (, I" r dk7' /„, 'II"

Q
2 (N I)lIl v k 2 &]I r
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The manifest divergences at the lower limits of the k~, integrals are canceled by the corresponding virtu-
al contributions. The details of this cancellation are discussed, for example, in Ref. 4. 'The precise
details are not essential to the present discussion although the implicit inclusion of the virtual contribu-
tions is, of course, essential. The appearance of the "Sudakov form factor" below can, in fact, be viewed
as the result of incomplete cancellation between real and virtual contributions. Cancelihg the explicit
divergences and summing over N yields the usual DLLA result:

1 dII n, Cp 1ns/Qr n, C
/

'I, (,/ ) (2.ii)

which is just the Sudakov-type form factor, eval-
uated at s/Qr', times the one-gluon cross section.
It is convenient to return to the general notation
of the Introduction and define q = Qr'/s and y

=e,Cr/z. Thus Eq. (2. 11) can be written as

=—ln —exp ——In'Il 8(1 —q)
0 q DLLA l l l i

DLLA
=—Z,„„(q)8(i -~) (2. i2)

l

with FD«A(q) identified from Eq. (1.1).
The characteristic feature of Eq. (2.12) is the

existence of a peak at small q. This is illustrated
in Fig. 2 where the solid line is the DLLA result
of Eq. (2.12), plotted for the case y =0.08 [n,

~ =O. OBS

=0.2 for SU(3) j, and the dashed line is the single-
gluon result [Eq. (2.12) without the exponential
factor]. As expected the two cross sections are
essentially identical for g near I. The effects of
larger numbers of gluons only become important
for y ln'I/Il& O(1), i.e., q ~ e» ~l «1 for y & 1, as
indicated in Fig. 2. For even smaller q the DLLA
cross section exhibits a maximum for q-e ' " and
then vanishes at g=0. The definition of the cross
section in Eq. (2. 12) is such as to ensure area 1
under the curve. It is important to note that a
negligible fraction, -e-' ", of this area corres-
ponds to the region between q=O and the peak.

The question to be explored here is whether this
characteristic peaked behavior is a real effect or
purely an artifact of the DLLA. As mentioned
earlier, the present analysis will not include the
smearing effects of relating quarks to hadrons
(which will surely fill in the zero at Il= 0 to some
extent) but will deal instead with the effects of
relaxing the above approximations.

I

III. BEYOND THE DLLA

4I
—Ib 2

O

0

0—

OLLA

0 (g)

In order to study the effects of improving upon
the DLLA of the previous section it is helpful to
first list the approximations made in progressing
from Eq. (2.2) to Eq. (2.12). First the soft limit,
small 8, and p, , was taken so that the following
steps were appropriate.

(1) Approximate the full matrix element by the
Illost slllgular piece (111 this lllllit) as ill Eq
(2.4), and thus, using the symmetrization substi-
tution of Eq. (2.6), write the matrix element in
fully factorieed form.

(2) Ignore the constraints of the (energy-con-
serving) 8 function so that the 8& and tl& integrals
can be treated indePendently.

(3) Set the upper limits of all the p. , and 8, in-
tegrals (arbitrarily) to 1, independent of s, Q

3

(and the other 8, and tl, ), to yield simple results.
log o

FIG. 2. Theoretical approximations to the cross
section defined in the text. The solid line is the ex-
ponentially damped DLLA, Eq. {2.l2). The dashed line
is the corresponding one-gluon contribution which
diverges at g=0.

These three approximations (1), (2), (3) led to the
soft form of Eq. (2.8) which clearly treats cor-
rectly only the small LLt, , 8, phase space. Note, in

particular, that unbounded energy in the gluons
is allowed as N- .
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One more step was required to obtain the final
result.

(4) Keep only the strong or-dered regions of k
&

phase space [Eq. (2.9)] so that, instead of being
coupled, the k~, integrals are either simply nested
or written as N equal contributions each of which
involves independent k

&
integrals [Eq. (2.10)].

The transverse-momentum-conserving 5 function
is then a trivial constraint.

«000'

r000~

Note that this last step excludes regions of k~,
phase space where several kr, are of order Q
or where any are larger than Q~. The k~, phase
space is underestimated.

Thus it is the sum of all four steps (1), (2), (3),
(4) which lead to the final, simple, fully facto~ized
expression in Eq. (2.10). This factorization is
essential to the exponential DLLA result of Eqs.
(2.11) and (2.12).

The major purpose of what follows is to study
how the result for (1/o, )(do/dq) changes as the
approximations (1), (2), (3), (4) are altered, i.e.,
are improved upon. In order to perform this task
it is useful to introduce another definition. In gen-
eral the cross section can be written in the form

«000'

«000000008ll00

i000000000000i

—,-=-g ~" g ~.'"'(q) l.—
~

. (3.1)
0 ~ ~ N 1 ygo ~)

The 8 '(q) are of the form of a constant, 8'"'(0),
plus terms which vanish as g-0. The terms which
vanish as g -0 are the contributions which are
nonleading due to powers of g as mentioned in
the Introduction. It is therefore natural to
define the logarithm approximation (LA) as an
approximation to Eq. (3.1) where 6'"'(q) is
replaced by 8'~'(0):

1 do l „' ' ( 1 '~ ' m

it.'"'(O)~ ln- . (3.2)
0 0 LA 0 Q& mo

The DLLA [Eq. (2.12)] corresponds to setting all
a'"'(0) to zero except a,'"'(0)= (-2)' "/(iV —1)!

Returning now to the central question of correc-
tions to the DLLA, consider the contribution from
configurations with a single energetic (Q /Ws«p,
or 8, ~ 1) but essentially collinear gluon (kr. =0)
s.s illustrated in Fig. 3(a). This correction to the
DLLA was studied in some detail in Ref. 4 and is
reviewed briefly here for completeness. Since the
single energetic gluon effectively factors out from
the other soft (p, , 8,. =0) gluons, approximations
(1),(2), (3), (4) can be maintained for all but the
energetic gluon. Furthermore, since the energe-
tic gluon is collinear, approximation (4) is unaf-
fected and only '(1), (2), (3) must be treated differ-
ently for this single gluon. In particular the
correct energetic gluon matrix element is re-
quired. This correction to the DLLA was evalu-

FIG. 3. Contributions to the annihilation subprocess
qq —y~+Ng which are not included in the double-leading-
logarithm approximation (DLLA). (a) Contributions con-
taining a hard collinear gluon and (N -1) soft.gluons.
These contributions are summed in the next-to-double-
Ieading-logarithm approximation (NDLLA) of Ref. 4.
(b) Contributions containing a number of hard gluons each
emitted with large transverse momentum.

1 do P'

in1/q
O'Odq NnL „„=—exp +2y (lns/A —23) ln 1—

+ln— (3.3b)

The primary effect of these corrections is to
shift the magnitude and position of the maximum.

ated in Ref. 4 to a precision corresponding to
next-to-double-leading-logarithm accuracy
(NDLLA: a,"[in(1/q)]'" ~). The final result of
Ref. 4, including also the effects of the running
coupling to the same accuracy, was qualitatively
similar to the DLLA. The fixed-coupling-constant
analog of Eq. (2.12) is

1 do 8=—exp ——1n'q —3 ln —, (3.3a)
Vo dn NDLLA Bn 2

while with a running coupling, y(k ') —= 2y/1n(kr'/A'),
-the result is
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The shift is, in fact, to larger g since the expon-
ential in Eq. (3.3b) vanishes at q =A'/s & 0. For
simplicity in the following analysis the coupling
will be kept fixed and only the most singular piece
of the matrix element kept.

For the question of interest here a more impor-
tant correction to the DLLA arises from the con-
figuration illustrated in Fig. 3(b). It corresponds
to the em1ssion of two gluons of large (&QT), al-
most equal and opposite kT which balance the vir-
tual photon (plus any number of soft gluons). Such

I

a configuration is not included in the strong-or-
dered approximation (4). Nor, if the two gluons
are sufficiently energetic, is it correctly de-
scribed if energy conservation is ignored or if
the matrix element is approximated as in approx-
imations (1), (2), (3).

Consider first the impact of approximation (4).
To investigate this question return to Eq. (2.8)
prior to approximating the transverse-momentum-
conserving 6 function. In the present notation this
becomes

dv g (( '
t d2k / T( e(1 k 2/s) vg~ gk yQ

cpd'QT (1) (2) (3) N 1 ='I~ 1 t 7 kT(
(3.4)

where the subscript (1), (2), (3) denotes that ap-
proximations (1), (2), (3) were made in deriving
Eq. (3.4). The infrared-regularizing virtual con-
tributions have been implicitly included in Eq.
(3.4) by introducing the familiar [ ]. prescription'

(f,(x)g(x) —=f(x)[g(x) -g(0)]). To further simplify
the analysis and focus on the relevant features, the
LA, introduced in Eq. (3.2), can be taken in Eq.
(3.4). For N=1, 2 a detailed k -space calculation
has been performed in this approximation to yield

1 do = —ln —+——g ln' —+ 20(3)
Op dg (1) (2) (3) LA g g 0 0

(3.5)

This result serves to define the 8 (0) and 8 (0)
of Eq. (3.2) in the approximation denoted by the
subscripts. The symbol P(3) stands for the Rie-
mann zeta function" of argument (3), f(3)
= 1.202. . . . . The leading terms are recognized
as the DLLA result, Eq. (2.12). The expression
in Eq. (2.12) indicates that in order y2 the inclu-
sion of exact transverse-momentum conservation
has no effect on the leading three orders of logar-
ithms. Unfortunately it is technically very dif-
ficult to extend the evaluation of Eq. (3.4) beyond

o(b)= — d'q e+'p)T-A ~ ]
v T vpdQ

''
and the i.nverse integral is

d'ke ' Tc(b}.1 do 1

o, dg, ' 4v

Substituting Eq. (3.4) into Eq. (4.1) gives

(4.1)

(4.2)

second order in & directly in kT space. Note in
particular that the coupling of the integrals by the
5 functions precludes any simPle exponentiating
result in kT space in this improved approximation.
A more complete analysis of Eq. (3.4} can be ob-
tained by employing the Fourier-Bessel transform
as discussed next.

IV. THE FOURIER-BESSEL-TRANSFORM METHOD

The expression for the cross section in Eq. (3.4)
is a convolution of kT integrals, and thus the in-
tegrands can be made to factorize by going to
Fourier-transform or impact-parameter space.
In the present context this approach was first sug-
gested by Parisi and Petronzio' and more recently
studied by others. ' ' The transformed cross sec-
tion is defined by

kT, ''( lns/kT
o(5) d'kT( exp(-fb kT()f) I

1—
(1) (2) (3) gp + S &. AT,

2 t

(4.3}

Having transformed to impact-parameter space,
one finds, as expected, a completely factorized
set of k, integrals, and 5(b) exponentiates, in the

noted approximation,

() X ( k & I /k
W

T i SJ kT2

8

dkT2 2ln —2[Jp(k 5) -I] . (4.5)

o(b)

where

(1) (2) (3)
-=exp[v(b)], (4.4)

It is convenient to define dimensionless variables
x=kT'/s, s =52s in terms of which
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v(z) = p dx —ln-[J, (vxz) -1],
x x

(4.6a)
and

b, (-) = (ln2 -y)'.
&(z) = exp[v(z)] . (4.6b) It is clearly useful to define

Note that v(0) =0, &(0) = 1, since the "total cross
section" has been normal. ized to 1. The function
v(z} cannot be evaluated precisely analytically but
various analytic approximations can be useful.
For large z, the function [J,(~xz) —1] is well ap-
proximated by the 8 function, —8(x —1/z}, giving

v(z) = ——ln'z .
z ~co (4.7)

A more precise evaluation is obtained by per-
forming a parts integration in Eq. (4.6) to find

v(z) = —2p dy J, (y)ln'(y/Wz)
0

= ——b, (~zln2z + 2yb, (Wz)lnz —2yb2(Jz) . (4.8)
2 '

The "logarithm coefficients" b„(v z) defined in Eq.
(4.8) are given by

Pz

b„(gz) = dy Z, (y)ln"y .
0

(4.9)

Similarly to the8' '(q) the b„(vz) are of the form
of a constant, b, (~), plus terms which vanish as
z —~. The asymptotic limits b„(~) are given by

b„(-)=

, 1"(i + t/2)
I'(1 —t/2)

"
g(2m + i) (t '"'

=exp t(»2-r)-2Z
2

(4. i2)

In the l.ast expression y is Euler's constant, y
=0.57721. . . . Thus the b„(~) of interest here are

dy J,(y)ln" (y), (4.io)
0

nb=(() — (Wb,E),=f d) z, (z))n'())
Jz

1/2 (
, =„in"yz J,(v~z)- ~ ln"vzcos~vz ——

mv'z

(4.11)
where the next term in the asymptotic expansion is
of the form (r/v z) in"-'(Wz)J, (./z).

Consider now the LA to Eq. (4. 8), b„(&z)—b„(~).
The b„(~) have a generating function of a simple
analytic form" (t & —,'),

ze (") f azz'z—, ())
1

OX' 0

v(z) = ——ln'z/z, ,
Lk

(4. 15)

where the reader is reminded that approximations
(1), (2), (S) are implicitly included in the result
of Eq. (4. 15). Note that the next correction to
Eq. (4. 15), for large z, is of order pJ2(v z)/z.
In order to obtain an approximate expression use-
ful for all z, one may multiply Eq. (4. 15) by 8

(z —z, ), approximately accounting for the fact that
the true b„(v z) vanish as z —0, to yield

(4. 16)v(z) = ——in2z/z, 8(z —z,),
which is numerically a good approximation to the
full result.

It is convenient to define "rescaled" coefficients

b, ( ) f dna (z)ln'(z/Hz, ),
0

such that

b, (~) =1

b, (™)=b.(-)=o,
b.(-)= --,' c(s),

(4. i7)

~ 0(2m +1) (t 2 "'~—
(

t "b„(~)= exp -2 ~ 2m +1 ]12

(4.18)

Returning to the transformed cross section a
(z) defined in Eq. (4. 6b), note that in all the above
discussed approximation schemes a (z) decreases
to zero faster than any inverse power of z as z

While performing the inversion of D(z) to
obtain the g-space cross section, it is informative
to first investigate the correspondence between
logarithms in z space and g space. In terms of
dimensionless, scalar variables, Eq. (4.2) be-
comes

dz J,(v zq)a ( ).z1 do
(4.19)

Integrating this expression by parts and rescaling
(y=gzq) yields

z, -=exp[2b, (~)]=4e '"=1.2609. . . . (4.14)

Thus, in the LA appropriate for z»1, b (v z)
-b (~) and Eq. (4.8) can be expressed as

b, ( )=i,
b, (~) = in2 - y z (4. iS)

=
2 dy y"~1(y}[ v'(y'/n)]e" —' '" .

00 dg (1) (2) (3) g 0

(4.2o)
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[In order to eliminate the surface term which ap-
pears in the parts integration of Eq. (4.20), the
fact that &(z) vanishes faster than any inverse
power as z —~ was used. Thus, strictly speak-
ing, one should be concerned about the discussion
below when e"'" is expanded in powers of y where
each term is individually divergent in the limit
z —~. It is possible, if somewhat laborious, to
demonstrate that the manipulations performed be-
low are valid. Alternatively one may proceed di-
rectly from Eq. (4.19) to derive the results below,
again in a less economical fashion. ]

Now, focusing on the LA in z space, Eq. (4.15),
the corresponding g-space cross section is

1 do

0 ~ (1), (2), (3), &A-»

(y) in(y2/~z ) s-&1/2& In &y / s&n) (4 21)
g 0

where again the subscripts of the left-hand side
are to keep explicit account of the various approxi-
mations. Expanding the exponential yields inte-
grals which have already been studied in Eqs.
(4.10) and (4.12). [This feature is, in fact, the
reason for performing the parts integration in Eq.
(4.20).] Using the definition of?/„( ) in Eq. (4.17)
and expanding the quantity [in(y'/z, &!)]~ ' as a bi-
nomial yields

1 &I&/ -2 J ~ -& " 1 ~ 2 In"(y/~z)(ln1/&!) ' "I'(2N)

I (2N
&! ~»., (N —1)! ~o I'(m+1)I'(2N-m) - q

I

(4.22)

This result is clearly in the form Eq. (3.2) of the
IA in p space. The only question is whether the
corrections to b„(~) for small z [i.e., if one uses
the complete result b„(~z)] can lead to nonzero
contributions to the g-space LA when transformed.
The answer to this question is no, as shown in de-
tail in the Appendix. Thus &(z) = exp[v(z)] calcu-
lated in the LA, where all terms in v(z) which van-
ish as z - ~ are dropped, when transformed to g
space yields exactly the LA to (1/&r, )(&fcr/&f&!), where
all terms in the perturbation expansion of &l(l/

oo)(do/&fq) which vanish as &!- 0 are dropped.
Comparison of Eqs. (3.2) and (4.22) yields the

relation

( I)» 12m+'&» P(2N)
1(N)1(2N m)1(m+1) "( )'

This equation confirms the results of Eq. (3.5) for
the &„"'(0) and 4&2'(0) and clearly has the correct
form for the coefficients &2o&»'(0) of the DLLA.
Further, since b, (~) =b,(~)=0, this confirms the
suggestion of the last section that a precise treat-
ment of transverse-momentum conservation affects
only the logarithms three powers down from the
double leading logarithms, i.e., m - 3. This is not
surprising when one considers that in the kinematic
configuration of Fig. 3(b) there are (at least) two
gluons which are neither soft nor collinear, while
for the DLLA configurations all gluons are soft
and collinear except the one balancing the virtual
photon which is essentially soft but not collinear.
Hence, by the naive counting that there is one log-
arithm for the soft and for the collinear charac-
teristic of each gluon, the former configuration is

down three logarithms from the latter.
What does all this imply for the behavior of (1/

o,)(&f&r/d&!) near &! =0'? Clearly, since v(z) ~„~ is
real (and negative indefinite), &(z)

~ &» &» &» „„is
positive for all z, 0&z & ~. Hence (1/v, )(da/d&!) at
q =. 0, which is just the area under &(z), is not
equal to zero' ' and, in fact, the fi~st derivative
~ rith respect to g at g = 0 is small but negative.
This is illustrated in Fig. 4 where a numerical in-
version of &(z) ~&» &» &» „„[Eq.(4.15)] is dis-
played as the long dashed curve along with the one
gluon and DLLA cross sections from Fig. 2. The
inversion of the full z-space result, which differs
mainly in that &(0) ~,„»&&:0 as noted earlier, is al-
most identical to the curve displayed. For ex-
ample, the g = 0 intercept in LA differs from the
full z analysis by a factor of order (1 —(X/2«)' '
&& e '/'") where the intercept itself is of order
(2«/X)'/'e'/'". This tiny difference (for &«I)
characterizes the tiny difference in z-space areas
under the two functions.

The conclusion is then that the subleading loga-
mthms which arise from a correct treatment of
transverse-momentum conservation can play a
major role in filling in the zero at g=0 and ob-
scuring the maximum whi. ch was present near
1n1/q-1/X in the DLLA. It is informative to di-
rectly understand this result in terms of the LA
expression in Eq. (4.22). Consider the contribu-
tion arising from m fixed while & is summed over,
corresponding to a fixed number of powers of log-
arithms down from the leading contribution for
each order of X. This corresponds to a fixed num-
ber of nonsoft, noncollinear (kr, &fr) gluons. The
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X= 0.085

-'I-
—Ib

O

0
0—

DLLA2~~~~0,(g}= e"
LA

l

-8
lpg )p

I

-2 0

FIG. 4. Theoretical approximations to the cross
section defined in the text. The long-dashed line is
the soft logarithmic approximation [LA, (1), (2), (3)].
The solid line is the OLLA Eq. (2.12). The dashed line
is the corresponding one-gluon contribution.

sum over N still yields a damping factor and the
fixed-m contribution has the form (leading contri-
bution in powers of Xin1/q)

m pm+1 m+11 40' 1 / 1
7$

0 ~~ ' (1), (2), (3), LA

(4.24)

where C is an m-dependent constant of order 1.
Such a term wi11 still exhibit a maximum in g but
for m & 1/A. the maxinium occurs at 1n1/g = v'm/&
instead of at 1n1/q = 1/X as it does for the m & 1/&
contributions. Hence it is the successively larger
m, more subleading, contributions, which peak at
smaller and smaller g, which serve to fill in the
dip at small g. At any finite. m there remains a
zero at q=0 but this is finally filled in, in a limit-
ing-distribution sense, as m -~. This limiting
behavior is the reminder that the exponential has
been expanded inside the infinite y integral of Eq.
(4.21) and the resulting integrals carefully defined
in a distribution sense. It is important that for A.

«1 there is a sizable range of g, g & e ' " where
the OLLA is a good approximation and connects
smoothly to the perturbative region at q-1 as ill-
ustrated in Fig. 4.

Since the filling of the zero at g =0 requires all
subleading logarithms to act in concert, one must

ask whether there are further corrections, asso-
ciated with approximations (1), (2), (3), which are
now relevant. Note in particular that in LA the
cross section (1/o,) do/dq remains nonzero for all
0 ~ q ~ ~ while in DLLA it vanished for g &1. The
required 8 functions have been dropped in making
approximation (2) and including correctly the con-
servation of transverse momentum. %hereas the
OLLA Underestimates k~, phase space, the z-
space analysis of the LA overestimates it.

V. z-SPACE CORRECTIONS

As demonstrated in the previous section, in the
approximation where (1) only the most infrared
singular piece of the matrix element is kept, (2)
the corrections due to energy conservation are
ignored, and (3) only the simplest upper limit on
the individual gluon-energy integrals is kept, but
transverse momentum is conserved exactly, the
sum of al/ subleading logarithms serves to fill in
the zero at g= 0 exhibited by the double-leading
logarithms alone.

'The specific approximation studied in detail, the
LA, corresponds to keeping only those contribu-
tions, order by order in X, which are nonvanishing
as z-~ or g- 0 (modulo the kinematic 1/g factor),
approximations which turned out to be equivalent.
The nonvanishing of (1/g, ) do/dry at &=0 was im-
mediately obvious in this analysis since the trans-
formed cross section o(z) was greater than zero
for all 0&@&~. In fact in this approximation (I/o, )
da/dg is nonzero for all ri (0 & g&~). In the LA in
g-space language the absence of the zero at g=0
was traced to the contributions of kinematic con-
figurations where arbitrarily large numbers of
gluons are emitted which are neither soft nor
collinear. It is necessary to now discuss to what
extent these conclusions are dependent on approxi-
mations (1), (2), and (3).

Consider in particular the effect of the 8 function
corresponding to energy conservation in Eq. (2.2)
(literally Q'& 0) and long ago discarded. As an
illustration, the exact result at order X, except
for the approximation (1) of using the simplified
matrix element, is given by

1 dg" =~ ln
1+(1-4g) — 8(1-4g). (5.1)o, dry (,) rl 1 —(1 —4q}&&2

Note both that the proper limit for g is g & —,', not
g& 1 as assumed in approximation (3), and that
the cross section actually vanishes as 2X(1 —4g)' '/
g as g- 4. Furthermore, if energy conservation
is treated properly this one-gluon contribution is
the dominant contribution as g- —,', both by powers
of X and powers of (1 —4g)' '. This last result
does not obtain in approximation (2).
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It is straightforward to show that a cross sec-
tion (1/o, )do'/d)}, which is nonzero only over a
finite range of )7 (has only finite support), will
have a z-space transform which exhibits oscilla-
tions in the asymptotically large-z regime. As a
simple example consider a function which vanishes
as a power of (1 —4)}) as )7-4:

~-Ip ~(-Al2) lan (5.5a)

are kept. Note, however, that this large-z "tail"
was not kept in the LA of the previous section. It
exhibits pure power, not logarithmic, dependence
on z. Such "finite-support" corrections are pre-
sumably important only for values of z such that

y(n) c(1-4n-)" (5.2)
l.e. y

lnz 2 0(1/)() . (5.5b)

The leading term as z- of the transform of
this function is then

4 &-'
@(z) = Cr(~+1)

gW OO
z /

(5.8)

82) m (MI

64)
z E2

. Cos (5.4)

where the remaining approximation of simplifying
the matrix element is explicitly noted. Such be-
havior will arise when the appropriate 8 functions

Thus the expected truly asymptotic behavior of
o(z} when energy conservation is also treated cor-
rectly is

It is only in this region that the LA result has
damped sufficiently for these "smalV' corrections
to appear. Note that, while at any given z this tail
is small, it extends over an infinite range with
very slowly decreasing magnitude and accounts for
the transformed cross section vanishing over an
infinite range Thus . arguments based purely on
the positivity of o(g) or exponential behavior near
z = 0 must be considered suspect.

To further illustrate the importance of such a
tail at large z, consider the z-space transform of
the DLLA g-space result:

(y(g) = d)7 J ()/g)} )—jn —g-o/»)& + (5 6a)
1

LLA 0

or using techniques similar to those in Eq. (4.22),

~ ( ) /2p~ 2 $.(~z(i~, /z) g-"r(2N+1)
r(m+ 1)r(2l)/+ 1 —m)

&-o)/2)1n (eluo)+ g (~&(I &-o)/2)ln (slco))
0 (5.6b)

(-)(/2)~~ 2 f) (~gr(2Ã+ 1)(lnz /g)'~
M ~ I"(m+ 1}r(2N+ 1 —m)

An explicit numerical evaluation of these expres-
sions for X = 0.25 is displayed by the solid line in
Fig. 5. (This value of )( was chosen to facilitate
numerical computation. ) The long dashed curve
in this figure is the cross section o(z}=exp[v(z)j
using the complete expression of Eq. (4.8). Note
that both cross sections have intercept 1 corres-
ponding to a, properly normalized (I/o, )do/d)}.
The two curves are similar (™exp[(-)(/2) ln'
(g/z, )e(z -z,)]}until the region where o(z) ex-
hibits its first zero and the magnitudes of both
'curves are much less than 1. This similarity re-
flects the fact that in q space (see Fig. 4) the cross
sections are essentially identical in the region
from the peak in the DLLA (very small )}) out to

g of order 1. The similarity is also suggested by
Eq. (5.6b).

Note that since

1 do X 1
= —ln —8(1 —)})

VP dg DLLA g~ y

= &(I —n)e(I —n), (5.7)

it follows from Eq. (5.3) that (4)7-)}, )) z /2- ~z

cos(v z —w /4) . (5.8)
4)((v' 2/g )

While the range of z exhibited is not yet asymp-
totic [Eq. (5.8) becomes a good approximation for
z 2 e~j, the magnitude of the envelope of the tail
of (y(z) ~~„ is clearly larger than the tail of a(z).

The dashed curve in Fig. 5 is the transform of a
"hybrid" cross section defined by
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= 0.25

0.6- x l000

0.4-
o.(z)

0.2—

-0.2—

-0.4
-1.0 0

log)o z

FIG. 5. Theoretical approximations to the impact-parameter-space transform of the cross section defined in the
text. 'The long-dashed line is the exponentially falling form defined by Eq. (4.6). The solid line is the transform of the
DLLA result of Eq. (2.12). The short-dashed line is the transform of a hybrid cross section, defined in Eq. (5.9),
which resembles the DLLA but is not damped at g= 0.

e-Q/2)1n nP O( q( g
do XC

p
O'p ~6 )lybrld 8p

-=—ln —e Al2)XC 1
p

(5.9)

where g& is the location of the peak in the DLLA
in 1/q&= [1+ (v'1+ 4X)' ']/2A, and the normalization
constant is chosen to give unit area, C —1/
(1+Le ~~). Thus for small r) the hybrid cross
section has no peak and no zero at g = 0, while at
larger g it follows the DLLA and vanishes at
@=1. The transformed hybrid, o„„b,„. (z), is es-
sentially identical to the other two curves up to
the neighborhood of the first zero. The similarity

0&ybad and ODz L„, one of which has a zero at g
= 0 and one of which does not, is understandable
because, as noted in Sec. II, the maximum in the
DLLA occurs at such small q that the g range
over which the two cross sections differ discerni-
bly is tiny, of order e . For the remaining g
range the cross sections differ by a term of order
Xe ~. The difference only becomes apparent in
z space when the bulk contribution to all the o(z)'s,
the LA result exp[-(X/2) ln'z], has decreased to

this same order (e '~'~). This again is for lnz
~ 1/X, just when the finite-support zeros become
important. The presence of a zero at g = 0, im-
plying zero total area under the transformed
cross section, is, in fact, realized in z space
not by any gross structure at small z but rather
by a small negative displacement over the entire
range of the large-z tail. Thus the fact that o(z)
behaves as exp[v(z)] for z & e'a does not guarantee
that the corresponding do/dg has no zero at. q = 0.
The argument in z space must rather hinge on the
structure of the large-z tail where nonlogarithmic
corrections can be important. This in turn sug-
gests that small-g structure cannot be precisely
analyzed without an adequate treatment of energy
conservation, which affects this large-z regime.
This is consistent with the earlier k~-space ob-
servation that small-g behavior was related to
the contributions of arbitrarily large numbers of
energetic gluons which are also affected by energy
conservation.

It is instructive to consider a simple model
which implements at least some of the features of
energy conservation, while still being amenable
to simple analysis. Consider the following gener-
alization of Eg. (4.5):

e '8 s — k» (5.10)



I OGARITHMIC APPROXIMATIONS, QUARK FORM FACTORS, . . . 1397

where approximation (3), erg & s, is maintained
and energy conservation is included only crudely,
approximation (2). Since

(5.11)

the final 8 function ensures a cross section which
vanishes for q& 1 (instead of ~) and bounded total
energy in the gluons. Such a model does not treat
correctly the boundary of phase space and the full
coupling of integrals implied by the 8 function in
Eq. (2.2). However, it will give some indication
of how the large-z behavior of the I.A is changed
by the inclusion of energy conservation.

Not surprisingly, even dealing with the "simpli-
fied" form of Eq. (5.10) is technically difficult.
However, the argument of the 8 function was cho-
sen to allow a factorizing integral representation
in analogy to the impact-parameter analysis.
One can write

e(x)= . & e "",d
2K' C

(5.12)

where the contour C in the complex y plane runs
along the real axis -&Bey&, passing belozo the
origin. Thus in terms of the usual scaled varia-
bles

5(z) = . + e'" exp[v(z, y)]
1 d

(X 2 3) C ~

with the definition

(5.13)

1

v(z, y)= 2X dxin' —[uzi, (n/z} -iyJ(xv z)]e '"'
0

y )
= —2X dt In'(t/Wz) Z, (t) il J-,(t)

0 zj
-

~ t(y yE~) (5.15)

which is clearly a function of z and y/v z. In the
limit y«v z this expression approaches Eq. (4.10)
and

'dx
v(z, y}=-4X —ln —[J,(xMz)e ~" -1]. (5.14)

0 X X

Again the integral representation has allowed fac-
torization and thus exponentiation. Integrating as
before by parts yields

z}l&», (2),(3~
——1~ z& 1. (5.18)

As z increases the range of y over which v(z, y)
differs from zero also increases. The region y
near zero, where e"/y is peaked, produces a re-
sult =e"~'~ so that for z of order 1 &(z) I&,~ ~;~ &»
will be similar to the previous results, exhibiting
a damped behavior exp[-(A/2) ln'(z/z, )]. However
as z is further increased the effective v(z), inte-
grated over an ever-increasing range of y, will
have a phase. Eventually c(z}will have a zero and
then slowly approach the power-bounded oscilla-
tory behavior expected at truly asymptotic z.
Clearly the details of this transition in behavior
will depend on the details of the approximations
made. Energy conservation affects both the sub-
leading logarithms and the "power" corrections in
z space. As was just illustrated, both of these
contributions can be relevant to the question of be-
havior near q= 0. Hence one must return to Eq.
(2.2) and not make either approximation (2) or (3).

At some level of precision the approximation (1)
to the matrix element must also be improved. As
noted in Sec. III, the correct inclusion of a single
energetic gluon and the running coupling constant
in the matrix element influences the LA one loga-,
rithm down from the double-leading-logarithm re-
sult. While these contributions do not qualitatively
affect the appearance of the zero, they certainly
have quantitative effects. Also the contributions
from diagrams other than the ladder diagrams
kept here apparently' appear Aeo logarithms down
from the leading result.

Thus it is not obvious to what degree the question
of small-q behavior is simplified by transforming
to z space. This question, sensitive to all non-
leading logarithms and, presumably, constants in

g space, depends on nonleading logarithms and,
at least quantitatively, on power corrections when
viewed in z space.

form expression for Eq. (5.15) has not yet been
found. For the present purposes the essential
feature of Eq. (5.15) is the appearance of an imagi-
nary part for v(z, y) for y of order v z & 0. Consi-
der now evaluating the y integral in Eq. (5.13). For
small z& 1, v(z, y) is essentiaIIy zero for all y and
the y integral is essentia. lly 1. Thus as before one
finds

v(z, 0) = v(z) . (5.16)
VI. SUMMARY AND CONCLUSION

In the limit y» v z the factor e " '/ ' oscillates
more rapidly than the other functions in the inte-
gl and and

v(z, y) = 0. (5.17)

In the intermediate ranges of y ( y = v' z) v(z, y) has
an 'imaginary part. Unfortunately a simple closed-

The double-leading-logarithmic contributions
summed to all orders in perturbation theory pro-
vide an approximation to (1/o, ) dg/dq which van-
ishes at q = 0 and exhibits a peak at smal. l. q. The
evaluation of these contributions involves (1) ap-
proximating the matrix elements, (2) ignoring
energy conservation, (3) choosing specific inde-
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pendent limits for the various phase-space inte-
grals, and (4) keeping only the strong-ordered
regions of transverse-momentum space.

The approximation (4) clearly underestimates
the k~-space contribution. It can be eliminated
by going to impact-parameter space where the
expression in z space still factorizes order by
order and hence, when summed to all orders,
yields an exponential form. Since the exponent
in this expression is real (and negative) it is
clear that at this level of approximation the area
under the transformed cross section, and thus
(1/o, ) da/dq at q = 0, is nonzero In. q space this
is understood as a filling in of the zero at q =0
by a summation over all subleading logarithmic
contributions to all orders in this approximation.
Such an unconstrained contribution from gay num-
ber. of nonsoft, noncollinear gluons is clearly an
artifact of approximation (2) and overestimates
the contribution of such gluons. While it is dif-
ficult to impose energy conservation directly in
momentum space, the finiteness of the total en-
ergy available to the gluons does guarantee that
the transformed cross section exhibits an oscil-
lating, power-bounded tail at truly asymptotic z.
This simple result renders naive arguments based
solely on positivity in z space suspect. Further-
more, since the region of q space under study is
ps e-'~~, the analyses in z space must be reliable
for z at least as large as 0 (e' ~). Again this is
precisely the region in z space where the present
considerations suggest that the transformed cross
section is sensitive to approximations involving
energy conservation. Hence, whether viewed in
momentum space or transform space, a precise
treatment of the small-q behavior would seem to
require a careful study of the effects of these ap-
proximations.

The summary of these considerations must be
that there exists at the moment no reliable pre-
dictions for the small-q behavior in quantum chro-
modynamics. Given the number of candidate con-
tributions capable of filling in the zero at q =0 in
the DLLA, it seems unlikely that this feature is a
true prediction. However the questions of the
precise magnitude at q = 0 and of whether the de-
rivative at q = 0 is positive or negative, i.e. ,
whether (1/o, ) dv/dq has a peak at some q & 0, are
much less obvious. The considerations discussed
here suggest that these are very delicate questions
to be answered clearly only after a highly detailed
analysis is performed. Finally the reader is re-
minded that such an analysis concerns the be-
havior at such small q that at foreseeable en-
ergies any detailed structure predicted by the
perturbation theory is almost certainly obscured
by the smearing due to the nonperturbative, con-
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APPENDIX

Consider the effect of the corrections to Eq.
(4.15) on the transformed cross section. To un-
derstand the role of power corrections to v(z)
rewrite Eq. (4.8), using Eq. (4.11) as

v(z) = ——ln —+ —b, b ln z
z

2 z, 2

—2A. g b, lnz + 2A. g b, . (A1)

The terms of interest are those contairiing powers
of gb„(r=0, 1, 2) in the expansion of exp[v] in Eg.
(4.20). The general form of such corrections is
given by (where the kinematic 1/ti is taken to the
left-hand side),

q gv(q) =X dye, (y)ln"yln"q[b, b„(y/~q)]',
0

(A2)

where n, m, b are integers and d, b„ from Eg. (4.11)
is bounded by, for 0&z&~,

lb, (")I l&b, (~)l

ln" z cos z —— (A8)

Since
l ~b„ l

has a finite upper bound as z - 0, the
region of the y integral 0» y»

¹ ri, for N» 1,
yields a contribution bounded by A. /q(N~q/2)'
lb„( ) l' ln"(N~q)ln q so that this contribution
vanishes as q-0. This region does age contribute
to the LA. For y ~ N&q the asymptotic expansion
of b, b„ is appropriate (y/~q» N» 1). For b ~ 2
this yields a contribution of the form A. lq~~'l times
an absolutely convergent y integral so again there
is no LA contribution. The final and most in-
teresting case is k =1. When the asymptotic ex-
pression is substituted and the lower limit (N~q

finement affects mentioned earlier. Any meaning-
ful comparison to data must include these effects.

Note added. After the work discussed here was
completed, the authors received a paper by
P. E. L. Rakow and B. R. Webber [Cavendish Lab-
oratory Report No. HEP 81/4, 1981 (unpublished)]
wherein several of the results of Sec. I7 are ob-
tained by slightly different methods than discussed
here.

ACKNOWLEDGMENTS
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is set to zero, which, as noted above, does not af-
fect the q-0 behavior, one has [see Etl. (4.11)j
the form

q ao(It =1)= itin"q dy J,(y)ln"'"(yP, (y/Wq) .
4p

(A4)
As jn Etl. (4.12) this integral can be related to the
(8/sf)"'" derivative of an integral with a factor y'
instead of the logarithms. The resulting form can
be evaluated" with a result similar to Etl. (4.12)

(t& 1),

dX~z X ~0 X
0

, „,~~t f&tr(1+t/2)
( 2)r(1-t/2)~ "2 "2"")

(A5)

appropriate for g & 1. 'Thus this integral vanishes
identically as t - 0 while all higher derivatives
with respect to t, at t= 0, vanish as a power as
g- 0.
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