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Chiral dynamics and semileptonic r decays
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We consider the semileptonic decays of the r in a model of SU(3) &(SU(3) chiral dynamics using phenomenological
Lagrangians. The effect of the resonant states is included to facilitate comparison with the data.

I. INTRODUCTION

As more data on & decays become available, ' '
it is of interest to consider the various semilep-
tonic decays. The investigation of &- vs by Gef-
fen and Wilson' and the work of Fischer, Wess,
and Wagner' on multipion decays of the T based on
the original ideas of Callen, , Coleman, Wess, and
Zumino, ' has provided evidence that current alge-
bra is also of interest for higher-energy phenome-
na. A further test of the applicability of these old-
er ideas to the new realms of physics at high en-
ergy comes from consideration of the final states
containing several types of particles. If these pre-
dictions are also borne out by experiment, we may
place more reliance on the applicability of chiral
groups to decays of the new. particles. We consid-
er here chiral SU(3) & SU(3), the simplest exten-
sion to more particles (w, K, and q). The various
particles' decay constants differ from one another
at the level of -10'fo.' ~" The effect of differing
decay constants is, of course, of interest. " For
our purposes, we shall consider the g to be iden-
tical to the g, . The particle masses are introduced
in the phase-space calculations because of the
strong effect of the available phase space on the
numerical values of the widths.

We shall use the method of phenomenological
Lagrangians using nonlinear realizations of the
chiral group, which relates amplitudes for the
emission of various numbers of soft hadrons.
The techniques adopted for the nonlinear realiza-
tions of chiral groups are all familiar, and shall
not be recapitulated here (see, e.g., Refs. 8 and
9). We may summarize the result by stating that
the amplitudes for multihadron final states depend
only on the particle decay constant f, (and in prin-
ciple on f», f„, determined years ago for low-en-
ergy phenomena'"). In this sense, the predictions
for 7 decay are parameter-free (that is, the high-

energy behavior is given in terms of the low-ener-
gy behavior). It is in this sense that the model
provides a test of the applicability of the current
algebra to higher-energy phenomena. In making
the extension from low energy to high energy, it
is of course necessary to introduce the possible
resonant states. We explicitly consider the p, &*,
and P states, as made up of two-particle pseudo-
scalar states in resonance, in our current matrix
elements.

II. CHIRAL DYNAMICS AND MULTIHADRON
PRODUCTION

We consider decays of the form

r - p, +mm+nK+pg.
Since the decay amplitudes may be written in
terms of the matrix elements of the leptonie and
hadronic currents, we write the matrix element
for the above process

~(r- v, +mw+nK+pg)

cosec u(P, )y"(1+y, )u(P„)J„( nm, nK, Pq)
2

(1)

in the strangeness-conserving case. In the case
of strangeness-changing currents, the factor cos0(.-
is replaced by sin~c. In Eq. (1) the &„are the cur-
rent matrix elements for the production of m pi-
ons, n kaons, and p g's (which are at this stage
all massless). Because all masses are identical
(and zero) all the decay constants are the same
and all the currents ~„are conserved. In view of
Eq. (1), it is convenient to give the results of our
calculations normalized to the leptonic decay rate

I'(~- v, p, v„)=&'cos'ecm, '/192m'.

The ratio I'/I'(r- v, pv„) shall be denoted y (cf.
Ref. 8). Hence, for strangeness-conserving cur-
rent matrix elements

) 6 d py(mv, nK, pg) =24(2v)' ' ' 'm, ' " (p'p'+p'p'-p 'p g")

x ~ ~ ~64 p p p — A — q

&& Jt(mv, nK, pg) J,(mw, nK, pq) . (2)
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Z= f'Tr(a, a "),
where

(3)

s„=s„M —,[M, [M, s„M]]
1

For strangeness-changing currents, the above re-
sult should be multiplied by tan28&.

The problem is thus to compute the current ma-
trix elements &„(exactly conserved in the mass-
less limit). Were we to introduce the masses at
this stage, the currents would of course obey
PCAC (partial conservation of axial-vector cur-
rent). We shall calculate the current matrix ele-
ments from our nonlinear Lagrangian via the
Noether theorem. We may write (f=f,)

or three hadrons produced):

Z„(v') = i~2fp,„,
J„(K')= i M2fk, q,

J„(v'm) =~2(p, -p)„,
J„(K'Z)= —(k, -k)„,
J„(vK') =1/M2 (k, -P)„,
Z„(v'K) = (k p.)„,
Z, (K'q) =3/~6(k, -q)„.

In the following expressions, (P„„is given by
(p"„„(P)= g„„-P„P„/(P'-m„'):

(6)

(7)

(8)

(9)

(1o)

(11)

(»)

+ —[M, [M, [M, s„M]]]+... ,

Using the Noether theorem, we obtain the follow-
ing vector and axial-vector currents:

~" =if' [M, »M] —,[M, [M, »M]]]+ ~"
31

(4)

8~ =f'{8"M —', [M, [M, 8"M]]+.. .j. (5)

These currents allow us to calculate the current
matrix elements in Eq. (2). For a given process,
we must use Eq. (3) as well as Eqs. (4) or (5) to
obtain a parameter-independent result, since we
must sum all possible tree diagrams contributing
to that process. For example, the current matrix
element for production of three kaons has a con-
tribution from the current for production of a vir-
tual kaon, followed by production of three kaons
(Fig. 1). We are led to the following current ma-
trix elements in our most general case (one, two,

(b)

FIG. 1. (a) Typical diagram, e.g. , for 7 u„KXK
for production of three hadrons. (b) Contribution of a
virtual intermediate particle, e.g, , v- p~K —v~KKK.

and M is the usual SU(3) matrix of pseudoscalars:

M = Q (q,./f) (A. ,/2) .

~„(w,'w,'v ) = -(i2~2/3f)(2p p,. p„)"o" (P) (13)

(14)

(»)
(16)

&„(v,1r, w') = (i2v 2/3f)(2p, p, p,)"(p'„„(P),

&~(v'K'K ) = (i~&/3f)(p, +k, 2k )"(P'„„(P),

&„(v'KK) = (i~&/3f) (p. +f 2k)"6 '„„(P),
& „(vKK') = -(i/f ) (k. K)"6 '„—„(P),
~„(&K')= (i/ 3f)(2' —k. —&)"C"„„(P),

J„(K;K;K ) = -(i2v 2/3f)(2k k„-k„)"s'„„(P),
(»)

(17)

(18)

&„(KKK')= (i~2/3f)(N k —k.)"n „„(P),
J„(v,v, K') = (i~2/6f)(2k, —p, -p,)"6'„„(P),

J„(v' v K') = (i ~23/f) ( k+ p, - 2p )"(F„„(P),
~„(vv'K) = (i/f) (p. p) "a „'„(P),
J„(gv'K) = (i/~3f) (2k —p, —q)"y„„(P),
J, (n «') = (i/~6f) (2k, -p q)"&„„(P)—,
~„(n, 'll K') = (i/~2f) (2k. —0, —0 )"&„„(P)~

(2O)

(21)

(22)

(23)

(24)

(25)

(26)

E„(q)= (m„' —im„l'~)/(m„' - im„ I'„-q') . (2V)

With these formulas the widths y of Eq. (2} are
determined through production of three particles.
Of course, our description in Eqs. (6)-(26) is in-
complete in the sense that the known resonant be-
havior of the particles has been neglected. In oth-
er words, (6)-(26) are correct only in the low-
energy limit. For higher energy, the resonant
states must be explicitly included.

Possible resonant states are those for mm, m&,
and KK, that is, p, K~, and Q, respectively (we
restrict ourselves to two-particle resonant states).
As in Ref. 8, we modify Eqs. (6)-(26) by including
the form factor in such a way that the current con-
servation is preserved. The low-energy limit is
then automatically recovered. %e shall write the
form factors &„(q}, where
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TABLE I. Reduced widths p, hadron masses neglected.

Produced
hadrons

7r'
K+
7t'r
K'K
m'K
xK'
K'q
vr'(vr'm-, mvr)

x+(K+K, EE)
7l KK'
K+Eg
K+K'K
KKE'
zmK'
7I'+7( E+
xm'K
7)'+Kg

zK'q
K+gq

100

100

35
100

100
100

11.8
93.2

73.0
64.3

98.4
98.8

87.7

100
98.1

100
100

100

100

0.5
6.8

100
0.04
1.9

27
0.6

1.6
1.2

100

p (4) K* (%) (It) (Vp) Continuum (9&) Total

0.63
0.03
1.26
0.13
0.14

7.1x 10-2

1.2 x10
0.24
0.38
0.11

1.7 x10
0.58

2.2 x 1P-2

3.0 x10
4.4 x10 3

7,2 x10
1.8 x10 2

2.5 x 10
1.6 x10 3

Experiment

0.56+ 0.12

1.22 y 0.21b

0.13 + 0.05

0.31 k 0.13

Reference 3; this number is given as 0.68 + 0.17 in Bef. 5.
"References 2, 5, and 6.
'Reference 5; the number quoted is only the resonant part.
d Beference 1.

It is also necessary to ensure that only the J = &

part of Er be allowed to form &~. Similarly, only
the ~ =1 part of m7t' can form p, and only the J = 0
piece of KR can form Q. In practice, this means
that terms such as (k p, )„must -be replaced by

—.'(k p,)„+.'(k p,)„F,-*(k+p.)
when one correctly introduces the resonance in

the three-particle currents. With these require-
ments, we obtain the following current matrix
elements:

J„(~'~)=~&(p. p) „F,(p+p. )-,

J„(wK') = (I/~2)(k, P)„F~~(P+k,),
Z„(~'K) =(k p)„F~( p, +)k,

(8')

(lo')

l0

5-

I)
/ s

I

I
1
I

I
I
I

I

3-

2
l4

(t
I()

I
~

I l
I

l i
I I

I

I
I

I
I
I
g I

0
0

FIG. 2. Differential distribution of the reduced width
for 7 —p g'7t. The data are from Befs. 4—6. The
masses of the decay hadrons are taken to be zero for
the dashed curve; actual hadron masses are used for
the solid curve.

0
0

FIG. 3. Differential distribution of the reduced width
for z v 7r'X. The masses of the decay hadrons are
taken to be zero for the dashed. curve; actual hadron
masses are used for the solid curve.
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Jq(m,'n2 w ) =- (i2v 2/3f)(P —P„)'Ep(P +P„)(Pp„(P)—(i2&2/Sf)(P —P2, ) "Fp(P +P2+)(Pq p(P),

Jq(w, w, g') = (i2v 2/Sf)(P, —P, )'Fp(P, +P,)6'„"„(P)+(i2&2/Sf)(P,—P, )"Fp(P, +P,)(Pq,(P),

Jq(m''K"K }=(i/SV 2f}(k,—k )"Ee(k, +k )t~ p(P)+(i2v 2/9f)(p, —k )"F„~(p,+k )(Pq„(P)

+(i/9v 2f)(3k, +2p, -5k )"(Pq, (P),
Jq(m'KK) = (i2W2/Qf )( P, —k)"Fr~(P, + k)6'q, (P) + (i/Sv 2f )(k —k)"Fg(k+ k)(P q, (P)

+ (i/9v 2f )(3k+ 2p, —5k)"6'„'„(P),

J„(vKK') = (i/3f)(P —k, )"Fz~(P+k,)6'q„(P)+(i/Sf)(k —P)"Fz*(P+k)6'q„(P)

+ (i2/3f )( k —k, )"6'„'„(P),

Jq(K,'KRK )=(iv 2/3f)(k„—k )"Eg(k„+k )6'„„(P)+(iv2/Sf)(k, ~ —k )"Ee(k„+k )(Pq„(P)

+(i&2/Sf)(k„k)"(P—f„(P)+(iv 2/Sf)(k„—k )"(Pqp( P),

J q(KKK') = (i&2/6f )(k —k) "Fg(k+ k}6'„„(P)+ (iv 2/6f )(2k, + k —3k)"(Pq „(P),
Jq(m, g2K') = (i'/36f)(k, P,)"Fz*—(k, +P,)(P~q„(P) + (iv 2/36f )(k, P,)'Fz—*(k, + P, )(Pz„(P)

+ (i &2/18f )(2k, —P, —P,)"(P~q„(P),

Jq(m'm K')=(iv 2/Sf)(p, —p )"Fp(p, +p )6'q„(P. )+(i2&2/9f)(k, —p )"Fz+(k, +p )(Pq~„(.P)

+(iv 2/9f)(k, —P )"+„„(P),
J„(«K)=(i/f}(P-P,)"F,(P P.)~'„.(P),

Jq(qw'K) = (i4/Sv 3f)(k p, )"Ez~—(k+ p, )(P q „(P)+ (i /3~Sf )(2k+ p —Sq)"(Pq, (P),

Jq(qwK')= (i2/3&6f)(k, —P)"Fzw(P+k, )(Pq„(P)+(i/3&6f)(4k, — qS- )P" 6f„( P).

(13')

(14')

(16')

(19')

(20')

(21')

(22')

(23')

(24')

(26')

We are now in a position to calculate the widths
of Eg. (2), as well as the distribution dy/dP',
where, as above, P=p, —p„. Instead of using the
variable P', we consider the distributions with
respect to the dimensionless variable z =P'/m„',
which runs from zero to one in the massless case
and from (m, +m, +m, )'/m, ' for the case in which
three massive particles are produced. In Table I

I

we give the reduced widths as calculated for mass-
less hadrons, and in Figs. 2-4 the distributions
dyldz for the case of two-particle final states con-
taining resonances and in Figs. 5-8 a selection
from the three-particle final-state distributions.
Since we are producing hadrons whose masses are

.5-
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FIG. 4. Differential distribution of the reduced width
for T p ~7/X '. The masses of the decay hadrons are
taken to be zero for the dashed curve; actual hadron
masses are used for the solid curve.
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/

0

FIG. 5. Differential distribution of the reduced width
for p p g'g'g . The data are from Ref. 1 and J. A.
Jaros et al. , Phys. Rev. Lett. 40, 1120 (1978). The
masses of the decay hadrons are taken to be zero for
the dashed line; actual hadron masses are used for the
solid line. The data are normalized to the total area
given in Table I for comparison. Note that this means
that only the shape of the distribution is important.
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FIG. 8. Differential distribution of the reduced width
for 7 —p~K'KK. The masses of the decay hadrons are
taken to be zero for the dashed line (scale on right);
the actual hadron masses are used for the solid line
(scale on left).

FIG. 6. Differential distribution of the reduced width
for 7 —p~ ~'K'K . The contributions of the Q (dashed
curve) and K* (dotted curve) are shown; that of the
continuum is not explicitly shown. The masses of the
decay hadrons are taken to be zero. (b) Same as Fig.
(a) except that the actual hadron masses are used.
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FIG. 7. Differential distribution of the reduced width
for 7 v~K'K'K . The masses of the decay hadrons
are taken to be zero for the dashed line (scale on
right); actual hadron masses are used for the solid line
(scale on left).

not negligible in determining available phase space,
we redo all calculations to take the restricted
phase space into account. These results are pre-
sented in Table II, and are also shown in Figs.

2-8.
We note that the widths involving particles other

than the pion are rather small, and earlier ca1cu-
lations' showed that the widths for v- v, m+m'm m

and v. - v, zmvtm+ were rather small. We shall there-
fore not present results for the other 28 four-
particle decay widths here. The size of the cor-
rection resulting from the breaking of the sym-
metry, so that f, wfzsf„, is currently being inves-
tigated. "

III. SUMMARY AND CONCLUSIONS

We see from Tables I and II that the resonances
contribute the bulk of the decay width. It would
thus be of interest to consider a gauge theory of
SU(3) xSU(3) so that the resonances can be in-
cluded in the theory rather than being introduced
phenomenologically as in this work. A gauge theory
of SU(2) x SU(2) has recently been considered by
Fischer, K10ver, and Wagner. " They have found
that the effect can be rather large in the massless
case.

The effect of the phase-space restriction from
the hadronic masses is particularly clear in the
cases K%K, %Kg, and Kgg, the heaviest mesons.
However, the effect of the mass is not negligible
even in the case of the two-pion final state. We
illustrate this point using the m'n decay width.
Were we to naively apply the narrow-resonance
approximation and neglect the fact that the v, car-
ries off energy, we would obtain, taking I', =150
MeV, y(r- v w'm) =1.49. If we then consider the
effect of the distribution in z, still leaving the
pions massless, we obtain as in Ref. 8 a factor
(1 —z)' which modifies the result to 1.36, for
g =m, '/ni, 2. A full calculation using the proper
upper and lower limits yields a value 1.26 for the
same width, a reduction of about 20%. Now, how-
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'TABLE II. Reduced widths p, actual hadron masses.

Produced
hadrons p (%) 4 (%) Continuum (1) Total

K+
7r'7r

K+K

xK'
K'+g

~'(m 7r-, mm)

~ (K'K-, KK)
xKK+
K K8
K+K'K"
KKK+
m7rK'

m+7r K'
xm'K
a+Kg

xKq
K+qg

100

100

40.8
100

100
100

28.9
99.6

77
58.6

84.4
93.2

70.4

100
99.3

100
100

100

100

0.7
0.4

100
0.02
0.7

23
0.7

15.6
6.8

100

0.62

,0.03
0.99

1.2 &10 2

5.2 x10 '
2.6x10 3

9.2 x10 4

0.14
4.5 x10 3

3.1 x 10 3

1.6 x10 6

1.2 x10-4
1.6 x10 ~

4.8x10 ~

5.2 x10
7.6 x10
1.1 x10
4.4 x10
4.0 x10 8

ever, if we take the pion masses into account to
reduce the available phase space, the latter two
results are modified to 1.12 and 0.99, respectively,
about a 25% effect. Thus the effect of the restricted
phase space is more important than that of proper-
ly introducing the distribution in the lepton energy
even for the low-mass pion. Experimentally, the
ratio is 1.2+0.3,"so all the calculations are con-
sistent with experiment. It would be desirable to
have the ratio larger for the "realistic" case in
which the masses are included. This would be
expected on the basis of the results of Ref. 13 in
the case of a gauge theory of 7 decay, at the price
of introduction of a new parameter. One would then
have to investigate effects on three-pion decay
to ensure that the procedure makes sense.

The effect of the true particle masses in re-
stricting the available decay phase space does not
appear to be negligible even for particles whose

masses are as low as those of the pions. For
the more massive particles, the widths as pre-
dicted are reduced by factors as large as 10 .
This reduction may be enough that the total v decay
width is too small, a situation presumably amel-
iorated by the introduction of the vector bosons
in the gauge theory of 7' decay.
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