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Baryon-antibaryon threshold and e-baryonium mixing
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It is shown that in any dual-topological-unitarization model of e-baryonium () mixing at the cylinder level, in
which the production of baryon-antibaryon (bb) pairs can take place only above a certain threshold energy, the
phenomenologically relevant co and trajectories do not mix below bb threshold. However, their couplings to
external particles do get modified. The u-mixing angle 8„, which characterizes these coupling modification
eAects below bb threshold at t = 0, is estimated in some models. These estimates are found to agree reasonably well
with the existing phenomenological bound on 0

I. INTRODUCTION

It is well known that in most of the dual-topolo-
gical-unitarization (DTU) models of the Pomeron
some mechanism such as mixing with lower-lying
trajectories has to be invoked to boost up the cyl-
inder-depressed ~ trajectory. Thus mixing with

Q (Ref. 2) and/or baryonium' ' (S) has been used in
the literature to achieve a phenomenologically ac-
ceptable ~ intercept. Amongst the models which
invoke mixing, there is a large disagreement in
the predicted amount of u- mixing below the
baryon-antibaryon (bb) production threshold. Thus
the predictions of Refs. 3 and 4 are in strong dis-
agreement with a phenomenological bound on the
u-S mixing parameter sin9„, obtained by Gavai
and Roy' (e.g. , Ref. 2 predicts sine„e=0.76, while
the bound of Ref. 6 is

~
sing„e~ & 0.26), ' while the

predictions of Ref. 5 do obey the bound, provided
the input parameters are constrained in a reason-
able way.

Of course, it is true that the models of Refs. 3
and 4 are based on a different realization of D'TU,
namely the one-dimensional approximation scheme
of Kwiecinski and Sakai, ' than that of Ref. 5, which
is a simple extension of the Chew-Rosenzweig'
(CR) scheme. But still, in view of the fact that
both Refs. 4 and 6 consider &u-Q-S mixing schemes
only, the difference in their predictions of 8„
appears quite puzzling. Attempting to resolve this
puzzle, one notes that bb threshold effects were
ignored for simplicity in the work of Ref. 5,
which, however, were included in Refs. 3 and 4.
On the other hand, detailed dynamical assumptions
were made in Refs. 3 and 4 in order to formulate
the bootstrap equations and these may be inconsis-
tent with data. We have, therefore, chosen to in-
vestigate a general D'TU model of ~- mixing in
the presence of bb threshold effects for an answer
to the above mentioned puzzle. We find, as we
show in this paper, that in any such model the
phenomenologically relevant ~ and S trajectories

do not mix below the bb threshold. However, in
general, their couplings to external particles do
get modified. Therefore, a nonzero 9„, cor-
responding to the phenomenological quantity on
which Ref. 6 obtained a bound, is possible.

'Turning to the one-dimensional models, we
find that due to their predictive power, an explicit
calculation of I9„ is possible and in models with
essentially the same assumptions as Refs. 3 and 4

r'

the estimates of 8„ turn out to be comparable to
the bound of Ref. 6. Thus a comparison of our re-
sults with those of Refs. 3 and 4 shows that we
differ with them on two significant predictions
about tu trajectory, namely (i) a large 8 e and
(ii) a boost to the &o trajectory below threshold due
to its mixing with. Our considerations show
that these specific claims of Refs. 3 and 4 arise,
respectively, due to (i) an inconsistency in the
treatment of several cylinder insertions which
have the same threshold behavior and (ii) a mis-
interpretation of what the phenomenologically rel-
evant u trajectory below bb threshold should be.
We have also studied the effects of incorporation
of bb threshold in the work of Ref. 5 and we found
that the resultant ~ intercept and 9 @, below bb
threshold, are exactly the same as those of the CR
model. ' Thus as a result of the inclusion of the
bb threshold, the model of Ref. 5 loses all the
phenomenologically desirable features it had. No
estimate of 9„ could be obtained from the tra-
jectory intercepts below threshold as the two
quantities get decoupled and above threshold there
are more parameters than the available data can
fix. However, for reasonable values of trajectory
intercepts, the antiproton multiplicity data just
above threshold seem to yield a bound on 8„,
which is found to be consistent with the bound of
Ref. 6.

The plan of our paper is as follows. In Sec. II,
we show that the phenomenologically relevant (d

and S trajectories do not mix, below the bb
threshold, in any DTU model of the Pomeron
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which includes threshold effects for bb produc-
tion. The ~ trajectory which contains the admix-
ture of is shomn to be relevant only at very high
energies. In Sec. DI, we confine ourselves to a
one-dimensional model which has exact SU(3)
symmetry and estimate in it 9„, mhich with some
reservations is found to be comparable with the
bound of Ref. 6. In Sec. IV, me consider more
realistic models with broken SU(3) symmetry.
'The estimates of 8„ in these models are, indeed,
found to be quite close to the bound of Ref. 6. 'The

last section contains conclusions of our work.

Pd 2gp'(j)=. + . ,+ . ,+ ~ ~ ~ .
(i -~)' (i-~)'

Inverse Mellin transform of Eqs. (1) and (2)
gives

P (s)=QP,. (—'&)
(So )

(2)

(3)

P '(s) = —+ 8
(
ln ——p, ge " —

~

ln ——p
(

s ( s „s) s
So ( So so) so )

+ 8~ ln —-2p, g
( s 2

So
(4)

where n, satisfy n, —n -ge " ~ = 0 and P, is the
residue of P'(j) at n, . Thus we see from Eqs.
(3)-(4) that in the presence of a threshold for the
cylinder kernel, the amplitude can be described
in two equivalent ways. One may consists of using
the infinite number of (mostly complex) renorma-
lized poles as in Eq. (3), while the other involves
use of only the unrenormalized pole with approp-
riate factors of ln(s/s, ), as in Eq. (4). It is also
clear from these equations that in certain energy
domains only one of these two mays will be con-
venient to use. Thus for ln(s/so)» p, , Eq. (3) will

II. bb threshold and w- mixing

Let us begin this section by considering a sim-
ple but illustrative example given by Dash et al. ,'
which, we hope, will be able to demonstrate the
effects of thresholds in general. The physical in-
sights, gained from this exercise, mill be later
employed in our discussion of &- mixing in the
presence of the bb threshold. Let P = I/( j - n) and
C =ge + be the planar propagator and the cylinder
term, respectively. 'Then the renormalized prop-
agator P'= (P ' -C) ' can be written down, using
this expression for P and C, in the following two

exact and equivalent ways:

p'(j)=. 1

j ~ Qf ~gg.

or alternatively,

n,« —- max(Reo. ';) for ln —» p .s
0

(6)

We see from Eq. (6) that (i) the phenomenologic-
ally relevant, effective pole does not get any
boost below threshold and (ii) the leading pole in
Eq. (3) coincides with the effective pole only at
very high energies. By comparing Eqs. (4) and

(6) just above threshold, we also note that above
threshold n,«& &, since the. second term of Eq.
(4), which arises due to the double pole term of
Eq. (2), grows as s lns.

Essentially the same arguments, as above, also
imply that in any general D'TU model, phenomen-
ologically relevant u and trajectories do not mix
below the bb threshold. The only difference is
that u-S mixing is a two-channel problem and, as
me show' below, this results in modifications of
the couplings of these trajectories to external
particles. Let us consider a typical D'TU model
of ~- mixing in which threshold factors" for bb

production are explicitly included so as to ensure
agreement with the observed behavior of antipro-
ton multiplicity data. " For the present, let us as-
sume exact SU(3) symmetry.

Then the j-plane expression for the planar prop-
agator of the model can be written down as

(7)
(j -o's) ',

where O.„and n~ are intercepts of planar qq and

qqqq trajectories (i.e. , planar &u and S), respec
tively. 'The values of +„and &~ can be obtained

be an easier description to use, since Eq. (4) has
lots of terms at these energies and Eq. (3) has on-
ly the leading pole term; the rest, being negligibly
small, can be ignored. For ln(s/s, )& p, , however,
Eq. (4) is a better choice as it has only one term
in this energy range, while Eq. (3) has many.
Note, in particular, that for this energy region,
the description of the amplitude in terms of only
the leading pole in Eq. (3) is totally inadequate and

the contribution of lower-lying poles has to be re-
tained, as can be seen by comparing Eqs. (3) and

(4) for ln(s/s, )& p, . If one parametrizes the amp-
litude in terms of a single effective pole, as would

be done in typical phenomenological analyses,
,then the considerations above tell us what the ef-
fective pole would look like. Thus writing

P'(s) = P„,(—~~ (~)
( o)

me obtain
sfor ln —& p.

0
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from bootstrap equations"" or from Chew-
Frautschi plots. The relevant graphs, which
need to be included in the cylinder kernel of the
renormalized propagator equation, are as shown
in Fig. 1. The presence of the two planar graphs
in Fig. 1, namely B ' and C ', is easily ex-
plained by noticing that n~, n~ are supposed to be
the solutions of planar bootstrap equations below
the bb threshold and so do not include the contri-
butions of planar graphs which have threshold. In
terms of these diagrams, the cylinder kernel can
be mritten down as below:

y(/)+ (B&&&)+ (B&2&) &I& 2 (C&&&)+ &t 2 (C&2&)

M2(C"')+»" 2 (C"') 2(D)

C'=C'+ C, =
0

+A( j) 0

0 2D( j)

B(j)e '"'
+

»2 C(j)e "'

P"'= (P '-C'-C )
'

0 1

[Pi & C ] 1

where

PI —[P & Ck]

we rewrite Eq. (10) as

&t" 2C( j)e "&

(12)

where the factors of M2 and 2 arise due to the
two possible ways of stitching the diquark ends,
and + signs are for C =a sector, respectively. '
Let 2p, represent the rapidity threshold for pro-
duction of abb pair. Then it can be easily deduced
that B"' and B"' have a threshold factor e '"~,
while C"', C"' have a factor e" since, by cut-
ting B B or a double iteration of C C
one sees that they correspond to production of a
bb pair. Displaying just this threshold behavior,
Eq. (8) can be written

~&(j)+B(j)e '~ K2C(j)e "'

» 2C(j)e "~ 2D(j)

mhere A, B,C,D are functions of j, whose explicit
form will be model dependent. As is clear from
the notation, A(j) and D(j) represent the corres-
ponding diagrams of Fig. 1, while B(j ) and C(j)
represent the sum of contributions of B"', B"'
and C"', C"', respectively.

As is mell known 2 the renormalized propagator
P" can be written down in terms of P and C as

It is clear from the definition of P,' above that
the cylinder terms Co just renormalize the qq and

qqq q trajectori'es, "but do not mix them. Thus in
most of the DTU models, the poles of P,' would be

f which is pushed up to -1, &u which is pushed down
to -0 or which is complex with Re n - 0, a,nd '
which are pushed up; but these &u (f) and &S trajec-
tories will be totally independent of each other,
i.e. , no &-I mixing will occur.

The form of Eq. (12) is now directly comparable
to that of our simple example, considered above.
Analogous to the P' there, P" of Eq. (12) can also
be described in the s plane in two exact and equiv-
alent ways. We can use either the baryon-loop
renormalized poles, whose intercepts satisfy the
equation det(P,' ' -C, ) = 0 or the poles of P,'
Again from our experience with the .example, we
know that the former will be more convenient at
energies which are very high compared to the
threshold, while the latter is more convenient at
lorn energies. Therefore, for energies below or
comparable to threshold, we expand Eq. (12) in an
anologous manner to Eq. (2) and obtain

P"= (P '-C) ' (10) P"' =P,'+ P,' C,P,'+P,' C,P,' C,P,'+ ~ ~ ~ . (14)

Splitting the kernel in two parts, as below,

FIG. 1. The possible cylinder and planar graphs
which need to be included in the cylinder kernel for the
exact- SU(3) case.

For finding the effective renormalized poles be-
low bb threshold, we retain in Eq. (14) only those
terms which do not correspond to the production of
one or more bb pairs. Therefore, as is clear
from'the diagrammatic representations of various
terms in Eq. (14), all the iterations of B"', B"'
and all but one iteration each of C"', C"' will have
to be dropped from the equation. These terms, if
retained, will have such 9 functions in the s plane
that the propagator mill not get any contribution
from them below the bb threshold. To illustrate
further, again we draw an anology with our simple
example, where for 1n(s/s, )&», , an expression for
P' could be obtained by dropping all but the first
term of Eq. (2). Similarly, here the P"' has the
following expression below the bb threshold:
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( 2)ll( 1}12( k)22
P"' below =P~l+Per+ =

b threshold (P,')22(C, )»(P,')»

Substituting for P, and C, in the above equation,

P is+
b

1

j -a~+A(j)
M2C(j)e "~

li —&u+ &(j))b -o'E -2D(j)l

v 2C(j)e "~

b - ctu+ &(j)Rj - o'E -2D(j))
1

i -&s -2D(j)

(15)

j -as+A(j)=0,
j —&s —2D(j) = o

(16)

Of course, depending upon the model, C(j) can
have poles, but one expects these to be lower ly-
ing than the poles given by Eq. (16). This is due
to the fact that singularities of C(j) are governed
by the baryon loop it has and baryon trajectories
themselves have quite low intercepts. From Eq.
(16) we clearly see that the poles of P"' below
threshold are the renormalized but unmixed f, v,
and ' trajectories, which can be easily recog-
nized as the phenomenologically relevant effective
trajectories below threshold, by comparison with
Eqs. (4) and (5). It may be mentioned here that a
similar result was also obtained by Jones, "
though in a physically different situation. Consid-
ering KZ threshold in a broken SU(3) scheme, he
too found that the phenomenologically relevant ~,
@ do not mix below threshold. The basic argu-
ments in our case are essentially the same as
that of Jones.

As described earlier in the illustrative example,
we can also describe the amplitude in terms of the
poles of fullP"', i.e. , poles of P"' obtained by re-
taining all the terms in Eq. (14), which are given
by the roots of the following equation:

(17)det(P;-'-C, ) = det(P-'-C') = O.

If (n;) is the set of roots of Eq. (17), then in the
s plane,

where P; are residues of P"'(j) at j= o.',. and the
sum over i is an infinite sum, as o., 's are the
complex roots of a transcendental equation.

From Eq. (18), it is clear that for energies
which are very high compared to the threshold,
one can drop the nonleading contributions and the
amplitude can be adequately described in terms of

From Eq. (15},we clearly see that below thresh-
old, P"' has only simple poles and they'are at the
same values of j as the poles of P,', i.e., they are
given by

I

only one or at least a few leading poles. 'Thus, as
in the illustrative example, the phenomenological-
ly observable effective trajectories at high ener-
gies will correspond to the leading poles of the set

We would like to emphasize that at energies
below or comparable to bb threshold, the contri-
bution of lower-lying poles is not negligible.
Therefore a description in terms of only leading
poles of (o.',.] is inadequate at these energies. Ex-
actly like the illustrative example, just above the
bb threshold, P"'has double-pole terms due to the
baryon-loop diagrams that have to be retained in
P"' which we know will boost the leading trajec-
tories (f, &u) by mixing them with nonleading ones
(8'). Thus, in short, the ~, f trajectories, as
seen in phenomenological fits, have the following
behavior in a typical DTU model. Below bb
threshold they coincide with ar, f trajectories un-
renormalized by baryon loops (unmixed with ).
Above the bb threshold, they start getting boosted
since more and more baryon loops are included as
the energy increases, till at very high energies where
they coincide with the leading baryon-loop renor-
malized trajectories (fully mixed with ).

Although, as argued above, the (d trajectory does
not mix with below threshold, its physical
coupling to any external baryons does become a
mixture of planar (d coupling and planar coup-
ling. To see this we just evaluate the residues of
P," at j= a„. The nontrivial contribution from the
off-diagonal elements to the residue matrix will
clearly have to be absorbed in the definition of
physical coupling as it too would be a coefficient
of s & ' in the s plane. Since the off-diagonal ele-
ments couple to on one side, the physical ~
coupling to baryons will depend on the planar
coupling. Similarly, though by definition S does
not couple to mesons, due to the off-diagonal ele-
ments of Eq. (15}a nonzero baryonium contribu-
tion to meson-baryon scattering is possible. It is
these effects which can give rise to a nonzero
"~-Smixing angle" (the quotes are to remind us
that this is simply the analog of the angle defined
in Ref. 6).

It is quite straightforward to generalize these
considerations to the DTU models where SU(3) is
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broken and convince oneself that the basic results
about the renormalization effects due to baryon
loops are essentially the same. In fact, apart
from simplifying our equations, the SU(3) sym-
metry- was not used anywhere in our arguments.

g( g2

i4]h &(st

III. AN SU(3)-SYMMEmIC MODEL

In this section we present a model which is
based on the one-dimensional approximation
scheme of Kwiecinski and Sakai' and which has
identical assumptions as those of Ref. 3. How-
ever, our results are entirely different for rea-
sons which will be elaborated below.

The basic assumptions of the model are (i)
SU(3) is exact, and (ii) all exotic meson and ex-
otic baryon exchanges in loops are ignored.

As is well known, the first step in the scheme
of Ref. 8 consists of solving the bootstrap equa-
tion at planar level, which then fixes almost all
the parameters at the cylinder level. The boot-
strap equations for ordinary (qq) mesons and

baryoniums (qqq q) can be formulated and solved
in this model exactly the same way as in Ref. 3.
'The solutions, as obtained in Ref. 3, are

n~ = —0.7, &~= —0.075, &~ = —0.675,

g, '=g, '= 0.31,
where the following inputs have been used:

@~=0.5, u~ = -0.1, x=2.3.

(19)

(20)

Here n„~ ~ are the intercepts of planar qq, qqq,
and qqqq trajectories, respectively, and the cor-
responding n's are their appropriate average val-
ues over the transverse motion. ' g, and g, are
couplings, as shown in Fig. 2, and x represents
the maximum spread in rapidity of the resonant
clusters.

Let us now consider the nonplanar insertions
along with those planar insertions which contri-
bute only above the bb threshold. The general
form of the kernel for the renormalized propaga-
tor equation has already been written down in Eq.
(9). Following Ref. 8, we can write down the fol-
lowing expressions for various terms of Eq. (9)

FIG. 2. Regge couplings.

(Ref. 15):

3g, '
(

.
)

18g,' exp(2 pn„)
j -2&~+ 1 ' j —2&g+ 1

6~3g2gs exp(p n~)
J —2ns + 1 j —2n~ + 1 '

(21)

where g, is the Reggeon-baryon-antibaryon coup-
ling shown in Fig. 2 and p. has already been de-
fined in Sec. II.

Using Eqs. (16), which involve only A and D of
Eq. (21), and the values of various parameters
from Eqs. (19)-(20), we obtain the following inter-
cepts for phenomenologically relevant f, co, and' trajectories below the bb threshold:

nP'= 0.95, n„"'= —0.33+ 0.53i, na, '= 0.08. (22)

We know from Sec. II that these values of j cor-
respond to the positions of poles of both P,' and
P~"' which are defined by Eqs. (13) and (15), re-
spectively. Calculating the residues at these pole
positions, we find that the residues of P,' are

p"'=0.82, p"'=0 5 —0.77i, p"'=0 75, (23)

where p;"' is also the ratio of the Regge residues
of the renormalized trajectory i and its corres-
ponding planar trajectory. " The residue of P,"'
at each of these poles is, however, a matrix,
which in general has nonzero off-diagonal ele-
ments. From Eq. (15) we clearly see that a di-
agonal element of any of these residue matrices is
either the appropriate p;"' or zero. Introducing a
"mixing angle" "8;" (the quotes are to distinguish
it from a genuine mixing angle that characterizes
mixing between states), we can parametrize the
off-diagonal elements of residue matrix. Thus,
for & residue matrix, we write"

res(P" below threshold)
p(»

v' p&» sin"e„"
4 p&» sin' g„"

(24)

Similarly, the S residue matrix can be written
down in terms of p and "9 ". Clearly these
"8;",which characterize the mixing effects in
couplings, depend on both g, and p, , which cannot
be fixed from any consistency equation in the
present scheme. So following Ref. 3, we obtain
these parameters by fitting Q~) data In Appen. dix

A, we derive an expression for (n~) just above
threshold. By fitting it to the data of Antinucci
et a/. ,

"near s -100 GeV', we obtain

@2=0.075+ 0.02, p, = 0.63+ 0.02. (25)

Having thus knowng, and p, , we can easily cal-
culate the various "9;"by comparing the residue
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of P"' below threshold at j= a, , obtained from Eq.
(15), with Eq. (24). However, instead of doing so,
we will obtain the estimate of a quantity, called
the u- mixing angle "g„", which is related to
these "g;", and compare it with the existing phe-
nomenological bound of Ref. 6 which is as stated
below:

As shown in Appendix 8, this sin' "g„" is simply
proportional to sin" g„"sin" 9" in our model.
Substituting the values given by Eqs. (19), (20),
(22), (23}, and (25) in Eq. (B6) of the Appendix,
we get the following value for it;

sin'"g„"= 0.146-0.039i . (27)

'The complex value of "g„", appearing in the
equation above, should not surprise us, since be-
low bb threshold the effective ~ trajectory is it-
self complex. Ignoring the small imaginary part
of Eq. (27), however, we obtain

"g„"=22.4, (28)

which appears quite comparable to the bound,
particularly if one notes that Rem (0) is quite low
in this model.

As we showed in Sec. II, there is an alternative
way of describing the amplitude in this model,
and it is in terms of the poles of a full propagator
whose intercepts are given by roots of Eq. (17).
Substituting values of P and C and solving Eq.
(17), we obtain the following values for the inter-
cepts of leading poles (i.e. , with largest Re&):

n &'& = 0.97, n &"= 0.25. (29)

The residue of the full propagator P "~ at these
poles can be written as below:

resp"'
& +

=
p&

cos'g."'
i

sing;"' cosg"'

sing-"' cosg."'
sin2g."'

~f)- p"'[cos8"'~f )+ sin8&"
I
8" )] (31)

'The values of these residue parameters can be
easily calculated by comparing the residue of P"'
at a pole with Eq. (30). For the leading poles, we
obtain

p"'= 0 79 g"'= 9 93'f '
& f

p&'&=0.78, 8&'&=52 5' (32)

Thus we see that the f trajectory in this model is
affected very little due to baryon-loop renormal-

(30)

where these (p, , 8;) define the renormalized states
in terms of the planar states. Thus, for example,
renormalized f is given by

ization, but the ~ trajectory, which had a complex
intercept at low energies becomes real and gets
boosted to 0.25 at very high energies as a result
of strong +- mixing.

Before closing this section, we would like to
compare and contrast our results with those of
Chan and Tsou' who, based on exactly the same
assumptions as above, had claimed entirely dif-
ferent physical results. 'Thus in their model, the
~ trajectory had a reasonable intercept 0.37, be-
low the bb threshold" [solution with superscript
(2) in their notation], due to strong ur-%mixing
(8„s-50') while above threshold [solution (3)]f
got boosted to 1.04, which was a welcome feature
for explaining the rising total cross-section data.
Our considerations above show that these results
are incorrect for the following reasons.

Noting that their solution (2} consists of simply
the leading poles of the infinite series of complex
renormalized poles, we immediately see that their
claim about boost of & below threshold is based on
a misinterpretation of what the phenomenologically
relevant ~ trajectory in that energy range should
be. As we saw in Sec. II, these leading trajec-
tories can be adequate for describing the ampli-
tude only at high energies but they are certainly
inadequate, and therefore phenomenologically
meaningless, at low energies such as below bb
threshold. The solution (2) also suffered from an
inconsistency of treatment of the cylinder dia-
grams B and C' (i.e. , a double iteration of C),
'which have identical threshold behavior but of
which only C' and its higher iterations (along
with other higher iterations of C) were retained in
solution (2). Therefore, even for high energies,
solution (2) is not valid.

'The same inconsistency of differentiating be-
tween B and C' diagrams has also resulted in
Ref. 3 in an incorrect value of the parameter g„
which crucially governs the amount of ~- mix-
ing. Thus while calculating an expression for
(n~) just above threshold, which was later fitted
with the data of Ref. 11 to obtain g„contributions
of C' terms were not included in Ref. 3. 'This con-
tribution turns out to be as sizable as the one that
had been included and in fact, as our calculation
shows, g, goes down by a factor of -3 as a result
of inclusion of these terms. Using this value of
g, one finds that the f, 63 trajectories receive a
smaller boost above threshold than what was
mentioned in Ref. 3. In particular, we find that
nz(0)& 1, so that rising cross sections cannot be
explained in this model. 'The smaller value of g,
also yields a smaller &- mixing angle below
threshold. Finally, we note that our solution be-
low bb threshold is the. same as solution (1) of
Ref. 3, except for the coupling modifications. Of
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course, the solution (1) was not regarded as the
physical solution in Ref. 3. Our solution above
threshold is similar to their solution (3), but the
numerical results are different due to the above-
mentioned difference in the estimate of g, .

eral DTU model of &u-Q-si mixing can be written
down as

0

(33)

IV. BROKEN-SU(3) MODELS

As remarked earlier in Sec. II, the case of bro-
ken-SU(3) models is very similar to that of SU(3)-
symmetric models and hence all the conclusions
obtained there can be obtained here also in an
analogous fashion. We will, therefore, content
ourselves in making this similarity clearer in a
brief manner, which will also help us in establish-
ing our notation for this section. We then proceed
to more detailed consideration of specific models.

The planar propagator in the j plane for a gen-'

where o.'„&~, and n~ are intercepts of planar p,
Q, and S trajectories, respectively. As is clear
from the equation above, we have chosen to ignore
SU(3)-breaking effects in the baryonium sector as
we feel that they will be negligible due to the
heaviness of the strange quark.

The relevant cylinder (and also some planar)
diagrams which are analogs of the diagrams of
Fig. 1 are shown in Fig. 3. In terms of these the
analog of Eq. (9) of Sec. H can be easily written
down as below:

+ 2A. p+6Bpe
C' = + V 2A x+ + 3v 28x+e '"&

6Ce "~
p

+W2A@+ +3&2Bz+e
M~+38~e '"&

3W2C~e "&

6Cpe "&

3v2C e "'

6D

(34)

(AP) (Bp}
(R) f f

( Ag")

I i + ~il
p

l
l

tf
(e'") (C (I))

P

(Cp)

where as before A „,B„,C„,D for M =p, SC*, P are
functions of j, which represent the corresponding,
diagrams' and whose explicit form will be model
dependent.

Splitting C' in p -dependent and p -independent
parts and proceeding along the lines of Sec. II,
one can easily show that (i) below the bb threshold
the phenomenologically relevant &, g (f,f')
trajectories, whose intercepts are given by lead-
ing roots of the equation

(j —a, , +2A, )(j —a~ +2A ~) —2A &+' =0,

t

do not mix with theS (tS') trajectory whose inter-
cept is given by the leading root of the equation

j —z~ -2D =0, (36)

and (ii) the couplings of these trajectories do under-
go a modification and so a nontrivial "8„~"is
possible below the bb threshold.

Finally, we note that if n is the leading root
of Eq. (35), then by rotating the basis of matrices
I,C from
where

~
P) is orthogonal to

~
n), we can cast C'

in an effective 2 x 2 matrix form for a calculation
which retains only leading pole contributions in

qq sector. Then the calculations of (ng and "8
in a broken-SU(3) model are also analogous to
those in exact-SU(3)-symmetry model, presented
in Appendices A and B, respectively.

I et us now turn to specific models.
(i) Mode/A. This model is quite similar to the

one considered in Sec. III, except that here we
will consider the ordinary meson sector with
broken SU(3) and hence this model is more
realistic. Our assumptions now will be identical
to those of Ref. 4. In particular, all the couplings
are assumed to be SU(3) symmetric, which
simplifies the (qq) meson bootstrap equations and

one can readily solve them, as in Ref. 4. The
solutions, as obtained in Ref. 4, are

2n„=o,„—0.65 for M=p, K*,Q and g,
' =0.38,

FIG. 3. Same as Fig. I, but for the broken-SU(3)
case. where following input parameters were used:

(3'f )



BARYON-ANTIBARYON THRKSHOI D AND cu-BARYONIUM MIXING 186$

(yp =0.5p &E+ =0.35' Q~ =0.2~ x -2.3 ~

N,« =effective number of flavors =2.5.
(36)

Since exact SU(3) is assumed in the baryonium
sector, the solution of baryonium bootstrap equa-
tion remains the same as in Sec. III.

Turning to the cylinder corrections, the explicit
j dependence of the functions in Eq. (34) can be
written down as in Sec. III,

8'x
& nÃ2 exp(2V&v)

~ j —2&~+1 ' ~ j -2z+1
(39)

2g, g3exp(p n„) D g,'
j —2~+1 j —2+~+1

0

0

We list in Table I the values of intercepts and
residue parameters of leading cylinder-renormal-
ized trajectories below bb threshold. As one sees
from Table I, the f and ~ trajectories have ac-
quired reasonable intercepts below threshold
through mixing with ss, although the boost to &
is a little below the phenomenologically desirable
level. The similarity of these results with those
of Tsou" is also remarkable, particularly since
her model had included the effects of transverse
momenta which were neglected in the present
model.

As in Sec. III, the values of g, and p, which
are needed to estimate "8„»and the parameters
of leading trajectories at very high energies, can

where n, =2 for M =p, Q, and 1 for M =K*. Sub-
stituting A „and D, defined above, in Eqs. (35)
and (36) and using the already specified values of
the parameters, one easily obtains the intercepts
of f, &u, . . .trajectories below the bb threshold.
One can then calculate the residues of P' w'hich
in the present model can be defined by an equation
analogous to Eq. (13). Unlike in Sec. III, the
residue of P' at j =O.„for an ordinary meson pole
~&, is a matrix which can be written down in terms
of two parameters p, , 8,. as follows:

cos'8 " sin8"' cos8"' 0

resP' ~ =p"' sin8"' cos8"' sin'8"'
IS=op

be obtained by fitting (n&) data. The expression
for (nI) in terms of model parameters is given
in Appendix A by Eqs. (A3), and (A5). Fitting it
to the data of Ref. 11, we obtain

g, =0.086 +0.02, p. =0.67 y0.05. (4o)

Now values of all the parameters are specified
and therefore one can easily calculate "8„~"in
this model by using the expression given by Eq.
(av):

i.n'cc8» =0 103~0 034 or cc8 ~ =18 7'~3 2

which is indeed close to the phenomenological
bound of Ref. 6. It may also be mentioned here
that if in a model n'„" or a~" turns out to be closer
to its phenomenologically favored value than that
in Table I, then the estimate above will go down
further.

Finally, solving the equations det[P '+C]=0,
we obtain the intercepts of trajectories relevant
at very high energies. For the leading trajec-
tories in C = + sectors these intercepts are

nf = 0.98, ~„=0.36.
Comparing these values with those in Table I,
we note that as in Sec. III the baryon-loop cor-
rections have caused very little change in the f
and ~ intercepts.

Once again our results can be contrasted with
those of a model' which was based on identical
assumptions as ours, but which had predicted a
substantial boost to the trajectory and a large
&o-@ mixing angle ("8„"-42') below bb threshold.
Again one can show that as in Ref. 3, these claims
arise due to (i) misinterpretation of what the ef-
fective trajectories below threshold should be and
(ii) the inconsistent treatment of cylinder diagrams
8 and C. Since we have already elaborated on
these points in Sec. III, we will not repeat them
here.

(ii) Mode/ B. This is based on the phenomeno-
logical approach of Chew and Rosenzweig' and
Gavai' in which instead of fixing the cylinder terms
from the planar bootstrap equation they are treated
as free para, meters. Following Refs. 2 and 5, we
assume SU(3) symmetry and j independence for

TABLE I. The values of intercepts and residue parameters of leading cylinder renormal-
ized trajectories below bb threshold.

C=+ sector C=- sector

=0.96,
G.~~'= o.27,
~"'=O.0S,

p =0.8, & =21 54'f s f
p«~ =1.01, e'&~ =118.8s f
p~~'=0 75

~„"'=0.88, p"'=1 08 ~ =-48 8'

&~ = -0.48 + 0.67i

=0.08, p i =0.75~ s '
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the kernel [i.e. , all SU(3) breaking is included in

n, & o.'~]. Then it is easy to deduce that the kernel
C' of Eq. (34) can be described in terms of four
parameters, say, k„k„k„k„

D=k, and A~=k, , B~=k3 C„ky
for M = p, Ã*, y . (41)

Substituting for A, „and D in Eqs. (35) and (36)
and solving these equations, we see that the ef-
fective f, &u intercepts below threshold have ex-
actly the same expression as in the CB model, '
i.e. , the amount of ~-Q mixing and the ~-trajec-
tory reriormalization for a given set of input pa-
rameters is unchariged. Thus, this more realistic
consideration of baryon exchanges by incorporat-
ing bb thresholds, compared to that of Ref. 5, has
turned out to be of no use for the two problems
which the CR model had, and which Ref. 5 seemed
to overcome.

One would then like to know whether there are
any gains from incorporating S mixing at all.
Apart from being able to explain the possible de-
viations below bb threshold in some couplings
such as &ebb, &MM (where M is an ordinary
meson), the incorporation of S mixing also seems
to have one possible attractive feature which is
the following. Since the leading trajectories in

both C =+ sectors will be boosted above the bb
threshold due to mixing with 8, the f, co contribu-
tions to the cross sections above-threshold will
fall less steeply than below threshold The f.

contribution can even rise above certain energies.
Thus it may be possible in this model to fit the
total-cr oss -section data over a wider range where
such a behavior is known to be existing. To check
whether this is indeed the case, we must find out
the poles of P" = (P ' —C) ' and for that we need
values of five parameters of our model, namely
(x~ k] k2 ks and p, as the values of remaining
parameters, i.e. , Q, Qy ko can be fixed from
total-cross-section data below 30 GeV/c. " How-
ever, noting that in P", n~ and k, occur only in
the combination (o.s +6k, ), which in the present
model is the intercept of physical baryonium be-
low threshold, we see that we have effectively only
four parameters. Of these, cy, i.e. , the inter-
cept of physical baryonium below threshold, can
be obtained from fits to total or inclusive cross-
section differences, "' while p. , the threshold
parameter, can be fixed from the antiproton
multiplicity data of Antinucci et al." The same
multiplicity data also gives a constraint on k, and

k3 p
which can fix the value of k3 since one can

determine k, from the value of "6)„~"which in
turn may be obtained from an analysis similar to
that of Ref. 6, but of presumably better data.

Thus it seems possible to obtain all the parameters
of the model from data and check whether n&(0) & 1

above threshold. However, the poor quality of the
currently available data prevents us from under-
taking such an exercise, as the resultant uncer-
tainties in various parameters are unlikely to
lead to any definite conclusion. The data can,

. however, put a reasonable bound on "8„", which
we proceed to obtain now.

From the expression for sin"'8„" in this
model, given by Eq. (B6), we note that we need
values of k, and p in order to estimate "8„» as
the rest of the parameters can be obtained from
fits to total and inclusive cross sections. "'"
Once again we determine k, and p by fitting (n~) data
to the model expression, given by Eq. (A6). Note
that (n~) depends on k, also. But since k, & 0 at
t=0, we put k, =0 and obtain maximum possible
value for k„

k, =0.034 +0.008, p =0.76 +0.01,
where we have used z" = -1 and the values of
Ref. 21 for z'& ', 8&"'. Substituting the values of
k„p, in Eq. (B6) and using o, '„",8'„" from Ref. 21,
we obtain

sin "8 "=0.03 y0. 014 or "8»=9.9 +2.4'.co- 4)~
Since this estimate was for largest possible k,
we see that (n~) data gives a bound on "8
namely

~

"8„9"
I

&12.5', which agrees reasonably
welt. with the phenomenological bound of Bef. 6.

V. CONCLUSIONS

In this paper, we have investigated in detail
a general class of DTU models of Pomeron in
which ~- mixing is considered in the presence
of the bb threshold. We have shown that the
phenomenologically relevant + (f) and e ((S')
trajectories in these models do not mix below
threshold and therefore ~-I mixing cannot be
invoked to cure problems of & trajectory for s
«100 GeV'. This result arises simply due to the
fact that no internal baryon loop which has only
mesonic legs is permissible below bb threshold
in the unitarity sum. The only baryonic loop.
which is allowed in this energy range has a bar-
yonium and an ordinary meson as its legs. We
have shown that this loop can only modify the
couplings of m, di trajectories (also off,3' tra-
jectories) to external particles and thus it can
in general give rise to a nontrivial "8„", which
is the analog of the quantity on which Gavai and
Roy had obtained a phenomenological bound. We
have also shown that the f, a& trajectories which
have admixture of , ', respectively, can be
used to describe the amplitude only at very high
energies, but they are certainly inadequate at
low energies.
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Turning to explicit model considerations, we
studied three models and verified all the state-
ments made above in each of them. One of these
models had exact SU(3) symmetry and was based
on essentially the same assumptions as that of
Chan and Tsou, ' while the other two had broken
SU(3) in ordinary meson sector and were based
on assumptions similar to those of Gavai' and
Hansson. ' We found that in the model with exact
SU(3) symmetry, the &o trajectory below threshold
had a complex intercept with Rem„- -0.3. The
estimation of "8„»in this model, i.e. , ~-@ mix-
ing angle below threshold, yielded a complex val-
ue. Ignoring the small imaginary part of it,
"8„~»—22.4 . These results were in sharp con-
trast with those of Ref. 3, which had claimed
&x„(0)= 0.37 and "8„~"= 50' below bb threshold.
Our considerations showed that these tw'o claims
in Ref. 3 arose due to (i) a misinterpretation of
what the phenomenologically relevant trajectory
below bb threshold should be and (ii) an incon-
sistent treatment of two sets of cylinder diagrams
that had the same threshold behavior.

Attempts to include bb threshold effects in the
work of Ref. 5 seemed to eliminate the phenomen-
ologically desirable feature it had, as below the
threshold the model became a,lmost identical to
the CR model' except that a nonzero "8„" was
explicable in it. Using the (n)&) data to determine
some of the model parameters, we found that for
reasonable values of input intercepts, the allowed
range of "8„~"in the model, which is given by

~

"8„~»
~

g 13', was consistent with the bound of
Ref. 6. In the other broken-SU(3) model, where
most of the parameters were determined from
bootstrap constraints, we found that the (1) tra-
jectox'y below threshold had a not so unreasonable
intercept -0.33 due to &g-(t& mixing. The predicted
value of "8„»in the model was -19', which is

)p ~px + 4x

p p

FIG. 4. Diagrammatic representation of one-antipro-
ton-production cross section.

remarkably close to the bound of Ref. 6 and is
expected to be still closer if (&&„(0) acquires a
phenomenologically favorable value.
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APPENDIX A

In this appendix, we briefly describe how to
derive the expression for the antiproton multi-
plicity (n~) in pp collisions in the exact SU(3) mod-
el of Sec. III. Also, we list the corresponding
expressions for the broken-SU(3) models. As
pointed out in Ref. 3, all the contribution to (n~)
at energies just above bb threshold must come
from a,~, i.e. , one-antiproton-production cross
section. The leading-pole contribution to v,~ is
diagrammatically shown in Fig. 4. The factors
2 and 4 are simply due to the fact that in the pres-
ent one-dimensional scheme the diagrams B"'
and t."' of Fj,g. 1 have the same contribution a,s
8'2' and C'", respectively.

The j-plane expression for a,~ can therefore be written as

p(1) 6~gg g p(1& (y )P(&&(le{) Ã&() ' 2 ]Sg 2e 2@(& Ix&() 216' 2g 2p(1)e 2&((J N&()

(j —o~")', ' (j —(&&'")(j —2c& +1) . . j —2&x~+1
'

(j —(x'")(j —2K~+1) . ' (A1)

where superscript P stands for planar. Noting that the zero-antiproton-production cross section 0 ~ is
given by

~9

ps (yy)» -&(y-&) 6&{ 6g&~p{)) O'( )
OP j g&& ~P + (j ~(&&)(j 2~ + 1)

and using" (n~) = &) ~ /2&( ~ near thresholdwe ,obtain
(1)(1) 2-2p(n~ - e&)

())&) ='
(&& 2 1 &(y~p)(c+ b) - (1+a) [((&&& - 2o(~+ 1) ~(c+ 2b 4a++6cb a3a+2c+ 4a2b)

+ ((x"' —&x"') '(t&+ 2ac+ 4ab+ 2a'c+ 3a'5) g

(A3)
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where 1'=in(s/s, ) and

(A4)

gs &(8
2 (1)

(~(l) ~(1))(~(1) 2~ + ] )

Using Eqs. (A3)-(A4) and assuining (yP/y~~)" = 10, as suggested by data, "we fit (n —,) data" near s-100
GeV' to obtain'4 g, and», given by E(l. (25). We have checked that these values of g„p are not sensitive
to (yP/y~~)~ ratio. Thus taking the ratio to be 1 we find g, = 0.079 and g = 0.75.

The (n~) calculations for broken SU(3) models can be done in an analogous way as above. The results
for models A and 8 of Sec. IV are as follows.

Mode/ 2: (»~) for this model also is given by Eg. (A3), but with the following substitutions:

&&) ( (&&/ f )&g
a = + ~" (6e""('+ 3&( 2tan8"'e" "&(&),

(~&&& ~ (&&)((&((&) 2~ + ] ) f

34p&&&g 2(2 cos28&&&+ && 2 sin28&~&e)'&+$ +p) + sin28&&)e2)'&+ 0 +p&)

(~(1) o((1&)(~o& . 2~ + ] ) (A5)

c = -' cos'8"'+ sin20"'e'"'"~* &'+-' sin'0"'e'"' @ "I"
3n 3 f

Mode/ I3: We have

(n(, ) =e '&'"z ln —-4)&, ~(c+5) —(1+a) '(o(&&' —o("') '(f&+2(&c+4at&+2a2c+3gq, )
s

~o

where

6k, (2+ v 2 tan 8')e (' y(8 ~ 36k, '(cos'8,"&+&&(2 sin28&'&+ 1)
~(l) ~ (1) y

~ (1) (1)
f S Yp Qf

(A6)

c = 3(cos'8"'+ &) 2 sin28"'+ 1)k, .

P ( &
y(( l 6 since 8 n~

Y6 (Bl)

QJ

~~ = —sin" gQJ-8
Yp Pp

(B2)

APPENDIX B

In this appendix, we obtain a relation between
sin'"g " and the "8,.", introduced in Sec. III.
Before we do so, we briefly recall how the bound
on "g " was obtained from data in Ref. 6. The
authors of Ref. 6 used the following relations":

comparing the coefficients of the appropriate
ratios of couplings, obtain the desired relation for .

sin'"8 e". Firstly, we note that the (p&'&, "8,")
define the residue matrix of g"' below threshold,
as is given, e.g. , for j=&d in E(l. (24). Since from
E&l. (25) we know that g, is small, we expect
sin"g,." to be small. Therefore terms of
0(sin"'8,.") are negligible and so the analog of
E(l. (24) for j = o,. can also be written in the follow-
ing manner:

Estimating the left-hand side of each of these
equations from data and using the couplings ratios
extracted from data, they obtained the following
bound by taking the product of the equations above:

resP,"~,=
4p(~& sin" g."i

4p~ ~~ sin" g,.
"

sin"' g."

[sin"'8 e") s0.067, i.e., ) "8„s"~s 5 .
We will calculate the left-hand side of these

equations in terms of "8,."of our model and, by

From E(l. (B3), one immediately recognizes that
the renormalized coupling of Reggeon z to any
channel, say ab, is related to the planar couplings
of ~andtoad,
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)',s ='I p .('Y,'s) + si g& 6' y) (84) y ~ Sj'net g ty ~
&e &e ~

where iw j and i, ) =(d, .
8y choosing appropriate i, a, b in Eq (.84) one

easily obtains the following relations:

) & —(q (i) e-v(~ — ~) 1)
(~)

, yP
+ since g n -fl(1 of@) (PD

&1'"i

where we have used the relation ) ~~ = () ~~)y'e "("e ').
Comparing the equations above with Eqs. (81)
and (82), we obtain

tf
g

n (sinttg &P)(sin g ts) eg(c+ ) (85)

Substituting in Eq. (85) the values of sin" g " and
sin" g", which can be obtained from appropriate
residue matrices, we obtain

8g2g2( (» (»)' x27xe )(&~+ e ~+ )(&) (I)

Sjn2s~ g && 2 3 Pld PS
((y() (yw )) ((y() 2(y + I)((ym, ) 2(y +1)

It is quite straightforward to carry out similar calculations in the broken-SU(3) models of Sec. IV and
obtain the following expressions for sin~'0„".

Model A:

Model B:

(~) (~)
4g'g '(p "p")' 'e "("~' ~ ~~'" (6 cosg"' e" ~~+SW2sing")e)'~e)'(cosg") -~2sing('))

((yP) —2(y~ + 1)((y~~» —2(ye + 1)
(87)

(8S)
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