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General theory of weak processes involving neutrinos. II.Pure leptonic decays
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We present a general theory of leptonic decays which consistently incorporates the possibility of nonzero neutrino
masses and associated lepton mixing. We calculate the differential decay distribution d F/dEbd cos8 and the l,
polarization for "the" decay l, —+v„lbvIb, i.e., in general the incoherent sum of decays l, ~v, lbv, . into all allowed mass
eigenstates v,. and v, Expressions are also given for the average quantities & cos8 & {Eb), & cos8 & (integrated over

E, ), &Eb & (8), and &E, & for individual (ij) decay modes and the observed sum. The total rate for massive-
neutrino modes is calculated for the relevant experimental cases. These results are applied to analyze what the
observable characteristics of massive neutrinos and lepton mixing would be in leptonic l, decay. We show that
dI.'!dEb would in general contain kinks at intermediate energies and carry out a search for these in existing p and r
decay data. We further show that the conventional determination of the Lorentz structure of weak leptonic
couplings via measurement of the spectral parameters p, V, g, and b is not applicable in the presence of massive
neutrinos and lepton mixing; a deviation of the observed parameters (with radiative corrections extracted) from their
conventional V —A values could be caused either by non-(V —A) Lorentz structure or by massive-neutrino decay
modes and lepton mixing. Thus, past measurements of the spectral parameters yield information only on the
combined effects of the underlying Lorentz structure of the couplings and on possible neutrino masses and mixing,
but not on either of these in isolation. The appropriate generalized formalism for the analysis of Lorentz structure in
leptonic decays is given, and a quantitative study is performed of the effects of neutrino masses and mixing on the
spectral parameters. We propose methods to distinguish between these effects and those due to possible non-(V —A )

Lorentz structure; these methods can be applied in a reanalysis of old p and ~ decay data, and can serve as part of a
generalized framework for the analysis of forthcoming data. Within the context of the standard electroweak theory
we apply our results to existing data to obtain new upper bounds on the possible contributions of massive neutrino
modes. Finally, we determine the optimal ways in which, and the corresponding sensitivity with which, forthcoming
experiments on p and r decay can search for massive neutrinos and lepton mixing.

I. INTRODUCTION

This is the second in a series of articles presen-
ting a general theory of weak processes involving
neutrinos, which incorporates consistently the
possibility of nonzero neutrino masses and as-
sociated lepton mixing. 'The observations underly-
ing this theory have been stated previously"' and
discussed at length in paper I of the series. ' In
this paper we shall construct a general theory of
pure leptonic decays of the form l,- v, L,v„. As
before, we shal. l work within the context of the
standard SU(2)~ x U(l) electroweak gauge theory, '
appropriately generalized to allow for neutrino
masses and mixing, ' and including n generations
of fermions. The i.epton and/or Higgs sectors of
the theory are thus assumed to be expanded as
necessary to allow for Dirac and/or Majorana
neutrino masses as phenomenological possibili-
ties. In the present analysis we shall consider
massive Dirac neutrinos. Following the notation
of Refs. 1—3, we label the charged leptons as (l,}
=(l, =-e, fs= it, is=a, . . . , f„}and the corresponding
weak-gauge-group eigenstates of the neutrinos as
(t, }. A far-reaching fact is that, in general, ' in
the case of massive (nondegenerate) neutrinos,
the t, have no well-defined masses "ttt(t, )", but

rather are linear combinations of the neutrino
mass eigenstates v, , i = 1, . . . ,n, as specified by
the unitary transformation

where U is the lepton mixing matrix. For further
background and for the classification of neutrinos
according to whether they are in {t,}or (v, }and

H
are dominantly or subdominantly coupled to a
given charged lepton l„ including the categories of
"light dominantly coupled" (LDC), "light subdomi-
nantly coupied" (LSC), and similarly for heavy
neutrinos (HDC and HSC), see Refs. 2 and 3.

The necessity of such a theory of weak processes
is obvious, since experiments can only set upper
bounds on neutrino masses but not show that any
one of them is exactLy zero. To set these upper
limits, it is imperative to have a theory which
takes account of the effects of the lepton mixing
which is a general. concomitant of these masses.
Indeed, existing experiments do not even rule out
a substantial mass ~250 MeV, for at least one
neutrino, v, . Moreover, since the number of lep-
ton generations, n, is not known and could be
larger than 3. and since, regardless of the lower
limits that may be established on the mass of a
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fourth charged lepton, there are no such isolated
bounds (i.e. , bounds which are essentially free of
mixing-angle dependence) on the mass of a v, ,
i~ 4, there remains the very real possibility of
several neutrinos with considerable masses which
could occur, subdominantly coupled, in the de-
cays of light leptons and hadrons. The importance
of the general theory is obvious, since it shows' '
that past direct searches for neutrino masses, via
nuclear and particle decays, mere based on a tacit
assumption that the neutrino weak eigenstates
were also mass eigenstates in the massive as mell
as the massless case, which assumption is in gen-
eral false. This assumption is evident in the
standard conventional notation used in quoting
neutrino-mass limits; "m(v, )", "m(v )", and
"m(v, )" are stated to be less than their respective
upper bounds, whereas in fact v„v„, and v, have
no mell-defined masses at all. The necessary re-
interpretation of these neutrino-mass limits was
given in Ref. 1. Realizing the presence and falsity
of the above tacit assumption, one sees that the
standard kinematic tests for neutrino masses rep-
resent only a fraction of the most general set of
tests and that they apply essentially only for the
dominantly coupled mass eigenstates in a given
decay. Thus, in Refs. 2 and 3 we proposed a new
class of tests for neutrino masses and mixing and
applied these to existing data to derive correlated
bounds on these quantities. Two of the most prom-
ising tests relied upon the leptonic decays of pseu-
doscalar mesons and upon nuclear P decays. The
former of these is especially sensitive and defini-
tive, since massive-neutrino decay modes would
yield monochromatic signals and could be enhanced
kinematically by huge factors as large as 10 -10'.
From an observation of such decay modes, one
could determine individually the mass and weak
coupling coefficient of each neutrino involved.

Here we shall analyze the leptonic decay l,
v, l,v, , which in general consists of an incoher-

ent sum of the decays l,- v, l, v& into all allowed
mass eigenstates v, and v&. Several interesting
questions arise in this analysis. What are the
energy and angular distributions for an individual
(i,j) mode? How, then, is the total observed dif-
ferential distribution changed as a result of the
presence of massive-neutrino decay modes and
concomitant lepton mixing? Which kinematic
quantities and which regions of phase space are
most sensitive to these heavy neutrino decays?
What is the comparative kinematic suppression
of different kinds of massive-neutrino modes?
In order to ansmer these questions, we shall cal-
culate the differential decay distribution O'I'/
dE,d cos8 for an individual (i,j ) mode and for the
resulting sum over all such allowed modes.

Further, we shall give expressions for the aver-
age quantities describing the energy and angle of
emission (relative to the polarization direction of
the parent lepton l,) of the /, . Neutrino masses
and mixing will be shown to have little effect on
the /, pol.arization.

Historically, the analysis of the differential
distribution and related spectral parameters in p,

and, later, 7' decay played a very important role
in establishing' the V -A nature of the respective
weak couplings. However, we shall show that this
conventional determination is not appl. icable in a
general theory which admits neutrino masses and
mixing. Even if the relevant weak couplings
should be precisely V -A, the observed effective
spectral parameters (after radiative corrections
are divided out) would not have their conventional
V-A values, viz. , p=-,', ri=o, /=1, and 5=-,'.
'Thus a deviation of the observed spectral para-
meters from the conventional V -A values could
be caused either by non-(V -A) Lorentz structure
or by massive-neutrino decay modes and lepton
mixing. Consequently, past measurements of the
spectral parameters yield information only on the
combined effects of the underlying I.orentz struc-
ture of the couplings and on possible neutrino mas-
ses and mixing, but not on either of these in iso-
lation. Strictly speaking, the observed agreement
of a given spectral parameter in p, or 7' decay with
the V -A predictions (in the case of $'"', at the
2o ievel) ca.nnot be taken, by itself, to imply that
the respective couplings are V -A unless one has
proved that the effects of possible massive-neu-
trino decays are negligible to the requisite degree
of accuracy. We shall calculate precisely what
these effects are for each spectral parameter, as
a function of the rel. evant neutrino masses and
mixing coefficients. Further questions which
present themselves include the following. Given
our constraints"' on lepton mixing angles, how
important are neutrino-mass and mixing effects
for the four spectral parameters'which have been
measured in p decay and for the one (p) which has
been measured in r decay? Are there any tests
that one can apply to past and future data to dis-
tinguish between the effects on spectral paramet-
ers due to possible non-(V -A) structure Lorentz
structure and those due to possible neutrino mas-
ses and lepton mixing'? (Yes; we shall propose
such tests. ) Can one analyze existing data on p,

and v' decay to derive useful correlated bounds on
the masses and coupling coefficients of heavy
neutrinos? (Yes.) Finally, how might the forth-
coming 7' and very-high-precision p, -decay ex-
periments best search for the manifestations of
heavy neutrinos and, given their projected mea-
surement accuracies, how large an effect might



GENERAL THEORY OF WEAK PROCESSES iNVOLVING. . . . Ii. . ~ . l277

they be able to detect? These questions will also
be answered as part of our general analysis.

For the aid of the reader we give below an out-
line of the remainder of this paper.

II. General theory of the decay l,- vf lQP/

A. Foundations.
B. General results on differential decay distri-

butions.
C. Total rates.
D. Characteristics of differential decay distri-

butions and average quantities.
E. Kinks in dl'/dE~.
F. Implications for effective spectral paramet-

ers and the determination of the Lorentz structure
of weak couplings.

G. 'The l; polarization.

II. GENERAL THEORY OF THE DECAY
l+ ~ VI+lb VIb

A. Foundations

As was pointed out in Hefs. 2 and 3, and is indi-
cated symbolically in Fig. 1, in a general theory
which admits the possibility of nonzero neutrino
masses and associated lepton mixing, a leptonic
decay of the form l,- v, lbv, really consists of
the separate and incoherent decays l, v, l,P&,
where i and j each run from 1 to n, as allowed by
phase space. The relative strength of each of
these modes is determined by a coupling coeffi-
cient ~U*„.U, &~' and by a kinematic factor depend-
ing on the relevant, particle masses. At present
there are three known examples of this type of de-
cay, namely p, -v ev„' and v'-v, I,P, , l, =e, p, .'fb&

One may recall the nomenclature introduced in
paper I, Sec. II, for the classification of these
leptonic decays: for a given set of decays l,

P J lbP, , the specific decay l,- v, l,P& will be
labeled as the (v, , v&) or simply (i,j)th mode.
Following a convention used before for a general
weak decay of a fermion, ' we shall. denote the set
of final-state masses iri the decay l,-v, lbv& as
(m„m„m, )

=—(m(v, ), m(v&), m, ), where m~ =—m, ,
We shall refer to a mode as HSC if v,. or v& is an
HSC neutrino (or if both are). More precisely, in

y, decay the (i,j)th mode may be any of nine gener-
ic types, depending on whether v, is an LDC,
LSC, or HSC neutrino in this decay, and similarly
with v&.

" These will be labeled a.s (LDC, LDC),

N

Z '=

FIG. 1. General structure of "the" decay/, v& l,& v, .
&a

(LDC, HSC), and so forth for the other six types.
'The defining conditions for these types are obvious
generalizations of the ones which applied to M»
decay, where M denotes a pseudoscalar meson.
For the charge-conjugate decay l,- P, l,v, welg b

shall use the convention of labeling the l, v,.l, v&

decay as the (v;, v&) or (i,j)th mode. Given our
definition of the sets {v, j and {v,„j, for leptonic
v' decay there are actually 12 possible generic de-
cay types: the 9 discussed before and, in addition,
the types (HDC, LDC), (HDC, LSC), and (HDC,
HSC). '0 One cannot experimentally distinguish the
spectra of the modes involving only light (anti)
neutrinos from the corresponding spectra involving
massless neutrinos. (This was the reason for in-
troducing the classification of the v,. into {v,. j and

{v, j sets. ) Consequently, the modes which are of
primary interest as indicators of neutrino masses
and mixing are of the types (LDC, HSC), (HSC,
LDC), and, in the case of r decay, also (HDC,
LDC) and (HDC, HSC).

Muon decay has been wel. l studied with very-
high-precjsion, high-statistics experiments. A

sizable amount of data has also been taken and
analyzed on leptonic v decay. Moreover, these
decays have the merit that they are free of had-
ronic complications, and hence, for example, one
can unambiguously calculate radiative corrections
to the spectrum and rate. Given these advantage-
ous features of l,- v, lbv, decays, one is naturally
led to investigate these decays to ascertain what
information they could provide on possible neutrino.
masses and lepton mixing. Unfortunately, how-
ever, they do have several disadvantages in com-
parison with m„and K» decays. First, since the
final state consists of three particles, the spectral.
distribution in the momentum and asymmetry
angle of the l, is continuous, and there is rio mo-
nochromatic signal of the massive neutrinos.
'The observed distribution and rate are due to all
of the modes (i,j) which are allowed by phase
space to be present, and one cannot in general
study any one of these modes in isolation, much
less determine an individual m(v;) and ~U„~ or
m(v&) and ~U»~. For instance, even if one ob-
served a secondary incremental addition to the
dominant light-neutrino spectrum which had an
end-point energy (in units where m, = 1)

(E~) (m(v, ),m(vq), m~.)= 2 {1+m, ' —[m(v, )+ m(vq)j'j,

(2.1)

it is clear from Eq. (2.1) that, strictly speaking,
this would not determine m(v,.) or m(v&) separate-
ly. It is true that in p, decay, if the relative
strength of the HSC mode were sufficiently large,
one could argue indirectly that this mode must be
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of the type (LDC, HSC) or (HSC, LDC), so that a
measurement of (E, ) (m(v, ), m, (v&), m, ) would
effectively determine m(v„8c). However, this ar-
gument could only be applied over certain ranges
of m(va8c) where one has upper limits on the rele-
vant mixing-matrix coefficients from the M» test
and branching-ratio constraints, and it would be
indirect. Furthermore, one would still not know
whether the HSC (anti)neutrino was v,. or v& and
hence whether the coupling coefficient was
IU a, LDC f Ub, HSC gl I Ub, a8cil or IU aHSC 4

U~ ~c &~
' —

~
U, a8« ~

'. The situation is more en-
couraging in v' decay since, given the present
mass limit on v, (see Refs. 1-3), the decay mode
with the greatest strength could be (HDC, LDC),
i.e. , could already involve a neutrino of substantial
mass. Indeed, it was precisel, y from an analysis
of the electron momentum distribution in 7 decay
that this limit was derived. With more extensive
v' decay data it will presumably be possible to re-
duce this upper limit on the mass of a hypothetical
HDC v, . Because of this HDC possibility, how-
ever, it will be commensurately more complicated
to try to search for any HSC contribution (due,
for example, to a hypothetical v„etc.) in leptonic
7' decay. Moreover, one disadvantage of the l,

v
g lfv f decays as a probe for massive neutrinosig 5 ly

is that, as a consequence of the three-body nature
of the final state, a mode involving neutrinos with
masses m(v; or v&)P m, is kinematically sup-
pressed, independently of the concomitant mixing-
angle suppression which is necessarily present in
p, decay and also for HSC modes in 7' decay. Thus,
for example, whereas in M„decay an HSC v,
mode might be enhanced by a relative kinematic
rate factor p(5", , 6", )-10'-10', the opposite and
more normal situation obtains in l, v, l,v, de-
cay. We shall make this statement more quantita-
tive shortly.

Thus, if HSC neutrinos exist, a definitive proof,
via particle decays, of this fact will probably rely
upon the discovery of the resultant additional
peak(s) in the I, spectrum in M, , decay. However,
it is certainly morthwhile to analyze the character-
istics of l, v, l~v, decay in the general context of
massive neutrinos and lepton mixing, especially in
view of its cleanliness and the existing high-pre-
cision data on p decay (and prospects of even more
precise measurements at the meson factories
SIN, LAMPF, and TRIUMF). Moreover, although
the primary emphasis of our mork has been on
tests for HSC neutrinos, it should be recalled that
one can use leptonic l, decay to search for, and
set bounds on, the masses of the HDC (anti)neu-
trinos emitted. The methods for doing this are
well known, and although they relied upon the in-
correct identification of neutrino gauge-group and

mass eigenstates, the effects of this are only
slight for the decay modes in which both v, and v&

are dominantly coupled. ' ' One might stress that,
in contrast to the use of M» decays to set an upper
bound on "m(v& )", the use of leptonic I, decays to
set upper limits on DC neutrino masses is always
a two-step process. As the test has been applied
in the past, the fact has been used (implicitly)
that the existing upper limit on "m(v, )" was much
lower than the upper limit that could be placed on
"m(v, )". If this had not been true, then, for ex-
ample, from the measurement of (E~), one
mould only have obtained an upper limit on
["m(v, )"+ "m(v, )"] but neither mass individually.
Given this fact, experimentalists have then used a
measurement of (E,) ~ in p decay, "and the shape
of the electron spectrum, with the Michel parame-
ter p assumed to equal & exactly in v decay, ""to set
respective upper limits on "m(v„)" and "m(v, )"."
As discussed in Refs. 1-3, these can be reinter-
preted to yield, with only slight mixing-angle de-
pendence, corresponding limits on m(v, ) and

nz(v, ), respectively. For g decay this approach
gave the upper bound" "m(v„)"& 2.5 MeV (no con-
fidence level cited), which is very good, although
not as stringent as the best limit obtained from
x„,decay, ""m(v )"& 0.57 MeV (90%%uo C.L.). The
corresponding upper limit" "nz(v, )"& 250 MeV
(90%%uo CL) has recently been slightly improved by
another upper bound derived from an analysis ofr- v, m decay, viz. , "m(v, )"& 245 MeV (2o level). "
Thus, there still remains the exciting possibility
of observing in 7 decay a full strength, dominantly
coupled neutrino v„with quite substantial mass.
This would become an especially urgent task if an
experiment which applies our M» test should dis-
cover an HSC v, peak in the spectra of one or
more of the ~» and E» decays corresponding to a
mass m(v, ) which is large enough for its kinematic
effects to be observable in 7 decay. If there are
n = 3 generations of fermions, then such an HSC
peak could only be due to the decay M'- l', v3 so
that one is guaranteed to be able to see its effects
unsuppressed by small mixing angles in the de-
cays T- v, ev, and r v, pv2. If n& 3, then the hy-
pothetical HSC v,. peak discovered in M» decay
might be due to v, or to v, »., in the latter case it
would again be an HSC neutrino in 7' decay. How-
ever, the HSC coupling coefficient mhich modulates
the strength of the decays r v, l, v&~, ~U*„U»~'
=

~
U„~ ' might not be overly small for some i& 3,

such as i=4.
Because of the primary role of M» decay in the

search for HSC neutrinos, we treated the Lorentz
structure of the relevant amplitude in complete
generality in paper I. However, it seems pre-
mature to carry out the analogous calculations for
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l, -v, l~v, decay, and consequently, we shall as-
sume here that the charged-current couplings are
V -A. After analyzing the theoretical aspects of
Leptonic decays, we shall. briefly discuss the ap-
plication of our results to existing data to derive
correlated bounds on neutrino masses and mixing.

B. General results on differential decay distributions

We proceed to state our resuLts for l, leptonic
decays in the general context of nonzero neutrino
masses and lepton mixing. Only very massive
and/or slowly moving outgoing (anti)neutrinos
would be likely to decay within the experimental
detector. Hence, with this exception, to be dis-
cussed later, the experimentally measurable
quantities are generically the same as in the con-
ventional. l, leptonic decay, although now the final-
state quantities have independent values for each
of the (i,j) modes. These quantities are the parent
lepton polarization P,» -=(o,,), the momentum of the
outgoing charged lepton p~ =p, , and hence also the
angle of emission of the l~ relative to parent-lep-

A

ton-polarization direction P f

8-=cos '(P» P, ), (2.2)

and finally, the l~ polarization P, . More speci-
fically, in p, decay, especially with the advent of
meson factories at SIN, I.AMPF, and 'TRIUMF, one
can produce a beam of highly polarized muons and
can measure all of the final. -state quantities men-
tioned above with great precision and statistical
accuracy. In the case of the 7', the situation is

more difficult. Since it is produced via the reac-
tion e'e -r'r, at center-of-mass energies v s
not »2m„at least for the existing data from
which v decay properties were inferred, and since
the v' lifetime is quite short, -10 "sec, it has not
so far been possible to observe the 7' track direct-
ly. Owing to the fact that in the leptonic decay un-
der consideration here one thus only observes the
outgoing e or p, , it is not possible, on an event-by-
event basis, to reconstruct p, and hence the kine-
matics of the decay. If, as is true of a substantial
amount of v' decay data, (Ms —2m, )/(2m, )& 1, so
that the v' is relatively slowly moving, then the
severity of this reconstruction problem is reduced
somewhat. Concerning the initial v' polarization,
because of the time-dependent buildup of trans-
verse e' and e beam polarizations (relative to the
plane of the storage ring), the 7 may have a
longitudinal polarization without any violation of
parity in its production. Given a knowledge of the
beam polarization, one could predict P,+ as a
function of u s and p, . It is true that one can still
perform a search for HSC, and, more excitingLy,
HDC modes in v' decay data using appropriate
Monte Carlo simulation methods. But clearly it
is not possibl. e at the present time to achieve the
same degree of control over the parent lepton
polarization or to reconstruct the decay kinema-
tics as accurately in v', as in p. , decay.

'The general expression for P, mill be given be-
low; assuming that one does not measure the l,
polarization, the differential decay distributions
for the decay /, v, l~P& and its charge conjugate
can be written as

(l~ vol»vg, I~ vgltvg)= + (m ) ~U*(U»g~ E», cos8;
d@gd cosa

Here

Gp'm, '
1,(m, ) =- 192, (2.4)

with

Go

Sm '' (2.5)

where g is the gauge coupling of the SU(2)~ factor group in the electroweak SU(2)~ x U(l) gauge group, as
in Eq. (4.4) of paper I. I', represents the total rate to lowest order, in the case where m»= 0 and m(v, )
=m(v&)=0 Vi,j. As was noted in paper I, G, is not the "usual" muon decay constant, G„=G'0'»»~'"" and
the difference is not just the standard kinematic correction factor for the nonzero electron mass. 'This
matter will be dealt with more fully later. The reduced differential decay distribution d I'/dE»d cos8 is
normalized such that, when integrated to yield a rate, it gives unity if all of the masses of the final-state
particles vanish. By the usual appl. ication of the theorems on homogeneous functions, it follows that
d'I'+'/dE»d cos8 depends only on the ratios of each of the masses of the final-state particles to the parent
lepton mass. Accordingly, in our analysis of this function, me shall use units in which m, =-1. 'The re-
duced differential distribution can conveniently be written in terms of the momentum transfer Q' to the



1280 ROBERT E. SHROCK

neutrino-antineutrino pair, where

Q = 1 —2E~+ mq (2.6)

d'X'+'
(E„cos8;m(v, ), m(v&), m~)=f(E, ; m(v, ),m(v&), m, )+C~P, ~cosgf(E, ; m(v,.),m(v&), m, ), (2.7)

where

/=+1 for /~,

f (E,; m(v, ),m(v&), m~)= X~'(1,Q', m„') (2Q'(1+ m~' —Q')A;&+ [(1—m~')' -Q'] B,&), .

f (Et, ; m(v;), m(v&), m~)=X(1,Q', m~')[2Q'A, ~
—(1 —m~'-Q')B, ~J,

and

m(v))' m(vg)'
Q2 & Q2

m(v&)' m(vg)'
1

m(vg)'+m(vg)' m(v()' —m(vg)'
El ~ Q2 ~ Q2

+
Q2 2

In these formulas we use the standard kinematic function

X(x,y, s) -=x'+y'+z' —2(xy+yz+sx) .

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

The functions f, and f„and hence the full reduced differential decay distribution, d'1 n'/dE~d cosg, have
the symmetry property

f,~(&, ; m„m„„)=f,„(,; m„m„nz, ),
d2p 8)

(E„cos8;m„m„m„)= (E„cos8;m„m„m, ) .

(2.14)

(2.15)

Although in the V -A case considered here the de-
cay amplitude is symmetric under the interchange
l~ v, by a Fierz identity, this symmetry is not
present in d'I"'/dE, d cosg, because one has picked
out the energy and angle of the l„while integrating
over the analogous quantities for v, . However,
when one finally integrates over cos9 and E~ to
obtain the total reduced rate for the (i,j ) mode,
this symmetry is restored. Combining this result

l
with Etl. (2.14), it follows that the total reduced
rate I'(m(v, ), m(v&), m, ) is a completely sym-
metr ic function of its three arguments:

I'(m„m2, m, ) = &(m, (,),m, (2), m, (,&), (2.16)

where m is an automorphism of g3.
Thus, the LDC (and any LSC) modes, with

m(v, &)«1 and also, given our definition of the
sets (v, ) and (v,„J, m(v, &)'«m~', are described
to a very good approximation by the functions

2.0

I.O

0
0 O. I 0.2 0.4 0.5

Eb
ma

FIG. 2. The function ft(E&/m, ; (vm&)/m„m ( &)/ v~, m

m&/m ) for the case where m(v&) =m&= 0 (or «m, ), but
m(v&) is substantial. This function and all other quanti-
ties shown in these figures are symmetric under the
interchange m(v&) m(v&). In this figure and Fig. 3 the
m, dependence is rendered explicit, but thereafter the
units are chosen such that m, = l.

fo.2—
06

-2
0 O. I 0.2 0.4

Eb
N(1

FIG. 3. Smne as Fig. 2 but for the function f,.

-2
0.5
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f,(E,; 0, 0, m~) = 8(E~' —b)'I'[-4E~'+ 3(l+ b)E~ —2b]

(2.17)

and

f,(E, ; 0, 0, m~)= 8(E,' —b)(1 —4E, + 3b), (2.18)

where

where either v, or v& has a substantial mass, the
other is light, and, independently, m~ «1. 'This
case is described to high accuracy by the func-
tions f, ,(E„;m, 0, 0)=f,„(E~; O, m, 0). In terms of
the convenient variable

(2.25)

b=-m ' (2.19)
we have

f,(E,; m, 0, 0}=8E~'(I —2E~) '(1 —2E~ —a)'

f, (0, 0, m )=2(1 —b)'. (2.20)

The function f, increases from 0 to a maximum at

(E~)y ~(0, 0,m~) = —,', [1+3b+ (1+ 54b+ 9 b')'~']

= -', +-', b for b«1, (2.21)

where it is equal to

f, (0, 0, m~} = —,',[(1+3b)(1 —138b+ Qb')

+ (1+ 54b+ 9b'}'~']

= —,', —2b for b«1.
It then decreases, passing through 0 at

(2.22)

'These functions are plotted as the curves labeled
(a} in Figs. 2 and 3, respectively, for the realistic
case in which m~'«1, a condition which obtains in
both p, decay and the two leptonic 7' decays. It is
useful to recall some characteristics of the be-
havior of these functions as a background for ana-
lyzing the effects of neutrinos of non-negligible
mass. Although all of these characteristics are
easily derived from the well-known formulas
(2.17) and (2.18), we record them here because
they will be useful for our later discussion. As
E, increases from m, to (1+b)/2, f, increases
from 0 to

and

x [8E&2 —2(5+ a)E~+ 3(l+ g)]

(2.26)

(E)z(m, , , ,)0=
0(

™
1~/. (2.28)

Although special values (E,),(m(v, ), m(v&), 0) such
as this necessarily approach zero as m =-m(v&)

+m(v&} 1, it is useful to define the ratios

(Eb).(m(~l), m(~ j), o)
( ' "' ' ' ' =(E„),„( (,), (,), 0)'

(2.29)

f,(E„;m, 0, 0) = 8E~'(1 —2E, ) '(1 —2E, —a)'

x [8E~' —2(3+a)E, + 1 —a].
(2.27)

One can observe first that as m=(m(v, ) or m(v&}]
increases, the physical region is commensurately
reduced in accordance with Eq. (2.1). As is evi-
dent in Fig; 2, for m(v;„&)0 0, f, reaches a maxi-
mum at an intermediate value of the l~ energy

(E,)q.,(0, 0, m, ) =

and reaching the end-point value

(2.23)
where s denotes a generic special value, and the
denominator is given by Eq. (2.1); these usually
have nonzero limits as m 1. In the case at hand

f ((E~); 0, 0,m, )=f, (0, 0, m,).
= —2(1 —b)'

f,((E,);0-, 0, m, ).
(2.24)

(E~)y (m, 0, 0) =

At the value of E~ given in Eq. (2.28)

f, (m, 0, 0)=2(1 —m)'(1+4m+m').

(2.30)

(2.31)

The equality in Eq. (2.24) relating f, and f, is, of
course, no accident; its implications for the
search for the effects of massive-neutrino decay
modes will be explored further below. In p. decay,
for which one has the greatest amount of high-pre-
cision data, b=m, '/m„'=2. 3x 10 ', so that the
O(b) corrections are extremely small.

In order to display the effects of massive (anti)
neutrinos on the double-differential distribution,
we show in curves (h)-(d) of Figs. 2 and 3 the
functions f, and f, in the case of primary interest,

Note that for m«1, the reduction in f, is actu-
all.y second order in m. For f„as m increases
from zero, the position of the maximum and zero
shift downward, and there appears a minimum at
a value of E~&(E,) . The position of the zero
becomes

(E,)& 0(m, 0, 0) = —,
' [3+ a —(1+14a + a')' ~ '] .(2.32)

The analytic expressions for the positions of the
maximum and minimum are rather complicated.
Let us define the auxiliary functions
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2

W1= — 1+ —g+ g

1/3—(1 —a)(1+—"' a+a')' ']

(2.33a)

w, —= s [w, + + (1+6a+ 18a')w, 'P '

Then

(E,),, „(m, 0, 0) = w—, ——,'w, + —,',

(2.33d)

(2.33e)

and

262 281 + 36 + 9 0 + 324 0 281

28 = —gg + —+ —Q —(—JQ K1 2 & 25 & 2 -1
3 1 18 9 ~ 324~ 1

(2.33b)

(2.33c)

(E,)q . (m, 0, 0) =w, ——,'w, + —,', . (2.33f)

The total differential decay distribution for "the"
decay l,- v, l, v, , i.e. , the set of (i,j) decays

d'r
(E„cos9;l, —v, l„v,,)= I', (m, ) ~U,*,.U, , ~' (E„cosg;l, v, l, v,.),

021
(2.34)

where the sum runs over all (i,j) modes allowed by phase space (henceforth, this will be implicit), and
similarly for the charge- conjugate decay. Hence,

(2.35)

Stated in words, given that one detects only the l„
the differential distribution and total rate repre-
sent a. sum of all the specific (i,j) modes allowed
by phase space. The sum is, of course, incoher-
ent, since the actual final states are different, al-
though the observed particle is the same. Equa-
tions (2.34) and (2.35) also apply in the case where
a heavy v,. and/or P& decay(s), if one integrates
over the additional observables describing the
(anti)neutrino decay products. This has profound
implications for the meaning of the observed p,

decay constant G and the predicted value of the
W-boson mass nz~ which is calculated using this
constant as an input. These will be discussed
later.

Apart from the possible HDC decay 7- v, l,v&,
(and, strictly speaking, also p, - v,ev, ),'s together
with similar decays of hypothetical l„p~ 4, the
massive-neutrino decay modes are constrained to
be HSC and hence yield small additions to the LDC
channels(s). Thus, in determining the effects of
the HSC modes, as part of the general theory of
weak decays involving neutrinos and as a frame-
work for a generalized analysis of the relevant
data, it is necessary to take into account the order-
o. corrections to the DC mode(s), since these
may be comparab. e to the lowest-order rates for
the HSC decays. These corrections can be di-
vided into two types: (1) pure electromagnetic,
including virtual and real photons, and (2) electro-
weak, excluding (1). The pure electromagnetic
corrections to the spectrum and rate for p. decay
were calculated long ago in the local V- A. theory,
assuming that m(v„) =m(v, ) =0 (Ref. 16); to leading

order in m '/m~', with the same assumption con-
cerning neutrino masses, these apply again in the
present electroweak gauge theory. One-loop
electroweak corrections to the total p, decay rate
have been analyzed by a number of authors. ""
An important simplification is that, to leading
order in m„'/m~', the full amplitude has the same
Dirac form as the tree-level amplitude; i.e., the
correction just amounts to an overall multiplica-
tive factor in the amplitude. " This means that it
changes the rate, but not the normalized differen-
tial distribution, in contrast to the pure electro-
magnetic correction, which changes both. With
the same assumptions and obvious changes in
masses, the calculations of Refs. 17-19 also ap-
ply to leptonic 7 decays. Hence, in our discussion
of the differential distributions, it is only neces-
sary to include the pure electromagnetic correc-
tions to the DC modes. Moreover, concerning the
order-0. corrections, in p, decays, terms of order
(~/v)(m, '/m ') and (11/v)m(v„Dc, „,)'/m„' are
negligible relative to those of order (11/11). The
analog is also true, albeit to a lesser extent, in
leptonic 7 decay. Thus, to a good approximation,
especially in p, decay, one can use the order-~
correction, evaluated dropping ms'/m, ', and, we
note, also m(vLnc, „&)'/m 2 terms, except, in
the former case, for ln(m, /m, ) terms where this
would lead to infrared divergences. Analytically,

f ' =f "+ —f "+01I—Ck ft'o, &)

1,s 1,s 2& 1,s [(& J
& (2.36)

where the superscript (c) denotes "corrected",
and fI'~ =f, , can be read off from Eqs. (2.6)-(2.13).
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In the only case where these order-& corrections
must be included, viz. , that in which v; and v,. are
LDC (anti)neutrinos, Eq. (2.19) can be approxi-
mated as

f~i','(E, ; m(v;), m(v, .), mP =f~io)(E,; m(v;), m(v~), m, )

+ —,, E~;0, 0, m~&&1

(2.37)

where the function f~i2)(E„;0, 0, m, ) and, for m, /m,
«1, the function f,'~(E„'0,0, m, /m, «1), were
calculated in Ref. 16. Qualitatively, f~~'~(E, ; 0, 0, m~
«1) is positive for E,& 0.335 and negative for
larger values of E„so that (E,)&&~& (0, 0, m, «1)
is slightly smaller than (E,) (0, 0, m, «1). More-

correction f ~'~(E, ;0, 0, m, «1) is negative for
E,s 0.405 and positive for larger E„so that
(E,)I ~ d (0, 0, m ~ «1), f '~ ~(0, 0, m, «1), and

(E,)& ~ e) o(0, 0, m, «1) are all slightly smaller than
their lowest-order counterparts, which can be

read off from Eqs. (2.21)—(2.23). These facts will
be useful for our later analysis of the effects of
HSC decay modes. Note that there is an apparent
infrared divergence in both f,'~ and f~' at E,
=(E ) . This would be important for the differen-
tial distribution, were it not for the fact that when
one properly sums multiple soft-photon emission
to all orders in +, the apparently divergent term
actually exponentiates into a form which vanishes
as E,-(E~) ." The full order-o. pure electro-
magnetic corrections f,'~(E„;m(v;), m(v ), m ) have
not, to our knowledge, been calculated; however,
they are not of immediate interest, because (1)
as explained before, for all known l, decays, in the
case of (L or H)DC modes these functions are very
well approximated by f~~'~(E, ;0, 0, m, «1); and (2)
for HSC decay modes, where m(v; „&)'/m, ' might
not be «1, the order-+ corrections to the tree-
level decay rates are second order in small quan-
tities (n and

l
U,*;U,*,. l', HSC i or j) and hence are

negligible to this level of accuracy. Thus, with
radiative corrections of type (1) included where
necessary, Eq. (2.34) can be written as

d F
(l, —v, l,v, ; l;- v, l;v, ) I' (m, ) lU,";U»l'(f, '~+ El P,

l

cosef;~)

+ + IU.*'U»l'(f. +~ lp lcos~f.)
sc j, g

(2.38)

where the DC sum must include, but is not neces-
sarily limited to, the term i = a, b =j; the argu-
ments of the functions f, , are left implicit; and
the proportionality rather than equality relation
applies because, for the reason given above, we
have not included corrections of type (2). These
will be incorporated in our later discussion of
G„, ~~, and ~z.

C. Total rates

Let us next present expressions for the reduced
rates for the decays of interest and subsequently
analyze the features of the differential decay dis-
tributions. As will be obvious, unless otherwise
noted, the expressions are accurate to lowest or-
der in u. For analytical purposes it is again use-
ful to deal with these quantities individually for
given (i,j) decay modes in order to describe the
effects of massive (anti)neutrinos. We will later
use the results in the treatment of the actual ob-
served distribution and rate which, as was stressed
above, are sums of all of the allowed modes [ex-
cept for any modes where one detects the decay(s)
of one or both of the final-state (anti)neutrinos].
If all of the final-state-lepton masses are non-

I

zero, the reduced rate T(m(v, ), m(v&), m, ) can be
expressed in terms of elliptic integrals. However,
the analytic result is not particularly enlightening,
and for the purpose of numerical evaluation it is
simpler to use the integral representation directly.
Moreover, since we are primarily interested here
in the characteristics of l, decays involving {anti)
neutrinos with masses m(v;) or m(vj) not «m„
and since m 2«~, ' for JU, and both leptonic v de-
cays, " it follows that for most of our discussion we
shall only need expressions for F where one of the
final-state masses is negligibly small. It is ob-
vious that, other things (such as the degree of U

suppression) being comparable, the decays with

m(v, . „,.) g m, are of greatest interest, because
the effects of massive neutrinos would be essen-
tially undetectable if m(v; &) «m, . Accordingly,
although most of our results, such as Eqs. (2.7)-
(2.12) and the consequent total rate, are completely
general, we shall concentrate on this case here.
If one of the final-state masses is zero or much
smaller than the other two, then the rate takes
a reasonably simple form. Because of the symme-
try property (2.16) we can, with no loss of general-
ity, choose m, =0. The same property also implies
that I"(m„m„0) can be expressed as a function of
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(2.46)

Thi.s function is plotted as the dashed curve in
Fig. 4.

An interesting question is the following: for a
given total mass in the final state, m„, =Q', ,m„
what is the optimal division of this mass among
the three particles to maximize the reduced rate.
In the case where all of the masses are nonzero,
the answer is the symmetric choice m; =m„,/3,

I..0 I l I I I i I i ~

0.8

0.6-
C}

E

0.4
Ir

(o) 0.2
(b) 0.4

tot = ~ (c) 06
((j) 0.8

0.2

(d)
I I

0 I.O
~ ~ I I

2.0
I g ( I )

FIG. 5. The reduced rate 1"(m (vi), m (v&), 0) as a func-
tion of the ratio (m&/m&) for various values of m~, t
=m&+m&, where m&=max(m(vi), m(v&)} and m&=—min

(m(vi), m(v&)}.

have appeared to be too artificial to have any phy-
sical interest if one were incorrectly to consider
v, and v, to be mass eigenstates, since for ex-
ample in p. decay, there would have been no reason
for any masses in the set f"m(v„)","m(v,}",m, ) to
be equal, except, for the former two, in the trivial
case of zero mass. However, given the basic ob-
servation in Refs. 1-3, this situation is seen to be
physically relevant, as it describes the diagonal
subset of the l, decays in which i =j, i.e. , the set
(I,- v;f,v, I, i = I, . . . , k - ~n, as allowed by phase
space. With the notation m, =ma —= m and (2.29),
Eq. (2.44} becomes

1(m, m, 0) =(1-14a-2a' —12a')(I -4a)'"
1+(1—4a)'"

i = 1,2, 3. Similarly, for the case in which one of
the m;, say m„ is zero or negligible, the reduced
rate is maximized for m, =m, =m„,/2. Figure 5

shows how the reduced rate varies for this case as
a function of the variable m&/m&= max(m„ma)/
min(m„m, ). As is evident from this graph, the
maximum at yn, =yn, is a rather gentle one. This
behavior is relevant in the comparison of the re-
duced rates for (HSC, HSC) modes versus (HSC,
LDC) or (LDC, HSC} modes, and, in the case of 7'

decay, also (HDC, HSC) type decays versus (HDC,
LDC) decays. 'c In order to maximize the reduced
rate for a given m„„ it would actually be slightly
preferable, from the point of view of the kinemat-
ics alone, to have an (HSC i, HSC j) or (HDC i,
HSC j) mode with m(v, ) = m(v, .) = m„,/2 rather than
one of the three modes listed above involving only
a single heavy neutrino, if such existed, with

m(v„) =m„t. But this slight effect is in general

completely overwhelmed by the double U suppres-
sion of the (HSC i, HSC j) mode relative to the
(HSC v, LDC s) or (LDC s, HSC x) modes, and, in
r decay, by the single U suppression of the (HDC
i, LDC j) mode relative to the U-allowed (HDC r,
LDC s) mode (if an HDC v„exists).

D. Characteristics of differential decay distributions
and average quantities

We next proceed to describe the double-differen-
tial decay distribution, especially with a view to-
ward determining in which regions of the variables
E, and 8 an HSC or HDC contribution might have
the largest rate, relative to the sum of the domin-
ant light-neutrino modes. It is thus necessary
first to recall the behavior of the differential dis-
tribution for these light-neutrino modes. The spe-
cial case of Eqs. (2.6}-(2.13) for m(v, ) «m, ' and

m(v&) «m, ' corresponds formally to the conven-
tional distribution calculated assuming that
"m(v, )"= "m(v, )"' =0. For comparison with the
massive-neutrino modes, it will be useful to have
a plot of the distribution, which is given for l, de-
cay, with ~P,

~

=1 in Fig. 6. In this and all other
figures, the differential distribution for l, decay
is related to that for the l, decay shown by the re-
placement 8- m —8. Henceforth, to avoid awkward
notation, we shall speak only of l, decay; all of
our comments will apply to l+, decay with this
transformation rule. As will be clear from the
context, we shall generally consider the LDC dis-
tribution to lowest order, but will point out the ef-
fects of electromagnetic corrections where they
are important. For

0 —nz &E

& (E,)„,(m(v, ) «1,m( v, ) «1,m „«1)= -,',
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FIG. 6. The reduced double-differential distribution
d I' '/dE&d cos8(E&, 8; m(v&)= 0, m(v~)= 0, m&= 0 (or
«1)) for leptonic l~ decay as a function of 8, for various
values of E~. The dotted curve represents the value E&
= (E&)&~, where f = 0; the dot-dashed curve represents
E~= (E~)f8O m~ This distribution and all of the other
quantities shown in these figures apply for l, decay;
the corresponding quantities for l,' decay are obtained by
the replacement cos8 —cose.

IBO'

FIG. 7. Same as Fig. 6 but for m(v&)=0.2. Note the
successive expansions of the radial scale in Figs. 7-9.

0

the /; is emitted preferentially into the hemi-
sphere parallel to the parent lepton spin. Here
(E,)„,(m(v;), m(v&), mP is defined as the value of

E~ at which the angular distribution is isotropic,
i.e., at which f, vanishes; at this value of E„
d'I")/dE, d cos8 = 1. For

(E,),„(0,0, 0) &E~&(E~) (0, 0, 0) = s,
the /, is emitted preferentially into the hemisphere
opposite to P,-. As E, increases through this
range, the angular distribution for ~8

~

)90' in-
creases tnonotonically as a function of E,. (This
is true for arbitrary m, & 1.) However, for

~

8
~

& 90' (and arbitrary m~& 1) a helicity effect oper-
ates to retard the increase of the distribution.
For m~«1, the angular distribution reaches a
maximum at

-60

-90

-l20

b)max
=

{b) 0.139 ( )

Eb f (c) 0.2
(d) 0.265 (- -)

o.5 (e) 0.3

60

90'

I20

for which energy
(2.47)

(E„), (8;m(v;) =0, m(v, ) = 0, m, =0) =—
6 1+cos8

I80'

FIG. 8. Same as Fig. 6 but for m (v&) = 0.5.
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((E~)q, 8;0,0, 0}= . (2.48)d 7 2(1+ cos8)

For ~8~ &90' and E ) (E ), „(8;O,O, O), d'r& 'l
dE,d cos8 decreases. Retaining m, now, as
E„-(E,) (O, o, m, ) =(1+m,')l2,

d'r '-)
(E~, 8=0, m(v;} =O, m(v&) =O, mg -0.

dEad cos8

That is, in this limit, the l ~
is forbidden from

being emitted in the direction of the l, spin. This
is a consequence of the V-A nature of the coup-
lings and the constraint of angular momentum con-
servation. Although it is not stressed in the liter-
ature, this vanishing occurs for arbitrary m~&1,
as is clear from Eq. (2.24), and in no way repre-
sents an approximation of m~«1. The order-&
radiative corrections do not alter this statement,
as can be verified by inspection of the results of
Ref. 16, taking proper account of the exponentia-
tion of the apparent logarithmic divergence at
E, =(E~) . The vanishing does, however, require
that m(v;) and m(v, .) be strictly equal to zero.
An immediate corollary is that a potentially pro-
mising place to search for HSC (anti)neutrino
contributions might be at large l, energies, near
8=0' for /~ and 160 for /;. (Unfortunately, to
anticipate our results below, even in these regions
it would still be quite difficult to observe any pos-
sible HSC contribution modes. )

If heavy-neutrino modes are present at all, the
types that are most likely to be observed in l, de-
cay are (HSC, LDC), (LDC, HSC), and for /, =/, = r
also possibly (HDC, LDC). We shall therefore con-
centrate on these types of decay modes. For the
reduced rate we may without loss of generality
take m(v;) to be the non-negligible mass, with
m(v&)'«1 and m, '«1. The double-differential
distribution for this case is formed from the func-
tions f,(E» m, 0, 0) and f,(E,; m, 0, 0) given in Eqs.
(2.26) and (2.2/); it is plotted for

~

P,
~

=1 and the
representative values m(v;) =0.2, 0.5, and 0.7 in

Figs. 7, 8, and 9, respectively. Note the succes-
sive expansions of the radial scale. As in the fig-
ures, we shall assume here that

~
P,

~

=1; it is
straightforward to extend our comments to the case
of a parent lepton which is not completely polar-
ized. The value of E, at which the distribution is
isotropic is (E,)„,(m(v;), 0, 0) = (E,)I 0(m(v;), 0, 0),
as given in Eq. (2.32). In contrast to the behavior
for m(v;) =m(v&) =0 with arbitrary m, &1, not only

in the range
~

8
~

& 90', but rather for any 8, there
exists a value of E„namely E~=(EP~ (8;m(v, ),
0, 0} such that at this point

=0
dE& dE~d cose

d' d'r'-)
&0,

dE~ dE~d cos8

m(3, ) 07
b max

0

( (b) O. l

(c) o.i57(——)

i.e., the angular distribution reaches a maximum.
In general, (E~)~ (8;m(v;), 0, 0) is the solution
to a cubic equation and the analytic result is some-
what cumbersome. For a given m(v;), the mini-
mum value of (Ege (8;m(v;), 0, 0} occurs at
8 =0':

60 (E,)~ (8=0;m(v;), 0, 0)

where

+~4+ lr ~, (2.49)
9m+ 1 t

324 j

-90 90
(vr+g+9g )1} (2.50)

r =(I+]4g+6]g ) ~ (2.51)
-!20 I20

Again, for fixed m(v;), the maximum value of

(E,)e (8;m(v;), 0, 0) occurs at 8=180:

(E~)e (8;m(v;), 0, 0}= r, + ~g+ ~ —~gmr, -',

(2.52)

where
I80

FIG. 9. Same as Fig. 6 but for m (v&) = 0.7. rs —= ~(~g'[r, —(~g+ 9)j}' ' . (2.53)
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The expression for (E~)~ is particularly simple
at 8=90', where it is equal to (E,)I (m(v;), 0, 0),
as given in Eq. (2.28). Since some of our results
for special values of E~ are rather complicated,
it is appropriate to provide graphical representa-
tions of (E,)„,and, for special values of 8,
(E~)~, as functions of m(v;). Inasmuch as
(E)e is a monotonically increasing function of
8 in the physical range 0 & ~8

~

& 180, it suffices
to plot this quantity for 8 =0, 90, and 180'.
These curves are plotted together with the maxi-
mum allowed energy (E,)~ (m(v;), 0, 0) in Fig.
10(a). One can see in this graph how as m(v;) -0,
(E~)„,approaches ~ and (E,)0. —s, while the
other curves approach —,'. Furthermore, one may
note that

(E~)„,(m(v;), 0, 0) &(E,) e (m(v, ), 0, 0)

V8 and ym(v;) & l. (2.54)

Figure 10(b) shows the corresponding ratios, as

-0.5

0.4

0.5

0.2

O. I

0.2 0.4 0.6 0.8 I.O
fTl (Pj)

I.O

a 0.8
E

0.6
LIJ

0.2-

I I I I I I I I I

0 0.2 0.4 0.6 0.8 I.O

FTl (PI )

FIG. 10. (a) Special values of E& for leptonic l, decay
for the case involving one (anti)neutrino of non-negli-
gible mass, taken here to be v&. The curves represent
(a) (E~)&so~ ( ) (E&)p mm' ( ) (E~)epo 111~, (d) (E&)i8p' nl~~
and (e) (Eq) ~. The same curves apply to l,' decay with
the replacement 8-m- 0. (b) Special values of the
reduced energy E&=—E&/(E&)m~ for l, decay, for the case
in ~g. (a). The curves represent {a) (E~)&
(b) (Ey)p'max~ (c) (E&)spomitx, and (d) (Ep)(8p'max.

defined in Eq. (2.29). As m(v;) -1, (E,)„,——, ,
while (E,)e -—,

' for all 8.
Let us next examine the feasibility of trying to

search for massive-neutrino modes at large E„
near 6) =0', where, for perfect initial polarization,
i.e., ~P,

~

=1, the light-neutrino modes are highly
suppressed. In fact, even in the case where one
has the greatest control over the /, polarization,
namely p, decay, it is not precisely unity. For ex-
ample, in the experiment of Piano, " in which the
asymmetry parameter $ was measured, ~P„~
=0.87. Moreover, one must take careful account
of the processes responsible for the depolarization
of p,"s in absorbers. '4 In the case of 7 decay,
P, depends on the details of the machine physics
of the e'e storage ring through its dependence on
the e' polarization transverse to the plane of the
ring. It also depends on the center-of-mass ener-
gy v s and the direction in which the r was pro-
duced. However, we will show that, even in the
ideal case of

~
P,

~

=1, it would be a demanding
task to detect the presence of massive-neutrino
modes by this method. We will concentrate on

HSC rather than HDC modes here because, owing
to the better control that one has over the parent
lepton polarization in p, , as opposed to v decay,
the test to be evaluated here is presumably more
feasible in the former decay. ' The problem with
the method of searching for HSC decays in this
region of phase space is that in order to avoid
the helicity suppression, max(m(v;), m(v&)} cannot
be small compared with unity. But precisely be-
cause of this, (E~) (m(v;), m(ir~), 0) is signifi-
cantly smaller than the maximum of —,

' for the light-
neutrino modes. (Again, the corrections to these
formulas due to finite gyes, are negligible for p, de-
cay and small for 7 decay in the case where the
neutrino masses are sufficiently large that one
has a reasonable chance of observing their ef-
fects. ) Thus, one is forced to search for an

(i,j) HSC mode in the range E, &(E~) (m(v;),
m(v, .), 0) and indeed cannot approach too close
to this maximum without suffering a prohibitive
reduction in the decay rate for the (i,j) mode.
It is then a quantitative question whether or not
the differential decay distribution for the light-
neutrino modes rises rapidly enough to remain
larger than that for a massive-neutrino mode as
E, decreases from —,

' to the range where the latter
decay can occur. From our analysis we find, un-

fortunately, that for all m(v; „~) this light-neu-
trino dominance does obtain. Two typical com-
parisons are shown in Fig. ,11. In the first set
one considers selecting l~'s with E~ = 0.49." Then
it is only possible to search for HSC modes with

m(v;) +m(v&) ~ 0.141. Neglecting double HSC modes
because of their double U suppression, we con-



GENERAL THEORY OF %KAK PROCESSES INVOLVING. . . . II. . . . 1289

0

-60 60

-90 90'

FIG. 11. Comparison of the reduced double-differential
decay distributions for leptonic l decay involving light
or massless (anti)neutrinos with that for the decay in-
volving one (anti)neutrino of non-negligible mass, taken
here to be v&. The curves represent (a) d I' /dE&d cos
(E,=0.49, 8; m(v, ) 0, m=(v&)=0, m(, =0 (or «1)), (a')
same as (a) but for m (v&) = 0.1, (b) same as (a) but for
E&=0.47, (b') same as (b) but for m(v&)= 0.2.

d'r&-)
(E~=0.4, 8;m(v;) =O.l, m(v&) =O, m~=0)

dE~d cos0

sider a decay with m(v;) =0.1 and m(v&) «1, m. ,
«1, for which (E,) =0.495. The reduced double-
differential decay distribution

for this mode is plotted as the dashed curved
labeled (a') in Fig. 11. The corresponding light-.
neutrino reduced differential decay distribution
d 'I' )/dE, d cos8(0.49, 8; 0, 0, 0) is represented by
the solid curved labeled (a). As is clear from the
figure, even for 8 near 0', and, a fo) tioxi, for
neighboring values of 8, the light-neutrino dis-
tribution is much larger than that for the massive-
neutrino mode. Moreover, the full differential dis-
tribution for the HSC decay mode will be further
suppressed by the small coupling coefficient

~
U,*;U» ~', HSC i or j, relative to the full LDC

differential distribution. The curves labeled (b)
and (b') present a similar comparison for E~= 0.47.
Here (m(v;)+m(v&)] =0.245, and accordingly we
choose m(v;) =0.2, m(v&) «1, and m, «1, for which
case (E~) =0.48. Again, the dashed curve repre-
sents the HSC reduced differential decay distribu-
tion d'I"( )/dE, d cos8(0.47, 8; 0.2, 0, 0) while the
solid curve represents d'I' )/dE~ cos8(0.47, 8;0,
0, 0). The same conclusion follows from this
comparison as from the one above.

The properties of the differential distribution
are described in a compact way by certain average
quantities. These include, first, the average l,
emission angle, relative to the l, spin, (8), or equi-
valently, (cos8), as a function of energy. This is
given, for /, -v, l,v, and l;-v, l~p, decayslg (2 ly t~ & rg

(/ =+I), respectively, by

(2.55)

The value of (cos8) or the asymmetry averaged over all l~ energies is also of interest:

3$(P, I Q IUD;U~,. ~'f,(E~; (m)v, ( m))v, m, ) „)8((E,) (m(v;), m(v)), m, ) —EP

P ~ U,'„U„l'f,(E„;m(v„), m(v, ), m, ) (,)e((E,) (m(v„), m(v, ), m„) —E,)
res

where the subscript [c] indicates that for DC m'odes the function is understood to contain the order aelec--
troweak correction [of which only the pure electromagnetic part or type (1) part survives in ratios such as
Eq. (2.55), as explained before], while for SC modes the function represents the lowest-order result. The
E;dependent phase-space restrictions are rendered explicit in Eq. (2.55) by the appropriate 0-function
factors, where O(x) =1 if x&0 and 0 if x&0. As before, we shall concentrate on I, decay and accordingly
make the convention that if the superscript (v) is omitted from a given quantity, that quantity is understood
to refer to I, decay. An average quantity equivalent to (cos8) is the asymmetry

(d 'I' ') /dE„d cos8)(E„,8) —(d I'(+)/dE „d cos8)(E„,7( —8)
(d'I'"'/dE, d cos8)(E„8)+(d 'I"' /dE, d cos8)(E„7(—8)

3 f ) P „[Zr I U,*;U» I 'F, ,(m(v;), m( v~), mP (,)
(cos8)(+) &( ) (~)

Q I U,*„U„I'F...(m(v, ),m(v, ),mP „,
r, s

where

(Z ) (m&v;), na&1 ),m )
gF(vm;), m(v&), m, )

—= dE,Ej,(E~;m( )v, m(v&), m'p, z =1 or s .
71$

Q

Thus, in particular,
j.F, ,(m„m„m, ) = —,r(m„m„m, ) .

(2.57)

(2.58)

(2.59)
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From the symmetry property (2.14), it follows that

E, .„(m„m„m«) -E,.„(m„m„m«) .

The higher symmetry of E, ,(m„m„m, ) was stated in Eq. (2.16).
One can also measure the mean /~ energy as a function of emission angle; this quantity is given by

Q I U,*;U» I'[E,.,(m(v;), m(v&), m«}+ r
I p, I cos8E, ,(m(v;), m(v&}, m«)]&, &

(E )~"l(cos8) ='
Q IU,*„U„I'[E,,(m(v, ), m(v, ),mp+ LIP, I cos8E, ,(m(v„), m(v, },m«}]„,
7 yS

(2.60)

(2.61)

The mean value of E„averaged over all 8, is then

Z I U,*;U,/ I 'E, .,(m(v;), m(v~), mP „,]"~"="~"=-"&=gIU*U I E (-(.) -(.) -) (2.62)

T ~ S

Equation (2.14) implies, a fortior, that a generic average quantity, denoted as 8 ([m};m(v;), m(v ),m)
(where (&u] represents a set of one or zero additional kinematic variables) satisfies the symmetry property

6'l([~];m„m„m «)
= 8'l(j&); m„m„m«) . (2.63)

We proceed to state our results for the integral functions appearing in Eqs. (2.57)-(2.61). In contrast
to E, . («m( v), m(v&), mp, which involves elliptic integrals if all of its arguments are nonzero, E,.«(m(v, },
m(v. ),mP can be expressed in terms of elementary functions. The expression is most simply written in
terms of the variables s and D defined in Eqs. (2.40) and (2.41) and

u =-(1 —m,)'. (2.64)

[The latter variable enters as the upper limit of the integration over Q =(1+m« —2E); it was this inte-
gration variable that was actually used for the calculations, as before in Kqs. (4.40)-(4.45) of Ref. 9.]
We find

E, .o(m, —=m(v;), m, —= m(v, .),m P = (~u' —4u'" —~su'+ —", u'+ 20su'~ —4u" —,'s'u —+su —~D—u

+20su'"+8Du'"+8Du '~ —~s'+2s'+~Ds ——', D)r(u, s, D)

+3[(s +D)(u2 —4u ++6u —4u ~
) —4s +ps + 2Ds —2Ds —4D ]L~(u, s, D)

+ 6D""(su —4su'"+ 6su —4su' '- -', D)L,(u, s, D) . (2.65)

For the E, z integrals we will concentrate on the case of primary interest, where m(v;) and/or m(v&) g l.
We obtain

and

E»(m(v;), m(v&), 0) =+[45s' —30s' —(75D + 69)s'+(54D —136)s+ 24D' —307D + 14]r(l, s, D)

++[s —s —2(D+ ~)s«+ 2(D + 2)s2+D(D+ 4)s+ D(4 —D) ]L~(1,s, D)

+ /D'"[s+ —,D]L,(1,s, D)

E .~(m(v;), m(v&), 0}=,', [45s —120s«+ (141—75D)s + (204D + 84)s + 24D + 423D —6]r(1,s, D)

+ ~«[s —3s +(4 —2D)s'+(6D —4)s'+D(D —12)s —3D' —4D]L,(1,s, D)

—~9D'~'[s+D]L, (1,s, D} .

(2.66)

(2.67)

As before, in studying the effects of massive-
neutrino modes on these average quantities, the
first step is to describe their behavior for the
(LDC, LDC) mode(s). For analytical purposes, let
us pretend that U=1 exactly, in order to isolate
such mode(s). The form that (cos8)~' (EP = &a

' (E«}
would then take is obvious from Eqs. (2.55), (2.17),
and (2.18). The function (cos8)~ &(T„;0,0, m«) where
T, =E«- m«, is plotted as curv—e (a) in Fig. 12 for

the realistic case in which b«1. Following our
practice in the graphs dealing with d'I'~ ~/dE d cos8,
we shall again take

~
P,

~

=1 for the figures per-
taining to the average quantities; it is straight-
forward to modify these for the case

~
P,

~

& l.
Curves (b) —(e) are included to show the effects
of m, g 1, and for these the variable T is a more
convenient one to use than E~. As T, decreases
from (1'- m, )'/2, (cos8}i l(T«; 0, 0, m«) increases
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I.O

0

(0,0, m)

I 1

'(a) 0
(b) 0.2

m =
I &c)

o'.4
(d) 0.6.(e) 0.8

(cosg) ' (0, 0, mb) = &a
' (0, 0, mb)

+b I Pr, IE, ,„(0,0, m„) (2 68)E, ~(0, 0, m, )

where E,.c(0, 0, m, ) can be extracted from Eq.
(2.65):

- (e) (d) (c) (b)

- I.O
0

I I I I

O. l 0.2 0.3 0.4 0.5
Tb —Eb mb

FIG. 12. The average value (cosg) (Tb) in the decay
l, -vrlbv, for the case (m(vr), m(v, ), mb)= (0, 0, m).
this and all of the other figures, the curves obviously
also apply for the cases where any of the (mass) = 0
entries are replaced by (mass) «1. For brevity the
superscript (-) is omitted in Figs. 12-14 and 16-19.

I..0 I r I I I I I I I

from a minimum of ——,
' —O(w/rr). As is evident

from the graph, the tree-level value of ——,
' is true

for arbitrary mb& 1. The average value (cos8) )(Tb)
passes through zero at T, =(T,)„,(0, 0, m, )
=(1—m, )(1 —3m, )/4 and, for mb«1, approaches

& as T, decreases further. However, as T, -O,
(cos8)( )(T,;0, 0, mb«1) finally drops sharply to
zero. The resulting overall average is

E,&(0, 0, m b)
= —~ [1—32b (1+3b)

+ 90b'+ 40b' —3b'] . (2.69)

The quantity (cos8) '(0, 0, m, ) is plotted as the
(0, 0, m) curve in Fig. 13, together with certain
other curves to be discussed later. In passing,
we note that the precise value of the end point of
this curve is (cosg)( )(0, 0, 1) =-~b. For rtr decay,
the kinematically exact tree-level result is
(cosg) (')(0, 0, m, /m „)=+ & (1.000 183 5); the radia-
tive correction, computed" assuming that the
maximum E observed in 0.99(m„/2), changes this
result by the factor 1.0003.

For the energy averages in the (LDC, LDC)
mode(s) Eq. (2.60) reduces to

(EP"(8;0, 0, m, )

E...(0, 0, m„) a I Pr, I cosgE, ,(0, O, mb)

E, ,(0, 0, m, ) + I fr I cos8E, ,(0, 0, m, ) '

(2.70)

where

E,. rr(0, 0, m, ) = ~(1—b)(7 —18b+ 142b' —18b'+ 7b4)

and

——,b'(Iib\rn( —j (2.71)

0.5— E,.,(0, 0, mb) =+c(-9+25b+ 150bb —512b'rs

+ 450b —125b + 21b ) .
Thus

(2.72)

A

o OQ-
O
V

(m, 0,0) or (O, m, Q) 7 1+(Eg"(8;0,0, m «1)=—

+0 b;'rr ] (2.73)

- (Q,O, m)

-0.5—

m/2, m/2, Q)
The quantity (Eg )(8;0, 0, m, ) is plotted for the
full range of m„(and IP, I

=1) in Fig. 14. The
mean energy averaged over all 8 is

(E~(0 () )
~~(or or
E, . (0, 0c, m b)

(2.74)

I I I l I I I I r

0 0.2 0.4 0.6 0.8 I.O

fA
FIG. 13. The overall average value (cosg) in the

decay lb vrlbv, for the cases (m(vr), m(v&), mb)
= (0, 0, m), (m, 0, 0), or (O, m, 0), and (m/2, m/2, 0).

which is manifestly the same for E, and l; decays
and independent of IPr ~. The averages (E,), (T,),
and the corresponding ratios (Eg and (T,) are
shown in Figs. 15(a) and 15(b) for the (0, 0, m, )
case. The only nonobvious end-point value is
T,(0, 0, 1) = v4. For p, decay the kinematically ex-
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I 0 l 1 8 2 I I I l I I 1 I I I & & I I I I.O

0.8—
(0,0, m)

(e)
0.8

0.6-
Xl

LLI 04:
(c)

0.6

0.4

0.2-
; (fI)
, (b)

m= (c)
(d)
(e)

0
—I.O -0.5

0
Oa2
Oa4
Oa6
0.8
t I I I I i I I l I I I

0 0.5 I,O

cos 8

0.2

0 0.2 0.4 0.6 0.8 I.O
m

FIG. 14. The average energy (E(,)( '{8) in the decay
l, v~l&v& for the case (0, 0, m).

I.O

0.8 b)

act tree-level average is (E,)(0, 0, gpss, /)vt„)
= ~7(1.000 104) .

To determine the effects of the modes involving
(anti)neutrinos of non-negligible masses, we con-
sider the values of the average quantities for in-
dividual (i,j) decay modes. It is true that unless
one could identify a specific mode l, - v;l~v&, e.g. ,
by observing the decays of both the v; and v&, such
averages for individual modes are not directly
measureable. However, they yield valuable in-
sights into the changes in the observed averages
due to all allowed modes, (2.25)-(2.57) and (2.61)
and (2.62), and therefore merit careful analysis.
We shall concentrate on the single H(D or S)C
case m((F; „&)g1, m(t)& „,) «1, ng, «1, which
can be well approximated by the sets (m, 0, 0) or
(0,I,0). We shall also comment on the diagonal
case i =j, which at best could be (HDC, HSC) and
would otherwise by (HSC, HSC). The analogs of
E(ls. (2.55)-(2.57) and (2.61) and (2.62) for indi-

0.6

0.4-
( Tb)

(Tb) mox

0.2- (0,0, m)

I I ' I I I I 8 2 I

0.2 0.4 0.6 0.8 I.O

FIG. 15. {a) The overall average energies (E0) snd

(T(,) in leptonic I; decay for the case {0,0, m). {b) Same
as Fig. (a), but for the reduced overall average energies
(E0)= (E0)/{E0)m8„~d (T()) =— (T())/{T(4)m82

vidual decay modes are obvious and will not be
written out. For the reader's convenience we list
the special cases of the relevant integral functions
below [recall also E(I. (2.59) together with the re-
sults (2.45) and (2.46)]:

E,.c(m2 0, 0) = -&(I —a)(1 —1la- 47a' —3a') —2a'(3+ 2a) ln —
~, (2.75)

1
E2.2(m2 0, 0) =+(I—a)(7 —68a —188a +12a —3a ) +~~a (3+a) ln— (2.76)

1
E, .,(m, 0, 0) = —+(I —a)(1 —14a —94a' —14a'+ a') —~ a (1+a) ln— (2.77)

1+ 1
F...(m, m, 0) = —n(1 —22a —42a +86a')(1 —4a)'"-4a'(8 —4aa8a))n( (2.78)

(1+1—4a" ~

E, , (m, m, 0) =—'„(7—136a —138a' —120a'+ 360a4)(1 —4a)'/'+ 3a2(3 —2 a —3a'+ 6a') ln
I

(2.79)

1+ 1
F,.,( m, 0) = ——,', m(1 —28a —94a'+ 160a' —120a')(1 —4a)' ' —9a'(1 —a)(l —a+2a') )n( . ,n . (2.80)



I29&II . . - ~NyPLVINgESSES IF ~EAx. PR

2

AL THKPRY P

8 ' '(E;m/2, m

GENERA

it cos1.0
(o) 0
(b) 02(m,0,0)

-pr {0m 0) m =
~

c

,'(e) 0.8
(a)

0) is plottedThe quant y (
ualltatlve featutures are17. The same qua. ll Fln g

evident; however,

m m0 — cos8 (-) s =0;——,0(cos8) EI, 2, 2, 0

0
O (e)

(c)
(b)

t

while

= —,
' (1 —a), (2.as)

I II

O. l

' I

0.4 0.5

b j

16 for various0) in Fig.

i However, e
a fixe

tion of m. Htonically as a func l
to rogressive y .

e dtheratea w
' ha-es an

e ciently rapiens is sufflci

(cos8)' '(E,;m,

nically as a u
cos8)

t ally increas ''E m 0, 0)decFor fixed m, (mo

fl 0Dl

o o), =(COS I = , 0'8 &-&(Z =O;m, O,(Cos e&'-'(E m, O, O).,„

to

1+a) (2.a1)

- I.O
0.2 0.30

Eb

8 ( (Eb) in the decayra e value (coee)G. 16. The average v
the cases (m, o,E -vEv for e

m m
&coHH) ( ~, 2, 2, )

1 —a1—
8 (-) s, == (COS )

'
d as an equalityuality is satisfied as iti

only if m=, o,
2.

0.5 I I I I

- (m,0,0)
pr (O, m, Q)0.4-

I I /
I I 'I II I I I I I I 'I

(b) O.2 (a)-
m= ( (c) 04

(d) 0.6
~ (e) o'.8(a)

0 3
Xl

bJ
0.2:

(b)

(c)

O. I-

m for all physi. -roves that. for fixed m,One easily proves
cal

&-& E;m, O, O),
m

( )(COS8) ~

~

8) — 8 ' 'E =(1-a)/2;m, 0, 0v) z q
' =(cos8 I= — 2 m, o,e&&-',E m, O, O).,„e-(Cos

(2.a2)

(e}

I I I I I II I I I I IQ I I I I I I

-I.O -0.5
cos8

I I I I I II I II I I I

I.O

40
O
C3

I.O I I

(a) 0(m/2, m/2, 0)

(c) o.4
(d) 0.6. (e) o.e

(a)

(e)
(c)

(b)

I II I I

0.50 O. I

. 16butfor the case (m/2, m~M. 17. Same as Fig. 16but for

- (m, 0,0)
pr (Q, m, Q)o 0.8

E

0.6:
(a) ( (c)

(d) (e)
~ 0.4—

(b) 0.2
m= i (c) 0.40.2-

(d) o.6
, (e) 0 e

-I.O -0.5
C0S8

) (8) in the de-c energy (EI(a) e a erage

Same as Fig. (a) but or
(EI) (&&l



O~ER T F. SHRO 241294

- (m/2, m/2, 0)
m=0.4-

(o)

I I I I I I

(a) 0
{b) o.2

t (c) 0.4
(d) 0.6
(e) 08

0.5—

0.2—

(b)~
(c)~ .

I I I i l I I I II 0 I I I I
/

I I I I l I

0.1—

(a)
b i i I i » i I b b i b I i b0 b b ) i I i » i b b

-1.0 -0.5
cos8

1.0

19( ) and 19(b) show
the diagonal (m/2, m/2,ogo

For both of the m. . . , d0) modes. or
f' d value of m, E~ases at a ixe . E

monotonically wi in

of thbehavior- as a conwe interpret this '
n

weights lower values op y g
1 to+1. T is aincreases from-

ses the curvest that as m increase,standing the fac
ce w1th lncreas1Q

less helicity suppr
I8 for 8 z 0, relative o o

h ~for fixef d E . Analytically, one

0.8—
E

LJJ

06-
{m/2, m/2, 0)

0.4- (~) 0
(b) 0.2
(c) 0 o

0.2—

b i i I » b i I i i i i I i b

-1.0 -0.5
cos 8

and

m — ' "' ——0 i=o (2 87)(m 0, 0) =Iiml'
fft~ 1 1)0

F... mm
( )

"'- (m, o, o) =lim
e

from which it follows that

(2.99)Oj =0(E,)"'(8;m(v, ), m(v~,lim

s m 0, 0) and (m/2, m/2, 0).for both of the two cases m,
It is interesting that also

era eenergy (Eb) (8)inthedecay'( ) L rgy

E (-)
8)

la vfl~v& for e
ed average energy E~Flg. (ay u

' . ( ) b t for the reduce aver
~E,) "(e;O, O, m, )=O,lim

m~1
(2.9o)

ra es (cose)' '(m(v, ), m(vi), mb)The overall averages cos

F b th f th
ther in Fig. 13 for e

m/2 m/2, 0) cases. or
icos

result of the decreasedp " p y

both anti neu r'
ti th tzero. It is interesting

(-)ffect on (cos8) 'has the opposite e eccrease in m~ ha
which we haveanal tic expressions w iFrom the ana y i

d to prove thatgiven, 1 1s't straightforwar o

( ) m mcose)' '(m, 0, 0) & (cos8)'

~ (cos8)' '(0, 0, m), (2.96)

ealized'rst art of the inequality is rep

1 t = 0 Th t t.-
nl at the poin s m=

and the second part only at m=
arent in Fig. 13.

18(b) we plot the aver-Next, in Figs. r-. 18 a) and
er as a func iion of 8, t

ratio=(Eb)&-&(8; O, m, O and e

in Fig. 14, but the reason is differ-
massive-neutrino cases.

a consequence of Eqs.
(+)dd i o o (E)both the numeraator an en

d endent of cos6Im v ), 0) become in epen- l. In contrast, in theas m-

(2.91)F,.,(0, 0, m) . , F... , ,

r the first ratio this yielde[ ecall that fo

dher than losing their ep
as m- 1, the numerator an e

the same function of"' 8 0 0 m) a proach e s
8] multiplied by+(—', ) P, cos

t 1 ThE. 0 O, m, resp
Th fl t lis the result (2.91 . ep

roached in eE, — E ''(8 1 0 0)= —, and(E '"(8'0 0, 1)=1, (Eb)
~

1 1

(a) and 20(b) we show theg ~

nergies (Eb) a be e g
m 0) and m, m

wi e, an prove inequal-era es, one cang g
ities relating the energy averages or

8-dependent averagemodes. These apply for the - e



GENERAL THEORY OF WEAK PROCESSES INVOLVING. . . . II. . . . 1295

E. Kinks in dI'/dEI,

We next proceed to analyze further observable
effects of massive-neutrino modes in leptonic E,
decay and to apply our results to existing data on
p, and ~ decay. Let us begin with the isotropic
part of the E~ momentum or energy spectrum. In

the conventional view of neutrino-mass effects in
lepton decays, which neglected the important role

0.5

0.4-
{a)

0.3
UJ

0.2

energies and, a fortiori, for the overall averages.
We shall denote this fact by the use of the symbol
(8}in the respective argument lists. Then

(z,&'"(&e&;,o, o&- gE,&"'(&e}; —;,0—)

~ (Eb)' '((8},0, 0, m), (2.92)

where in the first case the equality holds only at
m =0 and 1, and in the second case only at m = 0.
Further,

gX,&'"({e&;,0, 0&-qX,&"'((&'&;—,—,0)

~ (Eb)' '(( 8};0, 0, m) (2.93)

and here the equalities hold only at m =0.

of lepton mixing, implicitly considered v„v „,
etc. to be mass eigenstates and thus considered a
decay such as p, - v„ev, to remain a single decay
in this massive-neutrino case, it was thought that
the only observable effect on dI'/dEb would be, as
in the Kurie plot in P decay, an early falloff of the
spectrum before the end point. As we have shown
previously, ' ' however, contrary to this past view,
the general Ib spectrum d I'/dEbd cos8 consists of
an incoherent sum of the spectra due to the subset
of the yg modes E, —p, E~ p&, i,j= 1, . .. ,n, which is
allowed by phase space. Hence, in particular,
dI'/dEb will show kinklike behavior at each of the
various end points E,= (E,) ~(m ( v, ), m ( v, ), m, ) of
the respective (i,j) modes. If a dominantly cou-
pled (anti)neutrino had a non-negligible mass, then
there would be an observable early end-point fall-
off in dl'/dE„but this is not a necessary charac-
teristic of the E~ Spectrum, even in the presence
of neutrinos of substantial mass. For example, if
the DC (anti)neutrinos are sufficiently light, but
there is a heavy (anti)neutrino occurring in one of
the decay modes, then the E~ spectrum would show
no early end-point falloff but would have a kink at
an intermediate value of E, given by the appropri-
ate special case of Eq. (2.1) for the heavy (anti)-
neutrino decay mode. In Fi.g. 21 we present a
schematic illustration of the general E, spectrum
in p decay, for the case v, = vt„(see Ref. 2 for
notation), [U, », ('«[U. ...[', @=3, m„&m,
+ m(,v)'+m ( &vIVi,j = 1, 2, 3, and one heavy neu-
trino, i.e., (i~}=(1,2} and fi„}=(3}.The different

O. l
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0.2 0.4 0.6 0.8 1.0
N

0.8-
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(ml2, ml2, 0)
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I t l t I b I I I

0:2 0.4 0.6 0.8 1.0

FIG. 20. (a) The overall average energy (Eb) in the
leptonic l,' decay, for the cases (m, 0, 0) or (O, m, 0) and
(m/2, m/2, 0). (b) Same as in Fig. (a) but for the re-
duced average energy (Eb).

0)
UJ

E

PP

0
0 0. 1 0.2 0.3 0.4 0.5

Ee

FIG. 21. Schematic illustration of the isotropic spec-
trum I'0 (m&)d I'/dE in p, decay, for the case + = 3, v&

=
v&&&, (iz}=(1,2}, and (is}=(3), with m(vb)= 0.4, in units

of m„. The end-point energy of the set of decay modes
v3evg or 2 and p- v~ ~ ev3 occurs at E,= 0.42, vr.hile1 or 2

that of the mode p, vsev3 occurs at E,=0.18, as indi-
cated on the graph. The contributions of both the single
HSC and the double HSC modes are exaggerated for
visual clarity. See Table I for a classification of the
decay modes involved in this example.
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TABLE I. Muon decay modes for the case n = 3, v&

=
vt&&, {i/={1,2}, and {is}={3}schematically illustrated

in Fig. 21. For a given (z,j) mode, m& ——m +m(v,-)
+m(v&) ~ See text for further comments.

U favored

mtot me

p, v2ev~ (LDC, LDC)

singly U suppressed p, v2e v2 (LDC, LSC)

I"-v&ev& (LSC, LDC)

doubly U suppressed p —vfev2 (I SC LSC)

mg,g™~m(v3)

singly U suppressed p v3e ~ (HSC, LDC)

p v2e v3 (LDC, HSC)

doubly U suppressed p —v3e v2 (HSC, LSC)

vie v3 (LSC, HSC)

moog m~ ™(v3)

(doubly U suppressed) p, v3ev3 (HSC HSC)

types of decay modes are listed in approximate
order of decreasing strength, due to phase space
and/or mixing-angle suppression.

We have carried out a search for such kinks in
existing data on dI'/dE' in p, and leptonic r decay.
The e' momentum spectrum in p,

' decay has been
measured in a number of studies, including the
Columbia-Nevis experiments of Piano" and Peo-
ples" and the Chicago experiments of Sherwood, "
Fryberger, and Derenzo. ' The experiment of
Ref. 28 measured the whole spectrum, while those
of Hefs. 26-28 measured the high-energy part
from-20-25 MeV to -53 MeV (since this part is
most sensitive to the p parameter which they
sought to determine). The experiment of Derenzo29
concentrated on a high-precision study of the low-
energy part but also included a measurement of
the whole spectrum. (The low-energy part had

been found to be important not just for the deter-
mination of the spectral parameter q but also, in-
directly, for the parameter p. ) To set a definitive
limit on possible kinks it would be necessary to
carry out X' fits to the data from each of these ex-
periments, with the parameters of the fitting curve
being the values of the (anti)neutrino masses and
coupling coefficients

~ Uf, U» ~' for the set of (i,j)
modes included. A first approach would be to de-
termine the X,

' for the hypothesis of one mode in-
volving a 'p' of non-negligible mass, together with
the usual set of (LDC, LDC), (LDC, LSC), and

(LSC, LDC) modes, which latter set would yield
the same momentum dependence for the e' spec-

trum. This fit would require folding in the (differ-
ent) spectrometer acceptance, momentum resolu-
tion, and e' energy loss functions for each of the
experiments considered. The importance of these
factors is obvious from the observed e' momentum
spectra, which all have early end-point falloffs
that one would incorrectly attribute to a nonzero
m(v, ) if one failed to incorporate the effects of e'
energy loss and imperfect momentum resolution.
Accordingly, such a detailed X' fit to p, decay data
seems to be more appropriately the task of the ex-
perimentalists. However, from our own analysis
of the momentum spectra presented in Refs. 23
and 26-29 we find no compelling evidence for such
a kink and can set a rough upper limit of order 1%
on the incremental addition that a heavy (anti)neu-
trino mode could contribute to these spectra. As
has been discussed before, "leptonic l, decay does
not have the sensitivity to heavy subdominantly
coupled neutrinos that leptonic pseudosc alar-me-
son decay does. Thus, if one establishes the upper
limit a on the contribution of an HSC (i, j) mode,
the resultant upper limit on the coupling coeffi-
cient for this mode is ~U~, U»~'&e/1(m(v, )/m„
m(v&)/m„m, /m, ). Now, the reduced rate in the
denominator is always less than unity and, as was
evident in Fig. 4, falls rapidly with increasing
[m(v;)+m(v&)]. Consequently, the upper bound on

IU,*,U» ~' is never as good as that on the relative
.rate and is usually substantially worse. This is,
of course, the opposite of the situation in M'(=v',
E')-I;v, decay, where the analogous reduced
kinematic rate function p(5s' —= (m, /m„)', 5s
—= [m(v,.)/m„]') either remained near unity for
m(v,.) nearly up to the phase-space limit or in-
creased significantly, in E'- p, 'v, decay, and

drastically in (v, K)'- e'v, decay, so that, for ex-
ample, a modest upper bound of 25% on the rela-
tive rate for an HSC mode in E,, decay over the
mass range m(v, ) e (82 MeV, 163 MeV) actually
yielded the extremely stringent upper limits 10 '-
10 ' on ~U„~ [see Ref. 2 or Eg. (2.28) in Ref. 3].
Recall, moreover, that for fixed relative rate,
this and similar bounds on

~
U„~' from (v, E)» de-

cay improved with increasing m(v,.) since over
most of the physical region p(5", , 5"„.) was an in-
creasing function of m(v, ). In the present case
the rough upper limit of -1% on the contribution of
an HSC (i, j) mode in p, decay yields the bound

~ Uf,.Uti ~

' 0.01/I"(m(v, )/m„, m(v, )/m„, m, /m„)
which deteriorates rapidly with increasing neu-
trino masses and, for example, in the case of a
single HSC mode, ceases to be a nontrivial bound

form(v, ~)&78 MeV[withm(v&„, )=0]. Unfor-
tunately, the region of large Ip, ~

where one might
search for kinks representing the end points of
massive-neutrino modes which involve (anti)neu-
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trinos of small mass and hence suffer little kine-
matic suppression, is also a region where the ob-
served e' momentum spectrum deviates consider-
ably from the theoretical one because of the ex-
perimen. tal factors noted above. The bound ob-
tained from our kink search in p, decay is clearly
not as stringent as similar ones which we have de-
rived from our study of (m, K)» decays. We have
included it here to show what kind of a limit can be
extracted from existing data on this decay. Fur-
thermore, in view of future experiments on p, de-
cay at LAMPF (Ref. 30) and TRIUMF, ' and on r
decay at SPEAR,"which will improve on the ac-
curacy of previous work, we feel that it is worth-
while to present the correct general method of
studying the e' momentum spectrum in order that
it might be adopted in future data analyses.

A search for kinks can also be carried out with
r decay data. It may be recalled that data on the
decays"" 7 - v, /, v, , /, =e, p, and' v - v,m has been
analyzed to set upper limits on "m (v,)" [in partic-
ular, m(v, )]. The ability to set these limits relied
upon the fact that v, is a dominantly coupled mass
eigenstate in v decay whereas, if allowed by phase
space, it is subdominantly coupled in P, p, , m, and
E decays. However, as was the case with p. decay,
no search for kinks in leptonic decay data has been
reported. 7 decay might have an important advant-
age in the search for heavy, subdominantly coupled
neutrinos: if lepton mixing is hierarchical, as
quark mixing is, at least for the first three gener-
ations, "then a v decay mode involving an HSC 'v'„
i~ 4, such as 7- v, /, v&.„a=1,2, might suffer sub-
stantially less mixing-angle suppression than the
analogous decay p, - v, ev, . Of- course, independent-
ly of this, there would be less kinematic phase-
space suppression of the heavy-v, mode in 7 decay
than in p. decay. The analysis of /=e or p, spectra
in leptonic T decay is complicated by the fact that
the v's do not decay at rest, and the observed mo-
menta involve Lorentz boosts depending on the
angle of emission of the / relative to the direction
of motion of the v. Moreover, certain experiments
did not have high detection efficiency for low-ener-
gy electrons. We have analyzed the actual or re-
duced e or p. momentum distributions reported by
the pioneering SLAC-LBL experiments of Perl et
al.""and the DASP (Ref. P8) and DELCO (Ref.
13) collaborations. It should be noted that such an

analysis depends on the Lorentz structure taken
for the v'v, vertex. The SLAC-LBL experiment
showed that a V-A form for this vertex was fav-
ored over a V+A form, and, more recently, the
DELCO experiment" has established that, assum-
ing "m( v,)"= 0 (and extracting radiative correc-
tions), a'nd p parameter in r- v,ev, decay is equal
to 0.72+0.15, consistent with V-A but not with

V+A or pure V or A. . The latter experiment then
assumed an exact V-A v v, coupling in deriving its
limit "tn(v, )"&250 MeV (90Vo C.L.). We have made
the same assumption in our search for kinks.
However, even if one were to use the weighted mean
of the measured values of p, the conclusions of our
kink search would not be significantly altered.
Since the spectra presently available do not extend
to very low E, -m„experiments have not directly
determined the parameter p for v decay and, for
the same reason, the value of g assumed has no

significant effect on the conclusions of our kink
search. Dips such as might result from kinks in
the v rest-frame spectra can be observed in these
distributions, e.g. , at r=0.3 in Figs. 2(b) and 2(c)
of Ref. 37, at g =0.62 in Fig. 3 of Ref. 13, and at

)p, )=1.1 GeV in Fig. 3 of Ref. 38. However, as is
obvious from the values just given, the dips do not
in general occur at the same positions in the spec-
tra from different experiments. Furthermore, it
is difficult to assess the significance of these dips
in view of the sizable statistical fluctuations ex-
pected in such small data samples. A full analysis
would entail a X' likelihood test of the hypothesis
of one or more HSC neutrino modes in addition to
the dominantly coupled mode(s). We believe that
this would be a very worthwhile task for the re-.
spective experimental groups to perform on exist-
ing and forthcoming leptonic 7 decay data."

F. Implications for effective spectral parameters
and the determination of the Lorentx structure

of weak coup1ings

Our generalized theory of weak decays involving
neutrinos has very important implications for the

meaning of the spectral parameters" measured in
p. and leptonic v decays. As a corollary of the
basic point' that the observed decay distribution is
an (incoherent) sum of all of the individual modes
allowed by phase space, it follows that, just as
with the averages (cose)"'(E,), (cos&)"', (E,(e))'",
and (E,) discussed above, the measured spectral
parameters p, q, $, and & represent effective
quantities due to all of these modes that are pres-
ent. Thus, since the presence and strength of the
massive-neutrino modes are E, dependent, in con-
trast to the conventional view, in the general the-
ory the measurement of leptonic /, decay yields a
family of different values for each spectral param-
eter, depending on the ranges of E~ used in the de-
termination of these parameters. We shall now

analyze the effects of neutrino masses and mixing
on the experimentally measured spectral param-
eters. Our analysis has three applications. First,
it is a necessary, and hitherto missing, foundation
for the determination of the Lorentz structure of
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the relevant weak leptonic weak couplings from the
spectral parameters in p. and T decay. Second, it
can be used to obtain. correlated bounds on neutrino
masses and mixing angles analogous to those given
in Refs. 2 and 3. Third, given the expected sensi-
tivity of forthcoming experiments on p, and r de-
cay, ' ' our analysis shows to what extent, and
how best they can search for the signatures of neu-
trino masses and mixing via their measurements
of the spectral parameters. Ne shall suggest con-
crete new methods for extracting these parameters
from the raw data which are designed to optimize
the sensitivity of the above search.

Let us elaborate on the first application. Con-
trary to the conventional view, the measurement
of the spectral parameters (with radiative correc-
tions taken into account to the requisite level of
accuracy) does not test the Lorentz structure of
the relevant weak couplings in isolation. Rather,
these parameters depend not just on the Lorentz
structure of these couplings, but also on the mass-
es and mixing angles of the (anti)neutrinos that
occur in the various decay modes. The measure-
ment of p, q, g, and & would provide a direct test
of the Lorentz structure of the weak couplings only
if m(v, ) =0 for all i, so that U—= 1. Operationally,
of course, one can never verify this condition ex-
actly, so that, in practice, in order to use the
measured values of these spectral parameters to
determine the Lorentz structure of the relevant
weak couplings to a given degree of precision, one
must prove that the effects of possible neutrino
masses and mixing are negligible to this order of
accuracy. No such proof has previously been giv-
en, and indeed, at present, deviations of the spec-
tral parameters from their V-A values (after ra-
diative corrections have been divided out) cannot
be attributed alone to a difference in the Lorentz
structure from V-A, but must be regarded as
possibly being due in part to massive neutrinos
and lepton mixin. g. Thus, specifically, ever if the
relevant weak couplings should be exactly of the
V-A type (in charge-changing order, and hence
also, for this special case, in charge-retention
form), the observed values of the spectral param-
eters, after radiative corrections are extracted,
would not in general have their conventional V- A
values, p=~, q=0, )=1, and 5=-,'. This result is
similar to our earlier demonstration in paper I
that even if the l,v, coupling should be precisely
V-A, the measured value of A„=B(M'-e'"v,")/
B(M'-p, "'v„"),~ where M = @ or K, would not in
general be equal to the value predicted by the
V —A. theory with radiative corrections incorpor-
ated (as well as they can be), again because of the
effects of neutrino masses and mixing. Further-
more, in the conventional view, although one op-

timally would use different ranges of E, to deter-
mine different spectral parameters (e.g. , mainly
high E, for p and low E, for q, notwithstanding the
correlation between them), this was only for the
purpose of maximizing the sensitivity of the de-
termination. Thus, for example, if (with a given
input for q) one p, -decay experiment used the e'
energy range from 30 to s53 MeV to measure p,
while another with equal statistics used the range
from 20 to ~53 MeV, then although the former
might have somewhat greater sensitivity, if the
experimental acceptances and resolution and
radiative corrections were taken into account
properly, both experiments would yield the same
value of p, to within their errors. However, this
is not true in the general theory of leptonic p, or v'

decay, because the admixture of massive-neutrino
modes isE b

dependent. An experiment which
sampled the energy range from (E~)„„„to (E)„,,„
~ (E, ), =(m, /2)(1 —m, '/m, 2) would measure val-
ues of the spectral parameters due to the subset
of all the modes occurr "g '" t" l v i l avi decaylg b l

which satisfied (E,) (m(v;), m(v&), mP &(E,)„„„.
Hence two experiments with different values of
(Eg„„„would observe different values of the spec-
tral parameters. In general, in the forthcoming
high-precision p, -decay experiments" "and the
MARK III experiment on T decay at SPEAR (Ref.
42) even if, after the necessary radiative correc-
tions are extracted, a deviation from the V-4
values of one or more of the spectral parameters
should be established, this deviation could, in a
number of cases, be due either to a difference in
the Lorentz structure of the weak couplings from
the V- A form oz to neutrino masses and mixing,
and consequently one could not a priori attribute
it to either cause alone. Indeed, one of the pur-
poses of the present analysis is to ascertain the
distinctive features of the latter cause and to de-
termine to what extent it can be distinguished from
the former.

The experimental extraction of the spectral
parameters is complicated by the fact that the
value obtained for a given parameter depends
on whether one assumes the V- A. values for cer-
tain other parameter(s). Specifically, for the iso-
tropic spectrum, p and g are significantly cor-
related, and many experiments which measured
the high-energy end of the e' spectrum to deter-
mine p assumed that g=0. (This was necessary
since their spectrometer acceptance and resultant
lower cut on E, did not allow them to reach the
small energy region where they could measure q. )
In a later experiment Derenzo carried out a pre-
cise measurement of the low-energy part of the
e+ spectrum and then combined his own data with
that from earlier experiments in a two-parameter
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fit to p and q, thereby obtaining the values p
= 0.7518 y 0.0026 and g = -0.12 + 0.21. These values
of p and q are, respectively, essentially and ex-
actly the values taken by the Particle Data Group. ~'

Similarly, the parameters $ and 6 describing the
size and momentum dependence of the term pro-
portional to

~
P„~ cos8 in the decay distribution

are extracted from a fit to the asymmetry, a(E).
In the analytic form used for this fit, one must
make some choice as to the values of p and q to be
used in the denominator unless one has indepen-
dently determined these parameters in the same
experiment. In practice, most previous experi-
ments on $ and 6 in )), decay assumed the V-A
values of p and g." In the work of Fryberger,
however, it was noted that if one used the central
values of p and q obtained in that experiment rathex'
than the V-A values, it would cause a negligible
shift in 6 ($ was not measured). " For reference,
the weighted means of the values of $ and 6 from
all relevant experiments are $ =0.972 + 0.013 and
5 = 0.7551 + 0.0085.4'

Let us state the form of the definition of the
theoretical and observed spectral parameters in
our general theory of weak processes. We shall
follow the standard practice of extracting the
radiative corrections to these parameters. 4' To
begin, one must realize that the very terms
"Lorentz structure of the weak couplings" have
to be reinterpreted in the general theory. Recall

that in the conventional theory one writes the ef-
fective local Hamiltonian for the decay l, - v, l~v,la 5 ly
in the form" '

A 0 5P

I y=&

(2.95)

and the dimensionless coupling constants jgb" b))

and jgb(' b)'] are supposed to specify the Lorentz
structure of the effective interaction completely.
We include the superscript labels (a, t)) to indicate
that, although it was not stressed in the past liter-
ature, the Lorentz structure of the relevant weak
couplings could differ for different sets (a, b) in
the conventional theory as well as the general one.
(Parenthetically, we note that the Hamiltonian is
listed here in the charge-retention form; one can
easily obtain the charge-changing form by the use
of a Fierz transformation. ) However, in the gen-
eral theory it is not true that the Lorentz struc-
ture of the interaction is fully specified by these
coupling constants. Rather, the true effective
local Hamiltonian describing "the" decay
I, —v, Ibv, is (again, in charge-retention form)

x=
2 g [y, r„y, ][y„, r„(a„'"

+g(b b) ') ) y ]+H.c. ,

(2.94)
where

~U.*,U„~' g [0, r,4, ][q. r„(a,"". »+g,' ""'r,)g„,]+H c. . (2.96)

In particular, the Lorentz structure of one mode l, - v;l, v& would not necessarily be the same as that for
another, E, - v„l~v, . This is analogous to the discussion given in paper I concerning the possible different
Lorentz structures in different M'-/;v; decays (see Sec. IIE and footnote 26 of Ref. 3 for elaboration and

examples). It follows that in general there are different spectral parameters for each (i,j) decay mode.
However, in contrast to the situation in M„decays where one might feasibly study each M'-L, v; mode
individually and determine the coefficients ca('), Z =S, P, V, and A (cr ' does not contribute), the analogous
study of individual (i,j) modes in I, —v, Ibv, decay is not feasible, as has been discussed above. Conven-
tionally, the expression for the differential distribution in the case of arbitrary Lorentz structure can be
written as

(,o (ff, y)

dE d cosg ( b&i & I lb b lb 192+3 16 [fl(GL)( b& )nbt P

+g~P,
~

COfS, (t))o( E)nb; &' ",6("b))], (2.97)

where the subscript (GI,) denotes "general Lorentz structure" and we have explicitly indicated the depen-
dence of the spectral parameters on the type of decay. The functions f,(o~) and f,(o„) can be read «f f»m
standard treatments in the literature ', however, it will be useful to list them here in our notation since
we will refer to details of their form later:

fg(oz)(Eb mb P ) ) 32(Eb ~) 9 El b(Ebax)o Eb] p [Y b ( b ax)0 b b ]

+3@" b [(E ) —E ]] (2.98)
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f (G„)(E,;lb; $ "', 6 ' ~ b
) =32 (("b'(E,' —b){[(zb )b —Eb]+26 "' [xzb —(E, ~},—bb]},

where

(E,.„),=-(zp. (o, o, m„)

(2.99}

(2.100)

(2.101)

and

in the notation of Eq. (2.1} and f), when used as an algebraic symbol, rather than a superscript or sub-
script, is given by mb /m, , as defined in Eq. (2.19). Observe that with our normalization

y, („)(z,;m, ; p' » =-,', q' ~ » =o) =f,(z,;o, o, m, )

f,(G„)(E„'m„' $
"') = 1, 6 " ) = —,') =f,(Eb; 0, 0, mb) (2.102)

with the functions on the right-hand sides of Eqs. (2.101) and (2.102) being given in Eqs. (2.1V) and (2.18).
The constant A and the spectral parameters p(' '), l)(' '), $("b, and 6' ') are functions of the {g»"}and
{g»("b)'}; again, they are given in the literaturee' ' and will not be repeated here.

In the general theory the expression for the differential decay distribution in the case of arbitrary Lor-
entz structure is

(+)
(GL,GN) (E (), fe f e

)cosgb

= Fo(me) Q I
U.*iUb) I'[fl(c L, cN)(zbim()';) « m()'i) ~ mbi{a»"'"'}i{a»""'"'y)

ibi

+pip, lcosef (GL G„)(z,;m(b, ), m(). i), mb;{g»"b"'i)), {g»""'))'})],(2.1M)

where the subscript (GN) denotes "general neutrino masses" and the functions f,(GL GN) and f,(GL G„,) are
the appropriate generalizations of Eqs. (2.98) and (2.99) for this case. However, since one cannot study
each (i,j) mode individually, the spectral parameters for each mode are not directly useful objects to
consider. Operationally, as noted before, in the general theory the effective spectral parameters that
would be measured experimentally (after radiative corrections are extracted) depend on the interval
((E )„„„,(E,)„„„}used to perform the fit to the data. For the isotropic part of the spectrum they are
given by the equation

(2.104)

(2.105)
IU.*~ I' f(.'"" dzf( . )(E ( ) ('} '{g'""""}{g""""'}}(@ )

b lower

Similarly, the spectral parameters $;«b) and 6;f, b) would be determined via the equation

iz ~ ~ (e b) ( 5b)elf I
U,*;»)

I

'f.(GL, GN)( bi ( i}' ( 4) 1 b
9'"'*"»{&"""})

fe(GLIL bt ~el tf ! eeef

f (GL)(zb ~b P ft ) ii } L I
&.*,». I

'f. (GL, GN)(zb'm(~ )'m(~ }'~b'{&»"'""»{&»""""'}}'

t'b. S

(2.106)

fl (GL)(zbimbi Peii ~ 7eii } ~ Z I
+ i~bi I fl(GL, GN)(zbi ~( i m(~i) mb {g» }{~»

Zfg

Here and elsewhere we recall that there are implicit O functions of the form e(m, —I,—m(v,.) —m(v&)) in

f, and f, . The normalization factor X is given analytically by"
(@b)uyyer (~, b) (a, b)S
(@ )

d bf1 (GL)( b& ~bs Pelf & )eff
b 1 wer

where p,«and q,«b would have been extracted
from a fit to the isotropic part of the spectrum in
a complete experiment, or, alternatively, taken
from other work in an experiment devoted speci-
fically to a study of the asymmetry. Equations
(2.105) and (2.106) provide the foundation, in the
general theory, for an analysis of the Lorentz
structure of the relevant weak couplings in leptonic
l, decay based on a measurement of the spectral

parameters.
In our study of the effects of neutrino masses and

mixing on the spectral parameters, it is necessary
to make some assumption concerning the Lorentz
structure of the interaction. As before, in view
of the fact that all measurements on ]Lj, and leptonic
v decay are consistent with the V- A form (in the
case of $(" ', at the 2« level), we shall assume
this form. However. , at appropriate points, we
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shall comment on the effects of non-(V- A) coup-
lings. I et us begin with the isotropic part of the
spectrum. Our treatment will. be primarily or-
iented toward p. decay, since the most accurate
measurements of the spectral parameters, and
the only reported measurements of q, (, and 6,
are availabl. e for this case. Accordingly, we shall
make the notational convention that in the appro-
priate experimental context, unlabeled spectral
parameters refer to p, decay. To reproduce the
conditions of p, decay experiments, we have car-
ried out two types of g' fits. In the first, we set
)),« = 0 and (E,)„„„=25 MeV, and (Z,)„„„=53
MeV, corresponding to the work of Refs. 26-28.
In the second, we fit both p and g, and use the
whole spectrum, corresponding to the combined
fit by Derenzo. " For simplicity we assume that
there is only one set of non-negligible heavy v

()
vHsc lbvl &

with U dependence

Z IU.*;U;I'O(m -m -m(~;)-m(~»= IU.;I'.
and l, —v, l~v„sc ~

with U dependence

g lU,*,U»l'8(m. , —m, —m(v, ) —m(v&)) = lUe,.j'.

I, =e or )),). Stated in other terms, the (Iuasico-
herent formalism which is conventionally used'
to describe the propagation of massive neutrinos
and gives rise to the label 'neutrino oscillation"
is, according to the general rules of quantum
mechanics, applicable to neutrinos with sufficiently
small (or nearly degenerate) masses but is not in
general applicable to the heavy neutrinos of inter-
est here. Furthermore, an obvious fact which is
of relevance to T decay is that if m(v, ) &m, or m»,
then the accelerator neutrino data provides much

the corresponding
I
U

Proceeding to the case r =2, i.e. , the p, v& coup-
ling, the upper bounds on R» —-

l
U»l' resulting

from the application of the spectral test proposed
in Ref. 2 to existing m„and K„data were given in
Ref. 3, in particular, Fig. 17 of that work. Sub-
sequently, the peak search proposed in Ref. 2 was
carried out in a preliminary new m„, experiment
by the Swiss Institute for Nuclear Research (SIN)
group, which obtained the slightly better bounds
R»(0.03 for m(ve) e (4 MeV, 9 MeV) and R»&0.02
for m(v&) &(6 MeV, 14 MeV)." The branching-
ratio constraint analyzed in Ref. 3 does not yield
a very strong bound on

l
U»l'. Since the situation

It is straightforward to extend our analysis to deal
with the case of several diff'. rent types of HSC

~-) (-)
modes. We label the heavy v as v& and the rele-
vant coupling coefficients as

l
U„el', x= 1 or 2 and

&=i or j.
Before presenting our results, it is necessary to

recall briefly what limits are placed on the
l
U„el'

(HSC k) by our previous work." In the case
x =1, i.e. , the ev& coupling, the R, and B~ branch-
ing-ratio constraints, together with the bounds
from the HSC peak search in K, decay, imply
that for the relevant range of m(ve), lU»l' is suf-
ficiently small that it would probably not be pos-
sible to detect directly the effects of an HSC v„ in
the spectral parameters describing the p. decay
distribution [see Ec(s. (2.28) and (3.12) and Fig. 22
of Ref. 3]. Regarding an HSC v„coupled to e (or p)
in 7 decay, the range of m(ve) extends far above
that covered by the bounds discussed inRefs. 2 and

3, so that commensurately larger
l U,„l' are al-

lowed. There are, of course, also constraints on
the couplings of such a massive v& from data on
possible neutrino oscillations. The positive effect
reported recently by one experiment ' would in-
volve much l.ighter neutrinos than those which are
significant here. Moreover, apart from possible
decays of such heavy neutrinos, ~ they would have
an approximately spatially uniform effect in an
accelerator neutrino scattering experiment, a
manifestation of the underlying incoherence in the
original M'- I;v,. decays (where M = 7( or K and~(-)
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p „=0.75I7+ 0.0026

W
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Peff

0.745

t(a) IO
&

,

"rk L (b) IO

0.740-

0
0

(v, e)pe„= 0.72+ O. I5
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20 40 60 80
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I.O m (~~) /~
IOO m(vk) [p] (MeV)

m(vk) [r] (GeY)

FIG. 22. Plot of p, f~ determined from a two-param-
eter X fit to dI'/dE& in terms of p, ff and g,&f for leptonic

decay involving one (anti)neutrino, denoted 'v'&, of
non-negligible mass. Results are shown for two values
of the weak coupling coefficient ~U„J . See text for fur
ther details.
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concerning possible neutrino oscillations is un-
settled at the present time, we shall only comment
that the data is consistent with

~
U, «c „~'-10 '.

Thus, the largest
~
U»~' values of relevance to p,

decay are allowed for m(v~) s 14 MeV and m(v&)
F (34 MeV, 82 MeV). As will be shown, for fixed

~
U» ~, a mass m(v~) in the second interval would

yield a greater effect on the spectral parameters
in p, decay. Accordingly, given the above con-
straints on

~
U»~', the analysis of these spectral

parameters (in particular, p) is probably most
valuable as a probe of the effects of neutrino mas-
ses and mixing in the second region of m(v~).

In Fig. 22 we present curves of the effective
p parameter, as a function of m(v~), as deter-
mined by the two-parameter fit to dI"/dE„using
the V- A version of Eqs. (2.104) and (2.105) with

(E,)„„„~~,«1 and (E,)„„„=(E, ),. The cor-
responding values of q,«are given in Fig. 25 and
will be discussed later. The curves are plotted
for two values of ~U»~', viz. , 10' and 10 '. As
should be clear from the preceding discussion
concerning other constraints on

~
U„, ~' as a func-

tion of m(v&}, we certainly do not mean to imply
that values this large are allowed for all m(v~) in

p, and r decay. The reader is referred to Hefs. 2

and 3 for an analysis of precisely how large
~
U„» ~'

is allowed to be, as a function of m(v&), by other
relevant constraints. The horizontal axis gives
the dimensionless values of m(v&)/m, together with
the actual corresponding m(v~) values in p, and 7
decay. (In the latter case the curve applies to the
decay 7 -v,ev, , which was the mode studied in the
DELCO experiment. ") Using Egs. (2.94)-(2.96),
one can generate the curves for the decay
7. —v, p,v„ in an analogous manner; these are
omitted for brevity. The central experimental
value of p,

'~ is indicated by the horizontal. dashed
line, with the +1o errors being represented by the
accompanying dot-dashed lines. For any value
of m(v~), the effect of the presence of a massive
v& mode is to decrease the observed value of

p„, from its V- 4 value of 0.75 where m(v, ) =0
for all i. This general feature can be easily un-
derstood because as p,«decreases below 0;75, the
(area-normalized} function f,~o„&(E,; m„; p„„'q„,)
becomes larger for E,& ~[1+5+(I++25+b')'"j
= ~+~sb+O(b'), and smaller for E~ above this
value. Thus, a value of p,« less than 0.75 yields
a function f,~»& which provides a better approxi-
mate fit to dI'/dE, than would be the case if p,«
&0.75, since the function being fitted has the ap-
pearance indicated in Fig. 21. For fixed

~
U„~~,

and small m(v~), there is commensurately little
change in p,«since the kinematics is not very dif-
ferent than in the case of zero-mass neutrinos.
For very large m(v„) there is again little change in

p,«, but for the different reason that the massive
(-)
v& mode is kinematically very heavily suppressed.
Thus, it could be anticipated before any calcula-
tion that the maximum decrease in p,«would occur
at an intermediate value of m(v~}; our results show
that this value is -40 MeV. The deviation of p,«
from 0.75 is roughly proportional to

~
U„~~' for the

small values of this coupling coefficient of rele-
vance here. The values of p,«obtained in the
one-parameter fit with g„, assumed to be equal to
zero are quite close to those obtained in the two-
parameter fit.

Thus, for the p parameter our conclusion con-
cerning the first application is that, indeed, given
present constraints on HSC v& coupling coeffi-
cients, possible massive v& modes could signi-
ficantly alter the observed value of p,«and con-
sequently, contrary to the conventional practice,
one cannot use past data on p to constrain the
Lorentz structure of the p, decay couplings in iso-
lation. . Rather, without further analysis (see be-
low), one must consider these past measurements
of p,« to yield a correlated hound on deviations
from V-A weak couplings and the effects of mas-
sive neutrinos and lepton mixing. Note that this is
true regardless of the bounds on the masses of the
LDC (anti)neutrinos v, and v, in p,

' decay. It also
does not require that one assume that there are
n &3 generations of leptons, inasmuch as the cur-
rent upper limit on m(v, ) allows it to be anywhere
in the range (O, m„}. An analogous statement ap-
plies in principle to the use of the p("'~~ value
measured in v' decay to constraint the 7v, coupling,
although the accuracy of the most sensitive de-
termination, p,„' ' =0.72+0.15,"is not great
enough for the effects of massive-neutrino modes
to be important. As is well known, a deviation in
the Lorentz structure of the relevant weak coup-
lings from the V- A. form could cause p either to
increase above 0.75 or decrease below this point.
However, even if p,«were measured to be greater
than 0.75, one could still not a prior attribute the
the effect entirely to non-(V-A) couplings, since
this increase might actually represent a larger
increase due to a deviation in the Lorentz struc-
ture combined with a slight decrease due to mas-
sive-neutrino modes. Nevertheless, we have
found a test which can reduce or eliminate this
ambiguity. This test exploits the fact that the
effects of massive-neutrino modes involve thresh-
olds in E„whereas those due to deviations in the
Lorentz structure of the weak couplings do not.
It consists of using different ranges of E~ in the
determination of the spectral parameters and then
investigating whether or not the resulting values
are significantly different. The underlying idea
is illustrated in Fig. 23, for the measurement of
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FIG. 23. Schematic illustration of the test using dif-
ferent energy intervals to distinguish the effects on the
spectral parameters of possible non V-A Lorentz
structure and those due to possible neutrino masses and
mixing. The graph shows I o~(m, )d I'/dE~ for a leptonic
E, decay involving one {anti)neutrino '7'~ of non-negligible
mass, taken here to be m {v&)= 0.g. In regions (a), (b),
and (c) the single HSC '7&& modes would be fully present,
partially present, and absent, respectively. One would
compare the values of p,zf, for example, obtained from
fits over these three different regions. See text for
further discussion.

pe« in the case of one non-negligible set of HSC

v» mode. For this example we take m(v») =m, /2
so that the end point for the corresponding mas-
sive v& mode is 0.375m, . The size of this mode is
exaggerated for visual clarity. In region (a) the
v„mode is fully present, while in region (b) it is
present in the lower end of the range but is phase-
space forbidden in the upper range, and in region
(c) it is absent entirely. Each of these three re-
gions would thus clearly yield different values of

p,«[and only in region (c) would the measured val-
ue provide a direct probe of the Lorentz structure
in the amplitudej. Thus, in principle, if (after
appropriate radiative corrections are extracted),
a spectral parameter such as p„-, is established
to be different from its V-A. value and the test
proposed above is performed, then (1}if the test
yields the same non-(V- A) value of the spectral
parameter for all of the ranges of E, that were
used, then- one can conclude that the effect is due
to non-(V- A) couplings and not to massive neu-
trinos, to the requisite level of accuracy; (2) if
different ranges do yield different results, then
one can conclude that at least part of the effect is
due to massive neutrinos; and (3) if the deviation
disappears as one used progressively higher
ranges of E» (given an appropriate definition of the
area-normalized fitting function}, then one can con-
clude that the effect is due to massive neutrinos
rather than non-(V- A) Lorentz structure, again

-I
IO I I I I I I I'2
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eff
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FIG. 24. Upper bound, at the 1g level, on the coupling
coefficient )U„»( from the pI~II& constraint, for the case
described in the caption to Fig. 22.

to the requisite level of precision. We propose
that this test be applied to past data on p. and lep-
tonic 7' decay, since even in the cases where spec-
tral parameters obtained were consistent with
V- A couplings, the application of the test would
yield new and valuable correlated bounds on neu-
trino masses and mixing. For the same reason
we also strongly suggest that it be applied in the
forthcoming high-precision p, and 7 decay experi-
ments. "-"

The second application of our study of the effects
of neutrino masses and mixing on pe«concerns
the correlated bounds on these quantities that re-
sult from the measured values p, . In view of our
first conclusion, we must make some assumption
regarding possible deviations of the Lorentz
structure of the relevant weak couplings, and we
make the natural and simplest assumption that
such deviations are zero or negligibly small. The
1o. limit based on the measured value p,„"," -=p,„",

~ p, II~ —p~ „"~

~

(o, = 0.0026, (2.107)

yields the upper bound shown in Fig. 24 on
~
U„»~'

as a function of m(v»). As was mentioned before,
this bound is generally considerably weaker than
the ones obtained in Hefs. 2 and 3; however, in
the case I =2 and the region m(v») c(-38 MeV,
-82 MeV) it is useful.

Finally, for the third application, we indicate
the statistical accuracy in the measurement of
p,„,expected in the future LAMPF experiment of
Anderson, et al. ,"viz. o ""=0.00023, by the
horizontal short-dashed lines in Fig. 22. For p
and each of the other three spectral parameters,
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all of which are to be measured in this experiment,
the systematic errors are expected to be comp-
arable to, or perhaps somewhat less than, the
statistical errors. Although we have chosen the
canonical V- A., m(v,.) =0, U—= 1 value of p,«
around which to draw the +la. '"" errors, this ob-
viously should not be taken to imply that the value
of p,„,that will eventually be measured will be
precisely 0.75. As is evident from Fig. 22, given
the projected accuracy of the new I AMPF p, decay

. experiment, it will be sensitive to the effects of
neutrino masses and mixing on the parameter p,«
for a reasonable range of intermediate values of
m(v&), down to rather small ~U»~'. With this
capability and the use of our proposed method of
sampling different ranges of E„ this experiment
will be in a reasonable position to carry out a
search for massive-neutrino effects.

In Fig. 25 we present our results for g,«ob-
tained from the two-parameter fit to p,«and g„,
assuming V- A. weak couplings. %e interpret the

behavior of g,«as follows. For relatively small
m(v&), the net effect of the massive-neutrino mode
is to decrease dI'/dE, , most markedly in the inter-
mediate energy region, and hence yield a negative

As m(v„) increases, however, the bump which
appears in the total dl /dE, at the maximum of the
HSC v~ contribution moves down from high to in-
termediate E,. The fitting curve thus favors posi-
tive q,«since, as can be seen from Eg. (2.98);
this increases the middle part of the dI"/dE, while
leaving the ends invariant. With our results as
given in Fig. 25, we can address the three appli-
cations. First, it is clear that, in contrast to the
situation with p,«, the errors in the present ex-
perimental measurement of g are sufficiently
large that massive-neutrino effects are not im-
portant for the past use of g, to constrain the
Lorentz structure of the weak couplings in p, de-
cay. Of course, for the same reason, this con-
straint from g, was not very restrictive. Fur-
thermore, on'e cannot use q,„,to obtain useful up-
per bounds on ~U„~~e. More exciting is the third
application. There are two future experiments
which plan to measure q in p, decay: that of An-
derson et al. , at LAMPF (ref. 30), and that of
Crowe et al. at THIUMF. " The expected total er-
ror in the latter experiment is +0.1, while the ex-
pected statistical error in the former is +0.006.
The second error is shown as the short-dashed
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FIG. 25. Plot of g,ff determined from the two-param-

eter fit to dI'/dE& in terms of p,zf and g,~~ for p decay,
in the case described for Fig. 22. The results shown in
Figs. 24-26 also apply to 7 decay with an obvious scale
change in the m (v&) axis.

0.98 (' = 0.972 & O.OI5
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FIG. 26. Plot of $,fz, determined from a one-param-
eter fit to the integrated asymmetry in p decay, for the
case described in the caption to Fig. 22. In this fit, to
reproduce the procedure of past p-decay experiments,
the other spectral parameters peff e Jeff and 6,gg were
taken to have their conventional V-A values.
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lines centered, according to the convention ex-
plained before, around the V-A, m(ve) =0, U=1
value of g,«. The LAMPF experiment may have
sufficient precision to detect possible massive
neutrino effects in the parameter q, ff.

Let us next proceed to analyze the effects of
neutrino masses and mixing on the spectral pa-
rameters (,«and 6,«which determine f,«». In
Fig. 26 we present curves of $„,obtained from a
fit to the integrated asymmetry, assuming V- A
couplings. This reproduces the conditions oi the
experiments of Ref. 44 (which dominate the present
weighted world mean for $,„,), since these experi-
ments determined $ from a fit to the function
N~' (8) =1+a~' cos8, i.e. , from an integration over
all energies, subject to standard cuts. Analytical-
ly, for a fit to the asymmetry integrated over the
entire spectrum,

2 Q
~
Ue)Utt

~
E,.o(m(vt), m(vt), mP

((a, e) ) tS
brett Itetearate g ~UeU

~

E ( ( ) ( )
.

TtS

(2.108)

As with the g,«and 5,«plots, one can obtain the
behavior for the decay 7 —v,e'v, by an obvious
scale change of the m(v„) axis; however, we are
well aware of the difficulties inherent in trying
to measure any of the three spectral parameters
other than p in leptonic 7' decay. As is evident
from Fig. 26, the effect of the massive-neutrino
mode is to reduce (,« for all m(v&), the maximum
reduction occurring in the region 30-40 MeV.
This behavior can be understood directly from our
earlier calculation of the integrated asymmetry
a '), or equivalently, (cos8)~'), presented, for
P decay, in Fig. 13. It may be recalled from well-
known formulas for the theoretical $~"') in terms
of the {g~"')}and {g~' ')') in the conventional theory
that a deviation in Lorentz structure from the V- A
form can cause this parameter to increase above,
or decrease below, unity. Indeed, in the conven-
tional theory, with zero neutrino masses for each
of the four spectral parameters, denoted generical-
ly by y„ the difference y,. —y, (V —A) can be posi-
tive or negative. The curve shown in Fig. 26 is for

~
U„»

~

' = 10 ', a small dot indicates roughly the
maximum decrease for

~ U„e ~' = 10 '. With this
integral method of extracting $„„the massive-
neutrino mode has little effect. The present ex-
perimental measurement of g is approximately 2o
below unity. We conclude that, given the con-
straints on ~U„~~', a massive-neutrino mode would

have had a very small effect on past measure-
ments of $ in p, decay. There are two future ex-
periments which will measure this parameter.
The expected statistical accuracy for the measure-

ment of ] in the LAMPF experiment" is y0.000 99,
while the expected total error in the TRIUMF. ex-
periment of Strovink eI; g/. ,32 which is specifically
devoted to a high-precision measurement of this
parameter, is +0.001 (where in the latter experi-
ment the fit is made assuming the conventional
V-A values p= e, t) =0, and 6= e). This error is
depicted in Fig. 26 as the short-dashed lines around
the conventional value of unity. Our conclusion is
that if one chooses to extract f,„,by a fit to the
integrated asymmetry alone, it may be difficult
to detect any massive-neutrino effects. Further-
more, one would lose the capability of applying
our suggested method of using different energy
intervals to distinguish between deviations due to
possible non-(V- 4) Lorentz structure and those
due to massive neutrinos. Earlier in this work
we proposed a different method of searching for the
signatures of massive-neutrino modes in the
angular distribution by exploiting the exact helicity
zero of dl'~'/dE, dcos8 for 8 =0' or 180', in p, or
p,
' decay, respectively, and E,=(Et )„ if ~P,

~

=1 and neutrinos are massless. In contrast, a
massive-neutrino mode would not have a zero at
these respective values of 0, although it would, of
course, vanish beyond its energy end point, (2.1).
Our study indicated that the effect was small;
however, we suggest that it would be worthwhile
to try this search in the forthcoming p, decay ex-
periments which will study the angular distribu-
tion. ' '2 The method will benefit from the ability
of these experiments to achieve a

~
P„~ which is

(a) extremely close to unity, and (b) known to very
high precision, both of which features improve
considerably upon past p, decay experiments. It is
true that the behavior of d'I"~' /dE, d cos8 in the
8 =180, high-E, region is sensitive to deviations
from V- A Lorentz structure as well as massive
neutrinos. Indeed, this sensitivity has been
stressed in Ref. 32, although no consideration was
given there to the effects of massive neutrinos
and lepton mixing. The method of different energy
intervals can be applied to some extent here, but,
as waS discussed before, if one goes too far be-
low (E, ), the helicity suppression of the LDC
mode(s) largely disappears.

In addition to altering the magnitude of the effec-
tive asymmetry, massive-neutrino modes also
change its momentum dependence. Figure 27
shows our results for 5,«as calculated in a two-
parameter fit to $,«and 6,« in p, decay, using
Eq. (2.106) with V-A couplings and, to reproduce
typical experimental conditions (see, e.g. , Ref.
28), assuming p„, = —,

' and )),« =0. The energy in-
terval taken for this fit is the full range of E,. One
observes that for all values of m(v&), the effect
of the massive-neutrino mode is to reduce 5,«.
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0.760 our presentation of the general theory of the spec-
tral parameters in leptonic l, decay.

G. The I& polanzation
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Up to this point we have analyzed the effects
of neutrino masses and mixing on leptonic l, decay
assuming that one only measures E, or

~ p~~ and 8.
We now consider the effects on the l~ polari-
zation P, —= P~. For this purpose, let us define
an orthonormal coordinate system by e~=-p„
eT, —=(0, —5, p,p~)/~P, —0, p~p, ~, and e
—= (0, && p, )/ ~

P, && p~ ~, where the subscripts L and

T(I,O)P mean "longitudinal'* and "transverse (in,
out of) the P„p, plane". The components of
the I, polarization are then denoted by (P,),

e, , for c=L, TIP, and TOP. For a given
decay mode l, -v,.l, v& or its charge conjugate we
find, assuming V- A couplings, -

0.740;

0
s s

20 40 60 80 IOO

m(3 k} ( Mev}

FIG. 27. Plot of t5,qq determined from a two-param-
eter g fit to the asymmetry in terms of jeff and 6cff9
for p decay, in the case described for Fig. 22. In this
fit, to reproduce the usual procedure of past p-decay
experiments, the other spectral parameters peff and

Q eff were taken to have their conventional V -4 value s .

(P,)~"(E„,8; m(v,.), m(v, ), m P

h"(E., 8; m(v;), m(v, ),m„)
(d I 'i/dE d cos8)(E, 8; (v,.), ( ),

(2.109)

where the denominator was given in Eqs. (2.7)-
(2.13) and

h "(E„8;m(v, .), m(v, ),m, )
= vh, (E,; m(v, ), m(v&), m

+
~
0,

~

cos8h, (E,; m(v, .),m(v&), m ~)

(2.110)
with

Although the maximum decrease is small com-
pared to the errors in the present experimental
measurement, it is not completely negligible.
The expected statistical error in the forthcoming
measurement of ~ by the LAMPF experiment"
is y0.00064, as indicated in Fig. 27. Again, it
is clear that this experiment has the potential to
detect the effect of massive neutrinos on the spec-
tral parameter 5,«. For brevity we shall not show
the values of $,«obtained via this two-parameter
fit; we note, however, that they do differ some-
what from those computed from the one-parameter
fit to the integrated asymmetry. This concludes

I

h, (E,; (m)v, (mq)v, pm=8(E, ' —b)LA,.)(1-2E,+b)

+ B,,(l —E,)]
(2.111)

and

h,(E„m(v,.), m(v, ), mP =8(E,'- b)'"f-~„E,
x(1 —2E +b)+8,. (E,' —b)].

(2.112)

For the actual experimental situation where one
observes only the E~, its longitudinal polarization
is then

E [ U,*,U„,~'h'(E„8;.m(v, ),m(v, ), m,.)
P ) "(E,8) =

g [ U,*„U„)'(d'I'"/dE,d cos8)(E„8;m(v„), m(v, ),mp
(2.113)

The expressions for the longitudinal polarization integrated over 8 and over both 8 and E~ are, respective-
ly,

w Z I U,*;U» ~
2h,(E,; m( v,.), m(v&), m )

&(P )")(E ) = "
Q I U.*„U„Iy,(E„;m(v, ), m(v, ), mP
PpS

(2.114)
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+ Zr I U,";U~i I'H, , o(m( v;), m(v~), m„}

g I U,*„U„I'E...(m(v„), m(v, ),m)
&~$

where, in analogy to Eq. (2.58),

(Eb) '"( (")' (')' b)
&,,gm(v;), m(v&), m~) =- dE~E„"h,(E,;m(v, .),m(v&), mp, z =1 or s .

In the conventional V- 4 theory with m(v;) =0 for all i, the general expression (2.113) reduces to

w p (3-4E„+b)—
I P, I cos8[l -2(1+p„')E, —b]

(3 —4E~+3b —2b/E, ) + p~I P, I cos8(1 —4E~+3b)

b
=w 1+0 b' — for b«1.

PE b

For the integrated polarization one has

((P )(,)) +(1 —+b+32b' —30b'++b' ' —3b ) +(I —'s b) for b(&1Conv r(0, o, b'") 3

(2.115)

(2.116)

(2.117)

(2.118)

(Parenthetically, we note that the order (}( r-adiative
corrections to these conventional V- A formulas
have been calculated. ") Our results (2.7}-(2.13)
and (2.111)-(2.113) show that, in fact, the same
approximate equalities hold in the general V- A
theory with massive neutrinos and lepton mixing:

and

(P}"(E 8)= 1+O b-b
b

«P,)' &= [I 0(b)].

(2.119)

(2.120)

For the other components we find that (assuming
V —A couplings} in the general theory with mas-
sive neutrinos and lepton mixing, just in the con-
ventional V- A. theory with massless neutrinos,

(p,}P, (z„e}= 0 T O(~), (2.121)

and

((P,) T,p) =0+ O(b'")

(P,) ~T'o~p(E„8) =0 .

(2.122)

(2.123)

It is worth commenting upon the latter result. In
the conventional theory With massless neutrinos
there is no CP violation in the lepton sector. A

very important property of the general theory is
that, for the case of n ~ 3 lepton generations, which
is known to be the physically relevant one, the
mixing matrix U contains complex phases which
cannot be eliminated by redefinitions of the fields
and which give rise to leptonic CP violation. The
analog of this phenomenon in the quark sector was
discussed by Kobayashi and Maskawa. " Never-
theless, basically because the l,- v,.l,v& decays

are incoherent, this CP violation does not direct-
ly manifest itself in leptonic l, decay. Experi-
mentally, in p, decay several measurements have
yielded the result that (P,'}) =1.00' 0.13.'4 A
recent SIN experiment has measured (P,'})T»
and (P '})T p and found them both to be consistent
with zero." (These indicated average polariza-
tions do involve cuts which are specified in Hefs.
54 and 55.) At the present time there are, to our
knowledge, no reported measurements of 0, or
5„ in l.eptonic r decay.

Thus, our analysis shows that the effects of
neutrino masses and mixing on the /, polarization
are extremely small. and, especially in view of
the accuracy of existing and forseeable experi-
ments, are not likely to provide useful signatures.

As the last part of this section we consider
another manifestation of neutrino masses and mix-
ing which appears in J.eptonic l, decay for p~ 3.
This is generically similar to the effect on the
observed ratio R„=B(M' -e'v, )/B(—M' —p'v, )
(where M = m or K) discussed in Ref. 3, in that
it involves (a) integral quantities, and (b) a ratio
of branching ratios, in contrast to the differential
spectral effects in M„or leptonic E, decay. The
quantity of interest here is the ratio

B(l,-»,l„v,„) (2.124)

In. the conventional theory (with m, =—1) (R, ,~, ,)„,„
=r(o, o, m~)/r(o, o, m,). Note that the order-&}.
radiative corrections do not affect this equality,
since they are mass independent. " For the one
case of experimental interest, (R, ~ „)„„
=1.0280. However, in the general theory
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TABLE II. The ratio R „~/~„~ as a function of m(v3) in
the case in which the only significant massive-neutrino
modes in 7 decay are those involving vs.

m(v3) (MeV)
R

B(7-v ev, )
~"e/v

0
50

100
150
200
240

experiment (Ref. 43)

1.0280
1.0281
1.0284
1.0290
1.0297
1.0304

0.95 + 0.10

I U,*,.U,
&

l 'r(m(v, ), m(v&), m, )
Cf)

~ ~ V,*„U„~'1"(m(v„),m(v, ), my
'

(2.125)

which usually would differ from (R, „, ,)„,„. A

question which then arises is the following: as
with the spectral parameters, given the present
bounds on neutrino masses [in particular, m(v, ) j
and lepton-mixing angles, how large could their

effect on 8, &
„be? Furthermore, could one

use the measured value of this ratio to obtain
useful direct bounds on m(v, ) or correlated bounds
on the contributions of HSC (i,j) modes? Let
us first consider the effects of DC modes on

A, & „. In this case, to a good approximation,
one can neglect SC modes, so that R, „, ,
= r(m(v, )/m„O, m, /m, )/r(m(v, )/m„O, m, /m, ).
As m(v, ) increases from zero to its currently
allowed maximum'~ (at the 2o level), 245 MeV,
this ratio increases, but only slightly, as our
results in Table II show, It is straightforward to
calculate the changes in the ratio which would be
caused by possible HSC modes; these are smaller
than the HDC effect just analyzed. Thus, the ques-
tions posed above are answered; even with a sub-
stantial improvement in the accuracy of the mea-
surements, the effects of neutrino masses and
mixing on A, ,/, „are unlikely to be detectable.
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