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We analyze 3m production results obtained from recent di6'ractive and charge-exchange experiments. We find that

two resonances, a J = 1+ (A, ) and a J =0 (m') are required by the data. The resonance parameters are

M„, = 1230~30 MeV, I'„,= 350~60 MeV, and M, = 1273~50 MeV, I",= 580+100 MeV. We interpret the

above resonances in terms of qq and q'q' quark-model states.

I. INTRODUCTION

Recent high-statistics experiments involving the
diffractive reaction w P -(Sw)P (Ref. l), and the
charge-exchange reaction w p -(Sw)n (Ref. 2} shed
new light on the A& problem. Amplitude analysis
of the pm diffractive data indicates a peak in the
J~=1' cross section, and large and rapid varia-
tion of the associated phase, near 1300 MeV. An

Aitchison-Bowler analysis3 yields the A& parame-
ters M„,=1280+30 MeV, I"„,=300+30 MeV. ' The
charge-exchange results are less definitive, but
we show that they imply an A& consistent with that
obtained from the diffractive data.

In the present paper we analyze the ACCMOR
and CEX results including pm am/ em production,
using a generalized version of the Aitchison-
Bowler techniques mentioned earlier. The re-
sulting width of the A& into em is surprisingly
small, and as a result, our A& parameters are
very similar to those of ACCMOR who considered
only pm. Our principal new result is the existence
of a J'~=0- resonance (w'} with parameters M,
=1273 +50 MeV with I", =508~100 MeV. The
corresponding A& parameters are I'„,= 1230 + 30
MeV and I'„=350+60 MeV. In Sec. II we define

1
our basic isobar formalism, and discuss the
partial-wave analysis of the isobar amplitudes.

A major obstacle to accurate theoretical analy-
sis of the A& in strong-interaction experiments is
its production in the presence of large nonreso-
nant, Deck-type backgrounds which have rapid
variation within the A& width. Moreover, analysis
indicates that, when produced, the 1' pm system
behaves like resonance plus background, rather
than pure resonance. In our model the effective
1' background is generated by a higher-mass A&.
Since our final A, parameters are very similar to
those of ACCMOR who fit the 1' pm data with a
"single" A&, one must conclude that the diffractive
production of the resonant term which acts as a
background is small. We show that this is the

case in Sec. V. It is clear that a detailed dynami-
cal theory is required to explain such complicated
phenomena. However, no such theory exists, and
we believe that the next best approach is a phe-
nomenological framework which takes into account
important principles such as unitarity and analytic-
ity. For these purposes, we find the type of model
first proposed by Aitchison and Bowler3 to be most
sa'. isfactory. In Sec. III we derive a multichannel
generalization of the latter work for application to
the 1' and 0- pm and &m systems.

The details of our fitting procedures are dis-
cussed in Sec. IV, and results and conclusions are
given in Secs. V and VI, respectively. In the latter
section we speculate that a four-quark (q p ) state
proposed by Jaffe4 is responsible for the observed
"nonresonant" background in the A& channel.

Finally, in the main text, we try to avoid com-
plicated derivations which interrupt the logical
flow of ideas; such necessary discussions and
derivations appear, rather, in Appendices A and
B.

II. CROSS SECTIONS AND PARTIAL-WAVE
ANALYSIS

We develop an isobar model to study the three-
pion systems produced in the diffractive reaction
w-+p -(Sw)+ p, and the charge-exchange reaction
w +P -(Sw+n. We shall assume that the diffrac-
tive reaction proceeds entirely through Pomeron
(P) exchange, while the CEX reaction goes solely
via p exchange. Both Pomeron and p exchanges
are natural-parity exchanges. In general we shall

, label the 3 amplitudes by M", where M is the
magnitude of the z component of the angular mo-
mentum in the Gottfried-Jackson frame, ' and g is
the exchange parity (+ for natural, and —for un-
natural). Both the Pomeron and p can excite M = 1
and M =0. The M =1 amplitudes are small for the
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Pomeron and we shall ignore them.
Assuming that the three final-state pions are

produced exclusively in the particle-isobar com-
binations pm and ew, we thus define a pseudo-T-

matrix element describing three-pion production,

(k, T„k2T2qksTs I T(w~) I n) =T«+ Tql (2.1)

with the isobar decompositions

(ki lf«(W„) ln)e"'sin5, —'(tit, T,7, I1T',)(tyt~TyT, I
t,T,),

iq', &), (cyclic& Q'6

Tq
( i}U2 g (kiX lf (Wg) )

n)e 8ln5
)& g (V y&))y(t 't(&TiT(q I

1T&(tyt& TyT)ql t(&T )
i j,k (cyclic)

(2.3)

In Eq. (2.1), n =P or p and
I n) represents either a 7&P or i&p initial state corresponding to a particular

3P; R„ is the 3~ c.m. energy, the k s are the final-state pion momenta, and the v&'s are the correspond-
ing third components of isospin. We refer to T in (2.1) as a Pseudo T mat-rix -because the P or p in the
initial state are Regge exchanges rather than true particles.

In Eqs. (2.2) and (2.3) we are treating identical particles as in Ref. 6, hence the factors I/(3!)-'~~. 6, and
~ p are the m-m phase shifts in the I= 0, J= 0.and I= 1, J= 1 states, respectively, with &d „q, and +„qp the
corresponding c.m. energies and momenta. In (2.3) V is an off-shell polarization vector, with V a Lo-
rentz invariant and equal to the square of the c.m. momentum of the pions in the p (Ref. 6).

It is the matrix elements of f, and f, that will be related to experiment, and are the subject of the re-
mainder of this section. We now expand (2.2) and (2.3) in terms of partial-wave amplitudes which will
contain the fitting parameters of the analysis, i.e. ,

(ql f, (W„)ln) = g (qual, I f„(W„)lkgl &Y', (q)1'*, (k)(l s m o, IZM&,

gqmq

lorn ~

(fI! I f,.(W~) I n& =g &qual. l f,.(W.&l kJ 1.&y,-,«)y*:.(k) &I.s.~.n. I &M&&I, Im, ~ I'M&

(2.4)

(2.5)

where k is the relative momentum in the initial state, and s is equal to zero for the Pomeron, and to one
for the p. In Eqs. (2.2)-(2.5}we have adopted the following conventions in the Clebsch-Gordan coefficients
(CGC's): (1) The pion always appears in the first position. (2) When coupling a particle and an isobar, the
particle appears in the first position. (3) When coupling orbital angular momentum l and channel spin j, l
appears in the first position. (4) In Eq. (2.3), for example, the particles in the isospin CGC appear in the
same order as they do in the polarization vector V.

Finally, following accepted procedures, we treat (2.1) as a standard T-matrix element, and express the
cross section for three-pion production proceeding from an initial state 0. =mP or wp with a particular M
in the form

'.('» 'a '3) = fqq "'l&qi'i qe a qs'sl qoq , )l q'&, l'

where the formula for n-body phase space is
n n

qp'"'={Qq)4q4(q —Qq,. '

(qq) ~q4q,.qqq'(q ' —I ')
i=1

(2.6)

(2.V)

(2.6)

We may express the above cross section in terms of the partial-wave amplitudes by substituting (2.4} and
(2.5) into (2.6), obtaining

..& „„,)= Pf,',",'. 1&q«. lf..(~.&lq«&l'"""
iq&q

+
I (qual, I f, (w„) I

kzl&I,' —+ cross terms .

Tile above expressions can be compared directly
with the published results of the various 3m par-
tial-wave analyses. It is the di~ect terms and the
phases of the partial-wave amplitudes that are
quoted in the literature.

IH. TWO-COMPONENT, MODEL OF THE ISOBAR
AMPLITUDES

A. Diffractive

We first develop a theoretical framework for
diffractive 3m production which builds in what we
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believe are the important reaction mechanisms
and properties of the three-pion system:

(1}Diffractive production is simulated by as-
suming Pomeron exchange to be the only relevant
mechanism. Thus all three-pion production pro-
ceeds from in initial pion-Pomeron (»» P) s-tate.

(2} In our description of the Pomeron, it never
appears in intermediate or final states of the 3m

system.
(3) As explained in Appendix A, the quark struc-

ture of the three-pion system is included an isobar
form by introducing the basic interactions

u;,(q)(M; —W„—i I;/2') 1V;~(p),

u„(q)(M; —W„—iI', /2) 'u„(p),
with

I'» =2[u;.(PA)'+u»s(PA)'] ~

(3 1)

(3.2)

(3 3)

Equations (3.1) and (3.2) describe the reactions
»» + P - »» + b and»»+ a - »1 + b (a, b =p or e }, me di-
ated by a particle of complex mass M, -i I';/2.
The introduction of such particles is motivated by
the known quark spectrum. In the 4~=1' three-
pion system two such particles are introduced,
related to the qq (-1100) and q'q ' (-1250) de-
scribed in Refs. 4 and 7.

The u;, in (3.1) and (3.2) are taken as products
of coupling constants and barrier factors, and
their parametrization shall be discussed in Sec.
IV. The vertex functions V&~ which describe
coupling of the Pomeron, simulate diffractive
production, and are much more complicated than
the u;, . Below we shall use unitarity to determine
their optimum parametrization.

(4}Following the approach of Aitchison and
Bowler, we break the partial-wave amplitudes
into two parts, the first describing 3m production
via the Deck mechanism, and the second corre-
sponding to direct coupling of the Pomeron to the
37t states suggested by the quark model. Thus
using the notation of (2.4) and (2.5), we define

(q&l, I f, 2l, WA)IP, J=l) =f, (q,p;W„)
+f'..(q,p;W. ),

where f,~ is the Deck background and assumed to
contain no iterations of the basic interactions (3.1}
and (3.2), while f",~ describes resonance produc-
tion and sums all diagrams in which em or pm final
states are produced by propagation and decay of
one or another of the quark-related states dis-
cussed above. In (3.4) we have suppressed angular
momentum labels on f and fs, and shall continue
to do so for the remainder of this section.

The Deck amplitudes f,~ are parametrized ac-
cording to Ref. 8. The structure of the resonance
amplitudes f",~ is determined by our model as ex-

plained in Appendix A. It is useful to define re-
duced amplitudes

fsP=~Psfa2&PJ &

which satisfy 'a modified unitarity relation (no
phase-space factors)

(3.5)

Absf, ~(s) =iaaf „(s}f,~(s), s =W„2

where

(3.6)

B. Charge exchange (CEX)

In the case of CEX we consider only the (nu-
cleon) spin-flip data, which the partial-wave anal-
ysis shows to be dominated by natural-parity ex-
change. In line with this observation and theoreti-
cal estimates, we assume that the spin-flip 3~
production reaction proceeds entirely through
Reggeized p exchange. Thus in the 3m system we
wish to study the reactions

Reggeized p+ m -p+ m or e + ~. (3.12}

If the initial state contained a real p rather than a
Reggeized p, our formalism would provide very
stringent mutual consistency constraints on the
diffractive and CEX data, since the same p cou-

Absf, ~(s) = [f,~(s +is) —f,~(s -ic)]/'2i . (3.'I)

It is important to note that Absf, ~ is in general
complex. In the traditional isobar model, Absf, ~
would be real and equal to Im f,~. This is not the
case in (3.6) because the initial state contains a
Pomeron which is not a normal particle. Corre-
sponding to the reduced amplitudes f~ appearing
in (3.5) are reduced quantities f,~ and f,~ related
to f,~ and f",~ of Eq. (3.4). In Appendix A we ob-
tain the results

2

f„(q,P;w„)= g u,.(q}D-„-(W„)v„(p)/detID I,
i 2/=i

(3.8)
2

f'.~(q, p;W. ) = 2 u». (q}D-„-(WA)u» (p)/detIDI, (3.8)
& 2i=&

where i and j are defined such that if i = 1, then
i =2, and vice versa.

D»(W„) Ms WA —z[u»s (P„)+u&s (P„)]& (3 10)

D 12(WA ) = 2 [u1 ( pA )u2
&&( pA ) + ui s( PA ) 2 s( PA )] '

(3.11)

The zeros of ID I
in Eqs. (3.8) and (3.9}give the

3~ resonant energies. In general D&2 mill, of
course, have a real part, which is necessary to
compare our amplitudes with those of Ref. 3. This
comparison will be discussed in detail in a future
publication by one of us (R.S.L.).
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plings would be present in both. Such is not the
case, however, and we thus make the following
assumption concerning the Reggeon (p}-7)-A vertex
functions; namely, we write

Cu;p(p) (3.13)

in place of the u;,(P) appearing in (3.1), where C
is a complex constant. This is the simplest choice
consistent with analyticity, and the present state
of theory and experiment does not seem to warrant
a more sophisticated one.

IV. FITTING PROCEDURES

We have simultaneously fit the low i[0.0-0.0-5

(GeV jc)2] and high-i [0.05-0.70 (GeV)'c)~] partial-
wave amplitudes obtained by ACt MOR, ' along with
the CEX2 results. These fits involve parametriza-
tion of Eq. (3.4) and a subsequent y2 analysis. The
total number of parameters involved in the fit to
the diffractive amplitudes is 39, with 16 being used
for the Deck contribution, and 21 to describe reso-
nance production, propagation, and decay. In the
diffractive case, the amplitude for A2- pg is taken
as the reference. The overall phase of this ampli-
tude is arbitrary, so two more fitting parameters
enter our formalism to describe the variation of
the latter phase from pure Breit-signer behavior
at low t and at high t.

Only two additional parameters are required for
the charge-exchange amplitudes. This is because
we are considering specifically those CEX ampli-
tudes corresponding to Reggeized p exchange and
treating the incident Reggeon essentially as a nor-
mal s-channel wm resonance. Thus the pg produc-
tion amplitude involves ordinary pw scattering,
which has already been parametrized for the dif-
fractive data.

(4.2)

where for J =1', i=1,2, and X=I,T, HT, while
for J~ =0-, i =2, and X=LT, HT. Note that in
J~ =0- we are assuming only one quark-related
state.

(2) Three mass parameters M; (i =1,2 for JP =1'
andi =2 for J~=O ) appearing in the propagators
in Eq. (3.10).

(3) Twelve real parameters (six complex param-
eters) are required for the Pomeron couplings
V;~. These are labeled by X=LT,HT with i=1,2
for J"=1', and i =2 for J =0-. The Pomeron
couplings shall be discussed further belom.

C. Structure of V&p

It is important to note that V~~ appears linearly
in (3.8) because in our formalism the Pomeron is
assumed present only in the initial state. As
pointed out earlier, it is a complex quantity which
includes the effects of resonance production via
direct coupling to the Pomeron as well as through
Deck rescattering.

For phenomenological fitting it is useful to break
up V;~ into dispersive and absorptive parts since
it can be shown that AbsV;~ is directly propor-
tional to the large and rapidly varying Deck back-
grounds, and also that it includes threshold singu-
larities in s. On the other hand, DispV;~ is a
relatively smooth analytic function of s that can
be parametrized with some confidence. '

We obtain the above breakup by substituting (3.4)
and (3.5) into the modified unitarity relation (3.6)
and using the explicit forms (3.8) and (3.9) for
f",~ and f"„. These manipulations yield

A. Diffractive data: Deck background

Our parametrization of the, Deck part is that of
Ref. 8; we choose

f (0 h'&. ) =~pal, x exp( Po,x&~)— (4 1)

B. Diffractive data: Resonance production

Parametrization of the resonant amplitudes f
involves:.

(1) Six parameters y», appearing in the vertex
functions u„

where p, is two-body phase space given by (2.7).
The 16 fitting parameters B and P are labeled by
u= p or e, J~= 1' or 0-, and X=HT or LT, mhere
LT and HT refer to low t and high t, respectively.

Aber ~(p&)=g f,ge+IP+j+Q)ufo'(VQ) (4'3)

In deriving (4.3) above we have used the fact that
Abs(EG) =F Abs(G) + G Abs(E) and assumed that
Absf, =0. The latter choice is made for simplic-
ity, and does not Preclude f, from being comp/ex.
Having obtained AbsV, ~, DispV&~ is obtained from
the identity

V;~ -=DispV&~+i AbsV&z. (4.4)

By using (4.3) we reduce the number of parame-
ters needed for V;„by 12, as well as taking into
account explicitly the more singular part of V;~.

D. Charge exchange

As discussed in Sec. IIIB, for CEX 3m production
proceeding via (nucleon) spin-flip and Reggeized p



ANALYSIS OF THK J~=l+ AND 0 THREE-PION SYSTEMS

exchange, two real parameters (i.e. , a single com-
plex parameter C) enter our formalism. These
parameters relate the Reggeon vertices to the
normal-particl. e vertices, and also measure the
relative normalization of the diffractive- and
charge-exchange cross sections.

E. Extraction of 3m resonance parameters

In order to study 3m resonances we search for
zeros of det1D1 in Eq. (3.s). We rewrite (sup-
pressing momentum and energy arguments)

5000—

4000—
0

o 3000—
N

I-
& 2000
LLI

IOOO—

I+0+ pm S NAVE

Low t

(u2, +D12ula/Dl )I{ u2a+D 12ul/aD I)lfaa= +
Dll D22 -D12 /Dll

(4.5)

Suppose that we are near a zero of D22 -D12 /Dll,
and u„u, , /D« is a slowly varying function which
may be interpreted as nonresonant background.
Such is the case in our fitted solutions. We then
expRnd

. I"~
D22 — =M~ -9'~ —i

D11 2
(4.6)

and interpret the 3n resonant mass M„ to be given
by

«(D22 -D12'/D«) =o

and the total width I'~ as

I'r = -2 Im(D22 -D12 /D I I ) .

(4.7)

(4.8)

Equation (4.5) suggests the following definition of
the partial widths I', into am'.

~a 1u2a+DI2ula/DII I
(4.S)

With this definition, the total width I'~ has the re-
quired form

0
0.9 I.O 1.61.2 1.3 1.4

M,.(Gev)

FIG. 1. LT, J~M"=1'0' p~ s-wave cross sections
without (solid curve) and with (short-dashed curve) re-
scattering corrections at low energies. The Deck con-
tribution is shown separately (long-dashed curve).

do the same for the CEX data. We find that both
a Jp= 1' {AI) and a J~=O-(n') resonance are nec-
essary to fit the data. The masses, widths, and
partial widths of these resonances are displayed
in Table I.

We shall now investigate important features of
our solutions, determined by the behavior of X .

(I) The m'. Since the Il' is a newly discovered
resonance, it is worth studying the sensitivity of

to the existence of this particle. In our model. ,
the fit without a m' is very bad; X =4262. While
it is absolutely clear that at least one m' must be
introduced in order to explain the observed phase
behavior in the 0- waves, our actual. resonance pa-
rameters must be taken with some reservation,
The main reason is that for the case of the 0- we
have only considered the simplest form of our
model (i.e. , no 0 background). A more sophisti-

V. RESULTS

(4.10)
2000—

1000

0 0+ ~~ S WAVE

LOW t

Using Eq. (2.8) and the parametrizations dis-
cussed i.n Sec. IV, we now fit the results of the
amplitude analyses of Refs. 1 and 2. We inter-
pret each of the direct terms in (2.8) as a pw- or
~m- production cross section with a given J~, M",
and /, . The experimental results include just such
pm and em cross sections, and in addition. , the
phases of the partial-wave isobar amplitudes.
There are 560 J~=1' and 0- diffractive data
points, and 30 J =1' CEX points. The best fit
within the theoretical framework described in the
preceding text gives a X2 of 1214, with the CEX
data contributing 59 to this value. In Figs. 1-8
we plot the diffractive cross sections and phases
along with our best fit, and in 'Figs. 9 and 10 we

0
0.9

~ 1000—

2
ILf

I.Q I. I 1.2 1.3 1.4 1.5 1.6
0 0 pTT P WAVE

v
1 II I I f

l. I 1.2 I.3
Q I I I T

0.9 1.0 1,4 l.5 1.6
1000— 1+0+ em P WAVE

a+- -t-I~&-I-I--I-Ii I .
-r-g-~

Q I I I I I I I I f I + ~~I
0.9 1.0 I.I 1.2 I;3 1.4 1.5 1.6

M,.(Gev)

FIG. 2. LT, 1'0' and 0 0' p7f and e7f cross sections
without (solid curve) and with (short-dashed curve) low-
energy rescattering corrections. Deck contribution is
shown separately gong-dashed curve).
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360'-

270'-

I+0

LOW

5000—

4000—

I+0+ p~ S WAVE

90'-~ ~

po

II
II

tl ~r ~~a S
o 3000
OJ

& 2000—
LIJ

l 000,

-90'
0.9 I.O, '

I. I I.2 I .3 I.4 I.5 I.6
M,.(GeV)

FIG. 3. LT, 1'0' phases: (a) without rescattering
(solid curve), (b) with rescattering (short-dashed
curve), (c) Deck without rescattering (long-dashed
curve), (d) Deck with rescattering (dot-dashed curve).
The upper Deck curves are e7t, and the lower ones are
p7i ~

0'
0.9, I.O

I I I I I I

1.2 I.3
M& (GeV)

I.4 l.5 1.6

FIG. 5. HT, 1'0' p7t s-wave cross sections.

more strongly in the case of CEX than in diffrac-
tion. For example, consider the ratio

cated background was required for the A& in order
to obtain consistency with CEX data. The 0 CEX
data are still under investigation, and without
these data it seems an unnecessary bother to in-
clude 0 background in the present analysis.

(2) The J~=2' background. In the absence of the
CEX data we find acceptable fits to the data without
a 1' background and with A& resonance parameters
almost identical to those given in Ref. 1 (i.e. , M„,
=1280 MeV, I'„,=300 MeV). However, the CEX
data requires a background term. The reason is
that the CEX 1' cross section peaks at 1130 MeV,
and in a X2 sense, this behavior cannot be de-
scribed satisfactorily with a single J~=1' reso-
nance term. %ith a resonance-background de-
scription, the CEX data points contribute 59 to
the total X; removing the background increases
their contribution by 30. A key feature of the 1'
background discussed above is that it is produced

R =(yI, /y») diffractive/(yI, /y») CEX. (5.1)

If we refer to the background as A&*, the quantities
(yI, /y2, ) are proportional to the cross-section
ratio of A& production to that of ordinary A& pro-
duction. At low t we find

R„=(80.6/84. 6) /(2. 02/0. 980) = 0.214 (5.2)

and at high t,

RHT =(56 5/86 4) /(2. 02/0. 980)2 =0.101. (5.3)

The above values for RI„T and R„T show clearly
that the A& is relatively more important in CEX
than in diffractive production. Thus one should
not be surprised that the introduction of 1' back-
ground does not significantly affect the ACCMOR
results, but does have important effects in charge
exchange.

It is highly likely that inclusion of (nondiffractive
but still "Deck-type") multi-Regge background as

360— 0- 0+
LOW t

em S

2000-

1000-

0 0 em. S WAVE

HIGH t

270'-

LLI

(A I 80' P ~ W ~~~~
CL

900
ji

'II. ~ J
It

0'

)
I

't)s
M~ 1000-
(0

Z.'
LLJ

p~
09

1000—

I.O I. I

I I I I

l.p I.I

l.2

l.2

I I I I I I I

I.3 l.4 I.5 I.6
0 0+ P7T P WAVE

T f Tg I
4 ~ I ~~ I

I.3 l.4 l.5 l.6
I+0+ 41T P WAVE

90
0.9 I.O l.2 l.3 l.4 l.5 l.6

. M& (GeV)

0 I I I I ~~ I ~~ I

0.9 I.O I .I l.2 1.3 I.4 I.5
M~ (GeV)

l.6

FIG. 4. LT, 0 0' phases; labeling same as in Fig. 3. FIG. 6. HT, 1'0' and 0 0' pm and e7t cross sections.
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360'-

270'—

I+0+

HIGH t

2000—

I I I I I I I I I I I I

w S WAVE

l80

90o

00

O

I-z 1000
0
LLI

-90'
0.9 I.Q I. I I.2 I.3 l.4

M, (Gev)

FIG. 7. HT, 1'0'phases.

I I I

l.5 l.6

P WAVE

~s —--J. LI l I

0.8 0,9 1.0 I.I l.2 1.3 I.4
M& (GeV)

FIG. 9. CEX pm and em cross sections.

done by the authors of Ref. 2 could equally well ex-
plain the CEX results. We would argue that their
approach and ours are dual to one another, and not
physically distinct.

(3) Rescattering at lozu energies. It is clear
from Figs. 1-10 that our theory does a poor job
of fitting the data at low energies (near pII thresh-
old). Our previous experience, fitting such low-
energy data using a unitary three-body model, in-
dicates that neglect of rescattering is responsible
for the poor threshold performance of our present
model. e While we now believe the former model
to be somewhat untrustworthy, "we still feel that
certain features of that model should be included
in our present fitting procedure. For example,
we found an anomalously large J~ =1' P-wave Deck
amplitude produced by rescattering via the enor-
mous s-wave Deck process, and furthermore, that
this rescattering shifted the phase of the p-wave
Deck amplitude by approximately 90' relative to
the s-wave Deck amplitude.

Instead of systematically inserting rescattering
diagrams into the present theory, we decided on a
much simpler approach; namely, to modify our
p-wave Deck to have a phase consistent with our

previous results. We feel that the latter approach
is legitimate for the Deck amplitudes because it
represents inclusion of long-range rescattering
(II exchange), and as such, is to large extent model
independent (in the sense of a Watson-type final-
state interaction factor). On the other hand, it is
not a reasonable way to modify direct A& production
where short-range interactions are important. In
that case we hope that our phenomenological pa-
rametrization of the vertex V&~ is sufficiently rich
to include rescattering effects. The phases of
these modified Deck amplitudes and the corre-
sponding cross sections are shown in Figs. 3-6.
When the above phase behavior was included in our
fitting procedure, the X dropped from 1214 to 778
without a substantial change in the A& and m' reso-
nance parameters. The fits for this case are
shown in Figs. 1-10. Thus we believe that the
previously quoted X of 1214 was artificially high
because of improper treatment of rescattering near
threshold, and the X~ of 778 gives a fairer estimate
of the quality of our fits. While we could assert
the existence of a m' on the basis of the "without-

I I I I I I I I I I I I

360'-

270'-

0- 0+

HIGH t
I I p7r S WAVE

w l80
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M (GeV)

I I I
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FIG. 8. HT, 0 0'phases. FIG. 10. CEX pm phase.
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TABLE I. Three-pion resonance parame earameters (Mev).

I'total

gP 1+

gP 0
1230 + 30
1273 + 50

336
163

14
345

350+ 60
508 + 100

rescattering" curves, our case 'se is then much less
convincing. e ahave already given theoretical

includedsupport for the manner in which we have include
rescattering. Additional justification is provided

This result is presented in Table II where we dis-
play certain i ingf'tt parameters obtained with and
without rescattering.

VI. DISCUSSION

In this paper we have fitted 1' and 0 3~ results
available from recent diffractive and charge-ex-
change experiments, using a generalilized version
of a model first suggested by Aitchison and Bow-
ler. 3 This model incorporates in a unitary manner
Deck background (nonresonant production) and
resonance production. We assumme that all reso-
nant production proceeds through intermediate
states obtained from quark-model calculations.
In our particular fit we include two such states

ested by bag-model calculations of Jaffeas sugges e y
o fundamen-and collaborators. The presence of two un

tal quark states in the A& region is also suggested
by previous phenomenological work oof Basdevant
and Berger. f2

The connection between the discrete states of
the quark model and the low-energy hadron states

indirect. Nev-which actually appear can be very indirect.
ertheless, in a recent publication, Jaffe and Low'

2.0

C9

E I.O—

FIRST POLE

O
I.O

I I I I II I & I

2.0
b (fm)

point out a" reasonably precise" manner in which

uark-model eigenstates are shown to be poles inquar-
a dynamical quantity called the P ma
matrix in turn is simply related to the S matrix,
and so may be extracted from measured phases
and inelasticities.

Th 8 an be considered a one-channel (pw}icn
of itsproblem to good approximation because o i s

small width into em. For such a case (according
to Jaffe and Low) the poles of the P matrix are
obtained from the poles of

k cotrkb + 6(k)], (6.1)

h b
'

an effective "bag" radius, and 6 k is
the pm scattering phase obtained from our i ing
procedure. While there is only one JP=1' S-ma-

l
'

th energy range of the data, there
are two P-matrix poles. In Fig. 11(a) we p o e
posl lons 0't' of these poles as a function of b by sub-
stituting the pm phase shift obtained from our es
fits into (6.1}. The behavior of these P-matrix

be compared with the more familiar
ones of nn scattering shown in Fig.

TABLE II. Fitting parameters obtained wd with and with-
out rescattering. 2,0—

(b)

Without rescattering With rescattering

A~ parameters

Vfp

Vie

V&p~V&.

72p

72+

72p~72
M& (Gev)
M, (GeV}

7r' parameters

V~p~V~,

M, (GeV)

0.95
0.70
1.36
2.52
4.34
0.58
1.11
3.81

0.081
1.28

0.98
0.87
1.13
2.02
4.13
0.49
1.09
3.55

0.121
1.27

0
C9

E I.O

I I I I I I Io
I.O

I I I I i

2.0
b (fm)

FIG. 11. (a) P-matrix poles in J =1' pz system as
f t f bag radius. The results of Refs. 4 and 7 sug-unc ion o
gest that the first pole be interpreted as a qq s a
the second as a q q s ad 2 2 tate (b) P-matrix poles in x7t

scattering vs bag radius.
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=1.6f, the value used in the bag model for the wjj

system, the P-matrix poles appear at -1100 MeV
and -1450 MeV. According to Jaffe and Low, we
should interpret these pole positions in terms of
discrete states of the quark model. Tables IV and
II of Refs. 7 and 4, respectively, suggest that we

associate the lower-mass pole with a q g state,
and the higher-mass pole with a q q state. Be-
cause the latter state has color-singlet subunits,
it is expected to be wide and behave like a back-
ground.

The final picture which emerges from our analy-
sis holds together very nicely. Our 0 (jj') is a
new result, and this state is presumably a q q ex-
cited state. However, we believe that what is
usually referred to as the A& can be qualitatively
understood in terms of two quark-model states,
qq (-1100) and q'q' (-1450). In fact, it is probably
the presence of two such overlapping states that
accounts in large part for the traditional difficul-
ties involved in analyzing the 1 three-pion system
in strong interaction experiments.
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APPENDIX A: MULTICHANNEL RESONANCE
SCATTERING

We here obtain forms for the amplitudes f", given
in Ejls. (3.8) and (3.9) of the text. We begin by in-
troducing auxiliary two-body amplitudes t;,, (W„)
for each member of the quark spectrum predicted
by standard "confined" calculations. (Jaffe and
Low refer to such states as primitives. ) Each
primitive is labeled by the subscript i, and we
permit initial states a =P, p, e, and final states
a =p and e. We assume that an isolated primitive
gives rise to a unitary t matrix which, in operator
formalism, may be written

In (A4) above, P„ is the relative momentum of the
pjj

(hajj)

system corresponding to total c.m. energy

We now consider the case of two quark-related
resonances with considerable overlap —a situation
that we believe corresponds most closely to the Sm

system near 1 GeV. The amplitudes f, given in

Eqs. (3.8) and (3.9) may then be expressed formal-
ly as the following operator expansion (a diagram-
matic representation is shown in Fig. 12):

2

f", (W„)=P tj, (Ws }

2

+ Z tj,ab(WA}G b (WA)tj, bn(WA) +

(A5)

In (A5) the quantity G'," is the free-particle jjb

propagator. Its precise form is riot necessary for
future discussion; we require only that the matrix
element

D12 Q ( Ijj
I
G jb~(W&)12jj) (A8)

exists and is a smooth function of 5"„.
We may now sum (A5) above using methods de-

veloped by Faddeev' for the nonrelativistic three-
body problem. Suppressing the argument W„, we
write

fjj I (j & p Z!2)

where

~"'=
I Ijj)D« '(In I+ I

I&)D« '7"'
&!".=

I 2~»2b '&2n I+ I 2n»22 "!",

(Av}

(A8)

(A9)

which leads to a unitary set of t;, , and the one
that we shall use in our fitting procedure, is that
of (A3) with

(A4)

(W~ ) = I
ijj)D j j (W~) (in I

~ (Al)

We make contact with the vertex functions in the
text by taking matrix elements of (Al), and de-
fining

(P Iin) = v„(p) for n =P
=jjj (P) for n =p, e . (A2)

In the vicinity of a narrow resonance, the inverse
propagator D«-' takes the form

D j j(W~) =—M„-W„-b 1"j(W„)/2, (A3}

where M„ is the resonant energy, and I",(M„) is
the total width. The simplest choice for D j j(WJ

i/j
b a b a

FIG. 12. Diagrammatic representation off ~+.
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with

(1) Q &15 I
G (0 &Zr&2 & (A10)

choose D;;(W„) to satisfy a dispersion relation

D(1(W~) =A + BW~ +—
. dx

W
. . (A17)

1 " ImD;, (W w)

Xp

7.(2& &25IG(0)V &1&

b
(A11) APPENDIX B: E-MATRIX FORMALISM

One can check that (AV)-(All) give a formally cor-
rect solution by iterating (A8) and (A9} in (A7) us-
ing (A10) and (All}, and recovering the expansion
(A5}.

Multiplying (A8) and (A9) by &2(2IG,'0' and &lalG &0&,

respectively, and summing over a, we obtain the
following set of linear algebraic equations for 7'"
and T

D21D11 '(lo I+D21D11 r!" (A12)

rn"=D(2D22 &2(2I+D(2D22 'rn"
s (A13)

where

D21 =D12 =Z &IslG."'I2~) . (A14)

Finally, substituting (A12) and (A13) into (A8) and
(A9), we obtain for (A 7)

f"..= 2 l~s»-„-&io I/I detD
Ii,j=f

where i and j are defined such that if i = I, then
i=2, and vice versa.

In our fitting procedure we choose D12(W„) to be

(A15)

D12(W~) =2[t(1p(pg) B2p(pg) + Q(s(pA)2(2 s(PA)] ~

(A16)
Simple models indicate that such a choice is rea-
sonable. With D(1 given by (A3), (A4), and (A16),
it is shown in Appendix B that the t-matrix formal-
ism developed in this Appendix (for two overlapping
resonances) is equivalent to a standard two-pole
K-matrix model. Thus, our formalism is neither
more nor less justified than the usual K-matrix
approach; however, our prejudice is that the t-
matrix parametrization that we use gives more
physical insight into the problem at hand, while
offering a more general unitary and analytic
framework for future application. " For example,
we obtain the model of Aitchison and Bowler, 3 if
rather than the simple resonance form (A3), we

In this appendix we show that for a single chan-
nel (e.g. , p&() and two intermediate resonances,
the formalism developed in the previous Appendix,
as applied in the text, is equivalent to a standard
two-pole K-matrix model. The extension of this
result to the multichannel situation is tedious but

straightforward, and shall not be discussed here.
Consistent with the material in Appendix A and

the main text, we write schematically for one
channel and two resonances

where

Q gD 22+ ( +Q2D g )g2 + 2Q fD f2Q
2 (B1)

D(1 M1 W —iI"1/2

D22-M2-W -2 r2/2,

D„=D» —i(1', r,/4)' i2,
and

u1 =(r 1/2)'"

~, =(I,/2)«2.

Substituting (B2) and (B3) into (Bl}, we obtain

(B2)

(B3)

Wy2 =12/2 ~

Equation (B4}may now be rewritten

K' —iq'
where

2

=~ "W

(B6}

(BV)

The above equation is the standard K-matrix as-
sumption.

(M2- W) I"1/2+ (M, —W) I'2/2
(M1- W)(M2- W)+ i[(M2- W)I'1/2 + (M1- W) I'2/2]

'

(B4)
To compare with the standard K-matrix formalism
we define, as in Sec. III,

qy1' ——I',/2,
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