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We calculate in quantum-chromodynamic perturbation theory the asymmetry parameter A in the production of
massive dileptons in collisions of polarized hadrons as a function of transverse momentum, using various models of
spin-dependent parton distribution functions. We find A to be negative, large, and model-dependent for p-p
collisions, whereas for p-p collisions A is not strongly model dependent and varies from —5 to 7 % for various

values of transverse momentum.

I. INTRODUCTION

In this paper we study the Drell-Yan production of massive lepton pairs, modified by quantum chromo-
dynamics (QCD), in longitudinally polarized hadron collisions for nonzero transverse momentum of the
dilepton. We are avoiding zero transverse momentum of the dilepton to avoid the mass singularity. We
calculate the asymmetry parameter,

m'(d'o/dm'dqr')(H, (+)H, (+)- p.
'

p, X)—m'(d~o/dm'dqr')(H, (+)H,(-)- p,
'

p, X)
m'(d'o/dm'dqr')(H, (+)H,(+)- p'pX)+m. '(d, 'o/dm'dqr')(H, (+)H,(-)- p, 'p, X) '

as a function of rr =qr/Ws, where m' is the in-
variant mass squared, q~ is the transverse mom-
entum of the lepton pair, and vs is the center-of-
mass energy of the colliding particles.

The QCD subprocesses giving rise to nonzero
dilepton transverse momentum are (i) q-q annihi-
lation giving rise to a gluon and a virtual photon
eventually decaying into a lepton pair, Fig. 1(a),
and (ii) q-g Compton-type interaction giving rise
to a virtual photon eventually decaying into a lepton
pair, Fig. 1(b). We calculate the asymmetry pa-
rameter A assuming four different models of spin-
dependent parton distribution functions in a polar-
ized nucleon for P-p collisions and P-P collisions
and plot A against ~~. It must be emphasized that
these results are valid only for those values of q~'
having m'=qz, '&1 (GeV/o)'. Below this the non-
perturbative effects play a significant role.

The arrangement for the rest of the paper is as
follows. In Sec. D we define the variables to be
used in the paper, derive the differential cross
section for QCD subprocesses for definite helicity
states of the interacting partons giving rise to the
dimuon transverse momentum, and then derive the
expression for the asymmetry parameter A, . In
Sec. III we discuss the various models for spin-
dependent parton distribution functions in longitu-
dinal polarized nucleons {antinucleons). Section IV
deals with results and discussions.

II. DERIVATION OF THE QCD SUSPROCESS CROSS
SECTION m d oidm dq& AND THE EXPRESSION

FOR THE ASYMMETRY PARAMETER A

First we give the definitions of the various vari-
ables that we use in the rest of the paper. We con-
sider the following process:

p'-4

+z,ge,c

FIG. 1. (a) The diagram contributing to the subprocess
qq gp' p . (b) The diagram contributing to the sub-
process qg —qp' p, .
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H (P,)+H (P )- P, (K )&I, (K )X.

H, and H, denote the colliding hadrons with mo-
mentaI', and P» respectively, and K„K, are the
momenta of the muon pair. We work in the hadron
center-of-mass frame. The QCD subprocesses
producing the lepton pair are the following:

(i) q(P, s)+q(k, s')- g(P', e')+ y,'(K„s,)
+ p (K„s,), (2)

where q, q are the annihilating quark and antiquark
with momenta, P, k and spin s, s', respectively,
and g is the gluon produced with momenta P' and

polarization e . This process is depicted in Fig.
1(a).

(ii) q(P, s)+g(k, ~)-q(P', s')+ i('(K„s,)

fH& )( ) fH(+)( +) f(H( )(

ZH(i)(X) =gH(k)(Xi+) gH(+)(Xi ) i

fH( ) fH( )( .
) fll&+)(

=fiI&-&(x -)+fH& &»-+)

gHh) gH&+&(Xi+) +g H(+)( Xi

gII( &(Xi -)+gH( )( i+-)

Parity invariance demands that

fH(«&( +) =fI'I( )(" )-fH(. )(x -) =f'H( &(x -+)

gH(+&( i+ gtI(-)( i ) i gH(+)(Xi ) gtI(-)(Xi+) i

and thus

and

+ p. (K„s,)

q(P, s)+g(k, e)-q(P', s')+ p, '(K„s,)

~f~, .(x) = —~f*, ,(x) = ~f((x),

gH(+&( )= gH(-&( ) — &gH(X).
(6)

f =(P -P')'
u = (q —P) i s+t+u =m

(4)

r =m'/s,
("t x/2

r, =q,/Ws, q, =l,"=

=transverse momentum of the
dimuon.

p~&, &(x, s), fH& &(x, +) denote the probabilities of
finding a quark i (or antiquark i ) of helicity + with
fraction x of the parent hadron's momentum inside
a hadron B' of helicity + and —,respectively, and

g«. &(x, +), g„& &(x, +) are the respective probabil-
ities for gluons. We define

+ p, (K„s,).
Figure 1(b) depicts this process in which a quark
or an antiquark of momentum p and spin s interact
with a gluon of momentum k and polarization &

giving rise to a quark or antiquark of momentum
p' and spin s' and a pair of leptons.

We define

s = (P, + P,)' = 2P, ~ P, ,

q =K, +K2,

q'=m'= invariant mass squared of the dilepton
pair,

s =(P+k)'=(x,P, +x+,)2=x,x,s,

The process q(P, s) +q(k, s')-g(P', e') + p'(KI, s )
+p (Kq, sq). This process is depicted in Fig. 1(a).
By straightforward calculation we arrive at the
differential cross section

where a =e'/4)I is the QED coupling constant and

a, =g'/4)I is the QCD running coupling constant,
q, and q, are the helicities of the quark and the
antiquark, respectively. Using the identity q~'
=ut/s we deduce

.(q(&7,)q(&7.) —u'u X)
d 0'

dm'dg'z,

6
16'&& (1 —rj, I),)c('c(,e s'+ m'
27)'s[(s —m')' —4sq ']'" sq '

Thus we see that the only quark and antiquark of
opposite helicity couple:

.(q(+)q(+)- u'u X)d o'

dm 4gp

22a'a, e(' s'+m'
27s[(s —m')'- 4sq '~'I' sqr'

—
/

(10)

The process q(p, s)+g(k, H)-q(P', s')+)).'(KI,HI)+g (Kz, sq) This proee. ss is depicted in Fig. 1(b). By
straightforward calculation we arrive at the following expression:

A A

where &) and A are the helicities of the quark and the gluon, respectively. Using the identity qr =uPs we
get
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d 0' n'o&, ei' s+ Sm' (s -m') 2m'(s -m').(q(n)Z(~)- I'~ X)=9-r,,- '.;. 4-82 q~ S

+ gA — „+,i1-(s+ Sm') (s —m') Ii 2m'
s q

2 s

To write an expression for the asymmetry parameter A, we need the convoluted cross section

-
d2 annjhm',„,(H, (h, )H, (h,)- &u'» X),dm dqz

owing to the quark-antiquark annihilation subprocess, and

Comp

m'„,„,(H, (h, )H, (h,)- p, 'p, X)
dm2dq '

owing to the quark- (or antiquark-) gluon Compton process. Using Eqs. (8) and (11)we get the following
expression for these cross sections:

d2 annjhm',„,(H, (h, )H, (h, )- p, 'i&, X)

dm'ding'

16@2@s
~& 0

dx ae((s —m')' —4sqr')

e 'Gfir, (a,&.(x& +)fi'cga, )(xa )+f'ir, (a, &(x& -)fizaia, &(xa, +)]+ [x& xa H& Hn]),
f=gp ffp's

d20.Compm',„,(H, (h, )H, (h, ) —u'p X)
dm diaz

~2~ t'1 t 1

9
'

Jl dx, dx, e((s -m')'-4sqr') g e, 'fC&z &a &(x,)[f&rya &(x,)+fz &a &(xa)]

+»~s,&a, &(x,)[ freya, &( .)+ fspa, &(xa)]

+ [x,—x»H, —Ha]}, (1S)

where h, and h2 are the helicities of hadrons H, and H„respectively, and

(A2
8=

i „,-2i (s[(s -m') -4sqr'] j,
& sq~' j

(14)

S —aye S PE ( 2' S m 2 2 4
S

(15)

Using Eqs. (12) anil (1S), anil (5) anil (6), we arrive at the following expression for the asymmetry para-
meter &:

+annjh ~Comp

(gannia+ gcomp)+ (gannlh+ scamp)

d2( aIlnlh d2gallnjha~=ma„a„, (H, (+)H,(+)- i&,'p. X)-m', ,(H, (+)H,(-)- p, '», X)
dm QQ'g dt@ dip

F6+2&
dx, J dx, g((s -ma)' —4sqza)28 g e,a[&fz&,&(x,)&fz&, .( ) &x(i +i )],

0 0 gpgp s
(18)
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Comp d20 Cojllp

S ' ~ =m'
2d g(H, (+)H2(+) u'PX)-m

d 2 2(H)(+)H2(-)-O'PX)

2(y f' $

dx, J dx, 8((s m-')2 -4sqr')2D g e; 'jn g„(,&(x,)[&f„' (,&(x,)+ &fs,(,&(x2)J
0 0 i=I', g, S

+ [x,-x„H,-H, ]j,
d2O annih d2g SIlIlll

=m' »(H, (+)H, (+)- i),'p, X)+m' »(H, (+)H,(-)- P,')) X)dm dgg

16n2e, f
'

Jl dx,
J

dx, 8((s-m')'-4sqr')2& Q e [f„' (x,)f„' (x,)+(i iQ],
0 0 i=St ((fy S

d 0' d2g Comp

, (H, (+)H, (+) p+)(( X)y m', , (H, (+)H,(-) g' p, X)

(19)

(20)

+2'
9

'J~ dx, dx, 8((s -m')'-4sqr')2C g e, '( g„(x,)[fs (x,)+f'„(x,)]+ [x,—x„H, H, ]}.
0 0 i =Qy ffy S

(21)

III. SPIN DEPENDENCE OF PARTON DISTRIBUTION
FUNCTIONS

We take the following four different models for
the spin-dependent parton distribution functions in
longitudinally polarized nucleons (antinucleons).

A. SU(6) model

We assume the sea and the gluon to be unpolar-
ized and take the spin dependence of quark distri-
bution f(x, +) based on a nonrelativistic SU(6)
wave function of the nucleon, i.e. ,

f~(,)(x,+)= gf~"(x)+-,'f p'(x)=f j(,&(x,+),
)+

f4~(, )(x,+)= ', f~~"(x)+ ,' fp~'(x—) =ff(, )(x—,+),

f~(.)(x, -)=-',ff"(x)+ g f~"(x)=fI(,&(x, -),
where the second superscripts v and s denote
valence and sea contributions. Thus

Thus,

- n.f '(x) ] . (27)

'.&Gvj „(, &Gvi z- zo.
1

+ —,
'

I dx[&f'(x)+ & (x)].
0

Neglecting the strange-quark contribution, one
gets

(28)

(s,)q„„„,= —,
' (3E D), - (29)

I

(L,)= o

1

(S,),„,= —,
' dx[n f"(x)+nf"(x)+ 4f (x)

0

+ nf (x)+ 4f (x)+ hf (x)J, (25)

I'G~l
dx[&f"(x)+ hf"(x) —4f~(x) —4f (x)],

F~ II~P 0

(26)
p j

dx[~f '(x)+ ~f '(x) —n.f '(x)
(~Y j g ~@0 "0

&f~(x) = &f~~(x) = ', f","(x), -

&f~(x) = &f~~(x)= —s f',"(x),
hfI(x)=&fs~(x)= &f~(x)=4fp(x)

= 4f '(x) = 4f s(x ) = 0,
&g, (x) = &g;(x) = o.

(23)

where

=E+D,(G

II~@

Gvi = -~'

B. Sehgal model

In this model we use the Sehgal' parametriza-
tion for d f&(x) and &ff(x) Since for a nu.cleon

Using the experimental values of D+ E = 1.25
+ 0.01 and E/D = 0.5 + 0.03, one gets (s,) „„„=0.03
a 0.03. The average value of E/D over all X is
taken here, whereas it may change'4 with x.

Thus,

(Jg) = (S,)q, )
+ (Sg)s„,„+(I,),

we take

(24) (s, ), ,„=0.2+ 0.05.
Assuming the sea to be unpolarized, we get

(3o)
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1

0.3 = (s,),„„~,=-,' dx[nf"(x}+ sf~(x)]
0

and the Bjorken sum rule is

(31)

1

1.23 = dx[af"(x) —sf"(x)] .
0

Thus, Eqs. (31) and (32) give

r f"(x) = 0.456 f™(x},
r f"(x) = -0.315f'"(x) .

(32)

(33)

1
( +1) "'

0.2=(s,)„„.„= xpg(x)ax= p 2 ~
(1-x) Cx

0 0

We parametrize the spin dependence of the gluon
distribution as ag(x) = pxg(x) such that (30) is sat-
isfied,

cos28 =(H(x)N(x) + 1} '

=(1+H (1 —x}2x '") ' (37)

2'(x) = cos28[~fP(x) —-', f~~"(x)],

2g,"(x) = cos28[~f ~ (x) —-', f~~"(x)],

since

2gf(x) =-', nf ~(x)+-', sf~~(x},

2g,"(x) = ', nf f(x)+-', r f",(x) . -
Equations (38) and (39) give

(38)

The spin-dependent structure functions are simply
given as the product of a function describing the
asymmetries of valence-quark spins as given by
the broken-SU(6) model ~ 6 in the absence of the
interaction with the spin dilution factor cos20. The
structure functions for scattering off longitudinally
polarized nucleons thus have the form

n,f "(x) = cos28 [f~"(x) —3f~"(x)],
rf', (x) = cos28 [--',f',"(x)] .

(40)

Thus, P = 0.4.
Hence,

b,g(x) = 0.4xg(x),

g (x) = (1 —x) ix .(m+ 1)
2

(34)

C. Carlitz-Kaur model

In this model, valence quarks interact with the
sea and hence their spins are diluted. Let sin2g

be the probability that a valence quark's spin
changes in interaction with the sea. Suppose H(x)
is the probability of spin-flip interaction between
the valence and the sea and N(x) is the density of
the sea relative to the valence. Then from statis-
tical consideration

1 H(x)N(x)
2 (H(x)N(x)+1)

' (35)

Carlitz and Kaur, ' assuming the sea to be unpo-
larized, deduce the expression

H(x)N(x) =H, (l-x}x ' 2. (36)

We call this the Sehgal model. Such a polarization
of the gluon without a corresponding polarization
of the quark sea is not consistent, as the quark
sea is supposed to arise from the gluons. How-
ever, this calculation is done only with the aim of
seeing the effect of gluon polarization. The effect
of sea polarization is discussed in the Babcock-
Monsay- Sivers model.

The (g,) sum rule indicates that 11.6'/0 of the pro-
ton's helicity is due to gluons. We parametrize
the spin dependence of the gluon distribution as
before, i.e.,

bg(x) =Cxg(x) = (1 —x)
C m+1)

(41)

and fix C such that the gluon carries 11.6./o of the
proton's hei icity. Thus,

ng(x) =0.056(m+1)(1 —x) (42)

D. Babcock-Monsay-Sivers model

This is the model of spin-dependent distribution
functions in nucleons given by Babcock, Monsay,
and Sivers. ' In this model they assume the sea, to
be polarized and parametrize the sea distribution,
based on perturbation-theory diagrams in QCD
and the generation of the sea,"a,s

f~(,,(x, +) =cf~(x)[2+ (1-x)'],
f~(,)(x, —) =cf~(x)[1+2(1—x)'], (43)

g„,,(x, +) = kg(x) [2+ (1 —x)'],
gp&„)(x, —) =~g(x) [1+2(1—x)'] . (45)

where c is to be fixed by the amount of momentum
carried by the sea. Thus,

~f;(x) = cf;(x)x(2-x) .

They parametrize the gluon distribution, on simi-
lar considerations, as

The value IIO =0.052 is set by the Bjorken sum
rule, Eq. (32). A measure of the spin dilution in-
duced by these interactions is given by

Thus

egg) =(g(x)x(2 —x), (46}
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where j's is to be fixed by the fact that 50/o of the
nucleon's momentum is carried by the gl.uon. For
g(x) of the form (1 —x) /'x, Is becomes 0

-20
.3

I

4
(a)

(m+1)(m+ 3)
12(m+2)

g(x) =(1-x)"/x.
(47)

& =.P2

hf "(x) and Q"(x) are fixed by the Bjorken sum rulc
(32) and the (J,) sum rule (24). If one assumes
the spin-averaged parton distribution as given by'

f~s(x) =1.79(1 —x)s(1+2.3x)/Mx,

-60—
&=.40

f""(x)=1.07(1 —x)"/vx

f s(x) = 0.15(1—x)'/x,

f s(x) =f,"(x) =f,'(x) =f;(x),
then

(48)
0

-20

& =.02-$0-

.2
I

4
l

(b)

+'(x) = @' (x) = sf "(x) = 0.028(1 —x)'(2 —x),

Q~(x) =0.456f s"(x), (49)

-4O-

-50—
~=.~O&~ 4O

f s(x) 0 315fsv(x)

IV. RESULTS AND DISCUSSION

We compute the asymmetry parameter A. as a
function of ~~ for the longitudinally polarized
proton-antiproton collision and proton-proton col-
lision for the four various models of spin-depen-
dent parton and gluon distribution functions given
in Sec. III. For the spin-averaged parton distribu-
tion we take the ones given by Peierls, Trueman,
and Wang' and the spin-averaged gluon distribu-
tion is taken from the form l's(1 —x) /x, where )'s

is fixed by the fact that gluons carry 50~/z of the
nucleon's momentum. We do our calculations for
m = 5 and m =8 and take v s =27.4 GeV for values
of v=0;02, 0.06, 0.1, and 0.4, r~ from 0 to 0.5.
It should be noted that perturbative QCD is valid
when r~ &0.1 for v=0.1 and x~ &0.2 for T =0.4."

For p-p collisions, the gluon contribution is
understandably very much less than the valence
quark-antiquark contribution. We make the follow-
ing remarks regarding the p-p case.

(i) For all spin-dependent parton distributions,
A is negative for all values of r~.

(ii) For the distribution obtained from SU(6)
(A~ increases as s'r increases [Figs. 2(a) and

2(b)], the value of A ranging between —30/o to
-44/o. The Drell-Yan model" (with s r=0) also
gives -44% when SU(6) is used. This limit can
be understood simply because the u quarks do-
minate A hand d f"(x) = —',f (x). Thus,

~sf s (x)sfs (x) 4

~f, (x)f~"(x)

(iii) For the Sehgal model the parameter A is

2 .4
I

(a)

-&0-
&=.02

+ -2O-
&=.4 ~=.to

"30—

.2
4=.02

.3
I

.4
(b)

-20-

-30-

-40 "

FIG. 3. (a) Graphs of A (expressed in percentage), for
pp collision, plotted against r& for 7=0.02, 0.06, 0.1,
0.4 for the Sehgal model, the gluon distribution being
3(1-x) /x. (b) Same, except that the gluon distribution
is 4.5(i -x)'/x.

FIG. 2. (a) Graphs of A (expressed in percentage),
for p p collision, plotted against r z, for 7 = 0.02, 0.06,
0.1, 0.4 for the SU(6) model of spin-dependent parton
distribution, the gluon distribution being 3(1-x ) /x . (b)
Same, except that the gluon distribution is 4.5(1 -x)8/m.
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-20

& =.Q

.2
I .

10-

& =.02

.2 .3 ,4
=40

.5

-)o-

0

10-
(b)

0 I I

.3 .4

—&=.02
Y=.'t

-80
FIG. 4. (a) Graphs of A (expressed in percentage), for
pp collision, plotted against r& for v =0.02, 0.06,
0.1, 0.4 for the Carlitz-Kaur model, the gluon distri-
bution being 3(1-x )~/x. (b) Same, except that the
gluon distribution is 4.5(1-x) /x.

-10

FIG. 6. (a) Graphs of A (expressed in percentage),
for pp collision, plotted against x& for v =0.02, 0.1,
0.4 for the Carlitz-Kaur distribution, the gluon dis-
tribution being 3(1-x)~/x. Dashed lines are obtained
using q dependent distr ibution functions. (b) Same,
except that the gluon distribution is 4.5(1 —x) /x.

10 g'=.02
(a)

.3
e= 40

.5

&0-

(b)
— ~c=.OR

e =.'l0

c 4 .5

-'fO-

FIG. 5. (a) Graphs of A (expressed in percentage),
for p p collision, plotted against r& for v = 0.02, 0.1, 0.4
for the Sehgal model, the gluon distribution being
3(1-x) /x. Dashed lines are obtained using q -depen-
dent distribution functions. (b) Same, except that the
gluon distribution is 4.5(1 —x)8/x.

more or less similar to the SU(6) model but values
are less. The results are shown in Figs. 3(a)
and 3(b).

(iv) The Carlitz-Kaur model has a much larger
value of nf "(x) for large x. This leads to a much
larger asymmetry for large x as shown in Figs.
4(a) and 4(b). Even though the model is not very
reliabl. e in this limit, it will be of interest to test
whether the asymmetry is as large as 80/~ for
y~ =0.45. This would clearly distinguish it from
the other models.

(v) Tbe Babcock-Monsay-Siver distribution, when
the sea is also polarized, does not lead to any
significant difference from the Sehgal distribution.
This is understandable because the contribution
due to the sea is insignificant.

We now turn to the p-P case where the quark-
gluon contribution is as important as the quark-
antiquark contribution. This happens because the
quark-antiquark contribution is small as the anti-
quark distribution function in a proton is sup-
pressed. We give the following comments.

(i) For SU(6) A is zero because neither the anti-
quarks nor the gluons are assumed to be polarized.

(ii) For the Sehgal distribution the asymmetry
is shown in Figs. 5(a) and 5(b). This comes en-
tirely from quark-gluon scattering, as the anti-
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10-
(a)

0

-10-

(b)

~= .02-.10

.$0

We have calculated the asymmetry parameter
A in the scaling limit. However, we can also
include the scale-violating effects by treating the
parton functions as a function of q . We use the
Gluck-Reya" distributions for the q dependence
which is

ln[qs/(3 x 1Q s)] o.ssl-x 1n(n po 0121.
f & (x, q ) f(x, -q ) 1 [ /(3 10-s)]

ln[qs/(7x 10 7)] 0.701~10(q /0. 0013&

q ) ln[q, '/(7x10-')]

ln[qs/(1 x 1Q-3)] 0.37-x lnIn fo. sss&

qo ) ln[q '/(1 x 10 )]

~&=.02
I

.5
«=.1

"M=4

FIG. 7. (a) Graphs of & (expressed in percentage),
for pp collision, plotted against g2, for v =0.02, 0.1,
0.4 for the Babcock-Monsay-Siver distribution, the

gluon distribution being 3(1-x) /x. Dashed lines are
obtained using q -dependent distribution functions. (b)
Same, except that the gluon distribution is 4.5(1 —x)8/x.

quarks are assumed to be unpolarized. The asym-
metry has a strong dependence on the gluon dis-
tribution. This can be seen as we change the
gluon distribution from 3(l —x)'/x to 4.5(l —x)'/x.
The same remark holds for the Carlitz-Kaur dis-
tribution [Figs. 6(a) and 6(b)].

(iii) The antiiluarks are polarized in the Siver
model and hence both the quark-antiquark and the
quark-gluon processes contribute to the asymme-
try. These are shown in Fig. 7(a) and 7(b).

ln[qn/(4x 10-3)] 0.3ss-x In(ns/0 0311

8(xs q ) Z(x & qo ) in[ 3/(4 x 1(l-3)]

where q, ' =3 GeV', and q' is in GeV'. In the case
of p-P collisions there is no substantial scaling
violation. However, there is a slight effect in
the p-p case with 7 =0.4 and low values of x~
[Figs. 5(a), 5(b), 6(a), 6(b), 7(a), 7(b)]. Since
the maximum value of m „considered is approxi-
mately 16 GeV (for Ms=27. 4 GeV and 7'=0.4),
the effect of the neutral vector boson Z will be
negligible. "'"

We conclude by observing that A for p-p collision
shows striking variation with r~ and varies strongly
with the model chosen for the spin-dependent va-
lence-quark distribution functions in nucleons.
Thus A as a function of x~ will serve as a good
test for the correct spin-dependent distribution
function of valence quarks in nucleons and hence
is worth measuring.

After the completion of this work, we received
a copy of a similar work by Keisho Hidaka. " He
calculates the asymmetry only for p-P collision,
whereas we calculate it both for P-p collision and

p-p. Our results are in good agreement with his
work.
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