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Quark model for heavy baryous
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The first I. = 0 lowest states of baryons formed by heavy quarks c, b, and t are studied. For this purpose a

nonrelativistic treatment is justified and the E-harmonic method is used to solve the three-body Schrodinger

equation, for a power-law confining potential between quark pairs.

I. INTRODUCTION

The radial-excitation spectra of heavy-quark-
antiquark bound states (quarkonia) by assuming
a confinement potential between the quark and
antiquark, together with a Coulomb-type potential
[important at very short distances and arising
from a massless-gluon exchange, expected on
the basis of quantum chromodynamics (QCD)], have
been studied rather extensively'; the general fea-
tures of quarkonium are found to be well repro-
duced. The q&q& interaction considered in this
paper obtained from the knowledge of the q&q& in-
teraction {we should notice that' V„=-',V„-) is
given by a power-law confinement potential'

4 n,p; =A]~rgb" —
3

'
+Cog, n&0.

The observed spectrum of the charmonium sys-
tem indicates that the exponent in the potential
must lie within 0&n& 2.' The linear potential
(n = 1) has been studied rather extensively. "
Careful studies' of charmonium show that n —-—,

'
gives best fits with observable quantities. This
result depends to some extent on the choice of
the t.--quark mass. 4

In this report we study the radial-excitation
spectrum of baryons composed of heavier (charm,
bottom, and top) quarks using a nonrelativistic
treatment with a pairwise power-law confinement
potential' following Eq. (1). The constant C, &

is
included to take into account the fact that because
of confinement one cannot calculate the absolute
energies of the system but only the energy differ-
ences. The nonrelativistic approximation for the
heavy-quark system may be justified thanks to
the magnitude of the quark masses.

One cannot use the Faddeev equations' in the (-
matrix form for the purpose because the Schmidt
norm of the kernel of these equations diverges
for positive power-law potentials. We use here
the K-harmonic method to solve the three-body

II. CALCULATION METHOD

The nonrelativistic Schrodinger equation for
three particles may be written as

2

(vQ + } 1 123(4) 4) +( ff& %) ~+(5ix %)x2m
{2)

if c..m. motion is removed and the following Jacobi
coordinates are used:

- Z/2mfa (p $ }
(m(m, + m, )

"~'-'"-"--),
m, (m, +m, ) ( m, +m,

where I=m, +m, +m„m = (1/M)g„, m, m„(i, j, k}
is a cyclic permutation of (1,2, 3), and V'„, is the

(3)

Schrodinger equation. We find, as we will point
out later, that this method is a very powerful one
for quark nuclear physics. Faddeev equations may
be used as well if they are written in the configur-
ation space and differential form. '

The total wave function for the three-heavy-
quark system may be written as a product of the
space, spin, isospin, and color wave functions,
respectively. The color wave function must be
totally antisymmetric in color indices. Hence,
for either two or three identical quarks, according
to the Pauli principle, the product of space, spin,
and isospin wave functions must be symmetric.
Since the heavy quarks are isosinglets, the isospin
part is always symmetric in our context and there-
fore spin and configuration wave-function sym-
metries become correlated. They should be both
symmetric or both antisymmetric. For example,
a baryon formed by three identical quarks has the
space part completely symmetric and hence should
have spin —', . In the case of nonidentical quarks
the symmetry is mixed and the resultant spins
may be —,

' or ~. The spin-dependent forces or
mass-spin relations determine the level ordering.
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interaction potential among the three particles.
For pairwise interactions

equation, we find that the partial wave functions

@z„(p) should satisfy the following system of
coupled differential equations':

Equation (2) describes three equivalent coordi-
nate systems for the three-body problem. A rela-
tion among them exists. ' Equation (2) can be
solved using the hyper spherical-harmonics ap-
proach. " It consists of selecting the most im-
portant variables and then expanding the configur-
ation-space wave function g in a complete ortho-
normal set of functions, depending on all variables,
in the following ways.

, (P)
y(~„q, ) = Z,'-„u,„,((„iI„8,), (6)

where p'= g&2+i7&'= $;2+iI&'= $~'+iI„~, iI& =pcos8&,
and g&

=p sin8, (0 (8, (n/2) Th.e notation f, and

g& means $& =(8~, $&) and q& =(8„,p„,). Complete
orthonormal sets of angular func/tons (ur„,) have
been derived. ' ' They are the angular part of
homogeneous polynomials P~„of degree E which
satisfy the Laplace equation in the six-dimensional
space, and o., stands for all other necessary quan-
tum numbers of the configuration space.

One should observe that for the important L, =0
case, the angular functions have a simple depend-
ence of the angles, namely 8, and p„where p,
is defined by cosp& = $, j,. Furthermore, only

one extra quantum number besides E is necessary
to specify the states in the configuration space. '

If we substitute Eq. (6} into the Schrodinger

A(A+ I)
dp2—

+ g I z,,z. , (p)~ (p)=0 (6)

where A=X+—„k'= (2~/5')(&~, E being the energy
of the bound state, and

2m
IK~,E n'(P} @2 (MKn)~~123l+K n') (7)

(6)

where the Cr&. '(n)'s are coefficients depending
only on the quantum numbers and n. Given p,23,
Eq. (7) can be calculated and then the system given
by Eq. (6) solved numerically. " That is done by
truncating the sum over E by an upper value E
For our purpose, the K = 4 was accurate enough
(error being much less than I MeV) although the
numbers quoted in our tables were obtained with

- 10. Another advantage of the K-harmonic
approach is that excited states can be obtained
easily. "

(integration is over the angles).
We can obtain" closed expressions for the matrix

elements [Eq. (7}]for the interactions given by
Eq. (I). Hence Eq. (7) can be written as

TABLE I. Masses of states and values of (r)i~2 for L=O, J= —(i=j =k) Units .K=c=l.
Numerical errors of order of 3%.

Baryons , n

Ground state
(GeV)

(~2)li2

(fm)
First excited state Second excited state

(GeV) (GeV)

m =16 GeVt

m&=20 GeV

4.77

4.77

4.81

15.97

14.98

15.08

49.55

48.62

48.54

60.98

60.30

60.48

0.27

0.28

0.25

0.16

0.21

0.16

0.15

0.16

0.14

0.16

0.14

5.09

5.08

5.48

16.35

15.32

15.73

49.41

48.89

48.89

61.32

60.64

60.79

5.47

5.48

5.96

16.65

15.61

16.38

50.17

49.11-

49.24

61.89

60.96

61.10



QUARK MODEL FOR HEA VY BARYON S

TABLE II. Same as Table I, but L = 0, J=
2 (i &j & k).

Baryons

cbt

m&=16 GeV

cbt

20 GeV

1
2

1
2

Ground state
(GeV)

24.33

23.17

23.53

28.17

27.16

27.31

(~2) 1/ 2

(fm)

0.12

0.17

0.14

0.11

0.15

0,13

First excited state
(GeV)

24.46

13.65

24.09

28.49

27.44

27.85

Second excited state
(GeV)

24.49

23.79

24.84

28.65

27.60

28.25

TABLE III. Same as Table I, but L=O, J&2=0 (i=g ~k).

Baryons

ccb

m]=16 GeV

bbt

m ]=16 GeV

ttc

m(=16 GeV

m]=16 GeV

cct

m &= 20 GeV

bbt

mm]=20 GeV

m =20 GeV

m ]=20 GeV

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Ground state
(GeV)

10.41

9.35

10.23

23.43

12.37

13.00

21.64

20.58

21.37

27.57

26.53

26.82

35.84

34.78

35.16

38.75

37.42

38.36

25.63

24.57

25.35

31.55

30.52

31.00

43.83

42.77

43.10

46.72

45.04

45.81

(fm)

0.22

0.34

0.23

0.20

0.31

0.22

0.17

0.24

0.16

0.20

0.22

0.21

0.20

0.22

0.21

0.20

0.23

0.21

0.13

0.16

0.14

0.17

0.22

0.18

0.21

0.21

0.21

0.19

0.21

0.20

First excited state
(GeV)

10.73

9.70

11.09

13.69

12.64

13.65

21.94

20.89

22.10

27.83

26.78

27.29

36.06

34.99

35.51

38.97

37.62

38.22

25.93

24.88

26.07

31.81

30.74

31.46

44.04

42.99

43.42

46.92

45.87

46.13

Second excited state
(GeV)

10.82

9.79

11.38

13.93

12.97

14.01

22.06

21.03

22.53

27.89

26.84

27.47

36.25

35.20

36.13

39.09

38.10

38.44

26.05

25.02

26.51

31.87

30.83

31.82

44.24

43.20

44.38

47.07

46.32

46.37
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For any quark pair, constants Q„-, o.„and C„-
of Eq. (1) here take the same values as those of
Ref. 4 (unit K=c =1). In that reference these para
meter values were determined by fitting the char-
monium data. In the calculations it was observed
that the contributions coming from the Coulomb-
type term in Eq. (1) are relatively small. Hence
it can be neglected in the first approximation.
Because of lack of experimental data and for defin-
iteness, calculations were only done here for the
I.=0 (ground, first, and second excited) states.

III. RESULTS

Our results are summarized in Tables I-III.
The baryons formed by two identical quarks and

a distinct one should have spin —,
' in the ground

state according to the spin-mass relation. Qur
results are close to the bag-model results"; simi-
lar work was also done by Hasenfratz et a/. '4

In order to improve our calculations, it seems
important to consider many effects, such as spin-
dependent potential, relativistic corrections, and
three-body force. The latter appears to play an
important role in the results. Some recent serious
efforts in this direction have been done by different
groups. " They could derive directly from QCD
a three-body force proportional to the hyperradius
p which could easily be added to Eq. (4), leaving
the calculation of the matrix elements, given by
Eq. (7), still exact.

A word should be said about light hadrons. It
seems that a nonrelativistic approach can still
be used for light-hadron calculations if a suitable
spin-dependent force' is added to the local inter-
action given by Eq. (1).

An important feature of this problem consists
of comparing molecular structures (such as H+)

with quark systems of very different masses, for
example, the baryon fpz. Let us consider the
tt =2 (harmonic-oscillator) case in Eq. (1) which
renders the problem analytically solvable:

v„,=p/ ~-—
/

+p/x+ —
f

+p'R', (9)

where A» =A» = P and A» = P', 5 refers to the
relative coordinate between the g quarks, and r
is between c and the tt center of mass. Assuming
that the spring constants (P and P') are of the same
order of magnitude, we find that the radial oscilla-
tion frequency for the heavier quark (f) is much
smaller thorn that for the lighter quark (c), the
ratio being essentially controlled by the reduced
mass ratio

2

p, ()g) (1 +P/20)
(10)
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Analysis of the radial wave functions with pg, =1.5
GeV, nz, =4.V GeV, ~, =16-20 GeV, p,,«,&=1.45
GeV, and p, « =10 GeV and probability densities
show that in configuration space, heavier quarks
(&) are relatively far apart and the lighter quark
(c) moves analogous to the electron in the H+, mol-
ecule. In this respect, for such baryons one can
use simple approximation techniques (such as
Born-Oppenheimer) known in molecular physics
instead of using the exact hyperspherical-harmonic
approach.
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