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Based on the recently developed framework of Curci, Furmanski, and Petronzio, we derive the photon structure
functions in quantum chromodynamics (QCD). Then we perform QCD calculations for the azimuthal asymmetries
of jets in two-photon processes. We find that in contrast to the case of lepton-hadron scatterings, the deep-inelastic
e*e~ reaction via two-photon exchange is expected to show cleaner signatures for the azimuthal asymmetries as a
result of enhanced QCD effects. We suggest that these will serve as useful tests of QCD.

I. INTRODUCTION

Today quantum chromodynamics (QCD) is re-
garded as the most promising candidate for the
field theory of strong interactions. The quantita-
tive test of QCD has now become one of the most
important tasks imposed upon particle physicists.
Now that the proof of the factorization of mass
singularities is completed,® perturbative QCD
calculations can be attempted in a wide range of
deep-inelastic processes.

Among the most interesting processes is the
two-photon collision which appears in e*e” colliding
experiments.? Many authors have studied this
process by now.3>° In this paper we point out
that clean tests of QCD effects are expected to
be operative in the two-photon process. This is
because the leading behavior, with respect to @2,
of the photon structure functions is exactly cal-
culable as was first shown correctly by Witten.*
Also the Weizsicker-Williams approximation
allows us to study the structure functions of the
electron as well as those of the photon on equal
footing.

First we derive the photon structure functions
in the framework developed by Curci, Furmanski,
and Petronzio'! (refered to as CFP). Particularly,
our presentation will be helpful in clarifying the

parton view of the @2 evolution of the photon struc-

ture functions. It also exhibits naturally how the
factorized collinear mass singularities of the
photon structure functions are to be absorbed into
the hadronic components of the target photon.
After this study on the photon structure functions,
we investigate the azimuthal asymmetries of jets
in the deep-inelastic e*e” scattering, aiming at
clean and hopefully critical tests of QCD.

The azimuthal asymmetries in lepton-hadron
deep-inelastic scatterings were first studied in

the context of QCD effects by Georgi and Polit-
zer.'? They claimed that the azimuthal asymme-
tries in the above reactions would provide clean
tests of QCD. But it was subsequently shown by
Cahn'® that similar nonzero, effects in the azimu-
thal asymmetries would result from the naive
parton model (NPM)* by incorporating primordial
transverse momentum k,. Moreover, it was
shown by Binetruy and Girardi's that it is very
difficult to discriminate the QCD effects from the
primordial 2, effects since both contribute com-
petitively to the azimuthal asymmetries in the
case of the lepton-hadron scatterings. We find
that this difficulty arises primarily from the in-
herent nonperturbative QCD ambiguities remain-
ing in the structure functions of the hadron target.

We show in the present paper that in deep-inelas-
tic e*e” scattering via two-photon exchange, where
the structure functions of the photon and as a re-
sult those of the electron are exactly calculable
up to the leading order of InQ?, one is free from
the above-mentioned ambiguities, and thus can
predict the enhanced QCD effects for the azimuthal
asymmetries against the background effects due
to primordial k,. We claim that in contrast to
those in the lepton-hadron scatterings, the azimu-
thal asymmetries in the two-photon process could
be useful to make clean tests of QCD. In the later
sections we present the detailed features of the
azimuthal asymmetries in perturbative QCD cal-
culations.

In Sec. II we study the photon structure functions.
In Sec. III parton cross sections for our problem
are presented. The main results for the azimuthal
asymmetries are reported in Sec. IV. In Sec. V
we give our conclusions and some remarks. Ap-
pendices A and B are included to give formulas
for anomalous dimensions and calculations for
parton cross sections.

1191



1192 ATSUSHI HIGUCHI, SATOSHI MATSUDA, AND JIRO KODAIRA 24

II. PHOTON AND ELECTRON STRUCTURE
FUNCTIONS

In this section we derive the photon structure
functions to the leading order of InQ? in the CFP
framework. Although the obtained results are
well known, the recently developed technique of
CFP allows us to exhibit very nicely how the fac-
torized collinear mass singularities associated
with the pointlike-photon dissociation into a quark-
antiquark pair are to be absorbed into the hadronic
components of the target photon, We identify the
hadronic components as the vector-meson-domi-
nance (VMD) contribution to simplify our argu-
ments. Also one big advantage of the present
method is that the justification of the usual pro-
cedure of jet calculations, i.e., the convolution
of the universal @*-dependent structure functions
with parton cross sections, can be done very easily
in the framework adopted here. With the photon
structure functions given, it is straightforward
to obtain the structure functions of the electron
in terms of the well-known equivalent-photon meth-
od due to Weizsicker-Williams.

Following Ref. 11, we use the lightlike gauge
and the minimal-subtraction scheme for dealing
with mass singularities.

First we discuss the general method for obtain-
ing the @2 dependence of the “structure function
of partons”. Assume there are several kinds of
partons: «,B8,6,...=¢,9,G,Y,..., where q,g
stand for quark or antiquark, G for gluon, y for
photon, and indices for flavor and color degrees
are suppressed. We denote the structure function
of parton a by

2 1
Fﬂ(%,x,as(nz),am, g), (2.1)

where x is the Bjorken variable of deep-inelastic
scattering on parton aa. The symbol B means
“pare”, thus F2 contain the mass singularities
generated in 4+¢ dimensions.!!

Following the procedure shown by CFP, i.e.,
the two-particle-irreducible-ladder expansion
to factorize mass singularities, we define the
“renormalized” structure functions FE((Q%/u?),
x,a5(3),a.,) and the “renormalization constants”
Tog(x,as(13), @ em, 1/€) which are related (or de-
fined) to satisfy

Q* 1
FZ(F 1%, 05 (1%, 0 ey

1 2
-/ dyF’S(%,y,as(uz),aem)
(o]

1 1
xf dz I‘Ba(z,as(uz),aem, g)é(x—yz).
° (2.2)

Taking the x moments, we obtain
Q? 1
Fz(? 7N?as(“2)5aem ’ ;

r(Q° 2 2 1
=F8‘E ’N:as(“ )7aem Tge N,as(“ )!aem, g .
(2.3)

Since F2, as introduced in Ref, 11, is a bare quan-
tity and does not depend on ., we should have

4 r5_
V-d”Fa—O (24)
and
d d
</.L'd—JF§)I‘Ba+F§(uZlH I‘Ba) =0. (2.5)
Therefore,
a R R _
M;i;Fa-VeaFa—O, (2.6)
where
_ d -1
YBa=" /“'E‘IFBG (r )ba‘ (2'”

The total derivative over u is given by

d _ o8 9 2
Ry +l3(gs,e)ags *Bemle,€)5—,  (2.8)
where
B(gs,€)=B(g,) +3eg, (2.9)

and

Bem(e,€) =B (e) +2¢€e (2.10)

are the Peterman-Stueckelberg—Gell-Mann-Low*®
B functions in 4 +¢ dimensions.

In the following we only consider the case of
lowest order in o, , so, taking the limit € -0,
we obtain from (2.6) and (2.8)

9 9
<“a; +B(gs) @‘)Fﬁ =F16a76a ) (2.11)
s

where from (2.7) we have
Yﬂa(N’as(p‘)’aem)

~= (Bl ©) 5 +Bener€) 5 )T

(2.12)

since I',g does not have explicit u dependence.
Solving (2.11) we obtain
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25(12)
FR(QZ Ny, (1?), aem> =F§1,N,0,@?, aem)[T*exp( ) ]—‘gld )] , (2.13)
‘SQZ) B(g)
where the T* ordering is defined by
b . x b ty i, - - -
T*exP[f f(t)dt] = Z f dt, Atgay®** f dty f(£)f (8) 2 f (2a), (2.14)
a n=0 a a a
and o (Q% = a(Q%/ 1, o (u?) satisfies
(w3 +8(e) o) @) =0. ‘ (2.15)
In the lowest order of ., the anomalous-dimension matrix is effectively given by
(T ) [ e T |
Y\G o/~ Yedd Yee Yoy |» (2.16)
o o o

because the y’s of the bottom row are at most O(a.,, ) and couple to functions of O(a .), and therefore
start to contribute only to the part of O(a,,?. Substituting (2.16), we get

[T*exp(f‘swz)ﬂ“ﬁd)] - T*exp[fc:;)%(igg)ldg] fg:;)dg'”ex"[f @) B(g) ]YB(;’;)
reot B2 o (] 1 (2.17)

We define the renormalized Q2-dependent structure functions % ((@?%/u?),x) by

f dx " 1f R ( x) [T*ex ( e lg_& . (2.18)
B p® <@2) 3(5’) Bo ’
Then we have
2 1 1 2
Fﬁ(%z ,x,as(uz),aem)=fo dyF'é(l,y,as(Qz),aem)f de’éa(%z ,Z)ﬁ(x-yZ)- (2.19)
o
Finally, defining 73 ((Q2/u2),x,as(1?), 0 m, (1/€)) by
1 1 2 1 1 .
fﬂu( s X, Q& (Q ) Qe E)zj; dy f%&(% :y)jo‘ dz r&a(z’as(y'z)’aem’ E)é(x—yz)y (220)
we obtain '

1 1 2
FB(QZ 2%, 05 (%), s ->=fo dyF’E(l,y,Ots(Qz),Otm.)f0 deﬁa(%z‘ 12,0 (W3, 0, 5)6(96—3’2). (2.21)

It is to be noted that in (2.19) and (2.21) the structdre function is factorized into the hard-parton cross
section F§(1,y,0,(@3,a.,) and the universal @*-dependent parton structure function f%,. By the usual
procedure the outgoing partons encountered in calculating Fﬁ(l,y,as(Qz),acm) can be identified as exclu-
sive jets. Then, if we are interested in the generalized structure functions F2(Q%/u?, x,w’s, a,(Q2), @ o »
1/¢€) including the jet variables w’s which describe jets produced in the final state of deep-inelastic scat-
tering on parton &, we just substitute F&(1,y,2,(@%,a.n) by the exclusive parton cross section F&(1,y,
w’s,0,(Q?,a.n) in (2.21). In this way we obtain

FB(%,x w’s,a,(@Q3), aem,—) f dyF¥Q1,y,w’s,a (Q) Olem)f dzfﬂa(—,z o (17,0 ems )é(x—yz).

(2.22)

When the target is a usual hadron 7, we define its @2-dependent structure function by the convolution
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Far(,@9= [y 15(% 13,0,00,0, 1) [ azrt (2, Hoce-s), (2.23)

where the subscripts a, b stand for ¢, 7, and G,
and f5 (x, (1/€)) is the bare parton density in the
hadron. f,,(x,Q?) can also be expressed as

stz @)= [ @ 75(% ) [z a0 -2,

(2.24)

where

ffn(x)=f:dy I‘.w(y,as(u"’),o, -el-)

XLIdszh(z, E)é(x—yz). (2.25)

Fan(x,Q%), or equivalently fZX(x), must be finite
according to the Kinoshita-Lee-Nauenberg theor-
em.!™!® From (2.22) we thus get the usual proce-
dure of convoluting the Q2-dependent structure
functions with parton cross sections,

Q_2 ’ 2)\ = ! Rl ’ 2
Fh uz s X, W S:as(p‘) dyFa( Yy, w s’as(Q )JO)
V]

x [z fun(2,@95(x - y2).

(2.26)

In the case of a photon target, the situation is
somewhat different. The target photon “y” has
the bare parton densities

fa..y,.(x, 1) 0(1 —x)8qy

1
e fA (5 2) +0lamd), (220

where the first term represents the contribution
of the target photon acting as a bare parton y,
while the second stands for the hadronic compo-
nents inside the target photon which are typified
by the VMD contribution. Also we note that in
the CFP framework we have

Ty (% ¢) =00 =2)+ Ol ?). (2.28)

Then, convoluting (2.27) with (2.20) and using
(2.28), we obtain the finite @ %-dependent structure
functions of the target photon “y”:

fary (,@=75,(% : %)

o[ asr5(% ) [ B oe-y2)

+0(@em ), " (2.29)

where a and b denote ¢, g, and G, and the renorm-
alized parton densities R..(V., D corresponding to
Y

the VMD component of the target photon is given by

1
fu (VMD) (x) = Pa’y (x, as( IJ-Z),a em E)

1
+f dyrab(y’as(uz)’oy l)
o ) €

f dsz.fwt‘m( z, 2—)6(x—yz).
(2.30)

This result exhibits explicitly the manner in which
the collinear mass singularities associated with
the “renormalization constants” I 7(" a(p 2),
Qem, 1/€) are absorbed into the hadronic compo-
nents of the target photon.

Following Ref. 11, we now calculate I'’s. It is
straightforward to obtain the I'’s to the order
needed to get the leading behavior of F;,’ . The
results are

I, (x)=5(1- x)+€ —si“—p (),

Po(),
(2.31)

qu( )~_ 2(77“) ch(x),

_S_(L) PGG(x)

Ige(x)=6(1-x) * T T

where the P’s are the well-known Altarelli-Par-
1% probability functions and

[\V]

Loy (0)=2 SB[+ (1 -2}, (2.32)

€

The other I'’s may be set equal to zero. Taking
the x moments of (2.31) and (2.32), we get y’s
from (2.7). Since the obtained y’s turn out to be
the same as the anomalous dimensions appearing
in the operator-product expansion (OPE), we sub-
stitute them into (2.17) and obtain the following
known results from (2.18):
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-af? (00" )«z o (Z:E?L?))d&]’

oldxxN'lffic (x, 2_:) = _17 def,q-jiN [(Zﬁ?;)))d; B (
Q

[aerede ) o (389

foldx"N-lfga (x, Q—z) = %(g_:%)m

1 2 GG
ar (o Q\_30em @ oy 2 1 1+d§
S a8 (v 22) = 25 in T gy [l - ) s + (€0 T,

2m

where f is the number of flavors, K is
Ky=1+dyS +d§¢ +ay*dgc —dgcdg®, (2.35)
and d’s are given in Appendix A.
Now from (2.29) we have
Q
fa“-y“ (x’ Qz) = ffy(u

with

X) 47 (@) (230

7 (.00 dyfaa( o) aer B (210 (-y2)

(2.37)

and a,b =¢,7,G. Since in (2.33) and (2.34) all d’s
are positive, we find that for very large Q2 the
second term due to VMD is suppressed. So
the photon structure function F,..(x,Q? is dom-
inated by the photon-parton contribution f GY(Q"‘/

w2, x) which is exactly given by (2.34). We observe
that this leading contribution behaves like 1n Q2.
Performing the inverse Mellin transformation
from (2.34), we obtain the x dependence of fa @3/
w?,x). We present our results for three flavors
(see Fig. 1). For the case of four flavors, refer
to Ref. 9.

Although f W00 is expected to be smaller than
the next-to-leading order correction of fu.,, in
the @2~ = limit, in the following analysis at large
but finite Q* we include f,¥p., particularly to es-
timate the possible nonperturbative contribution
of primordial £, to the angular asymmetries. On
the other hand we expect that the next-to-leading
order correction to the distribution functions will
not affect substantially the angular asymmetries
because the latter mainly reflect the characteris-

1 2 3 2 Gq
f dxx”"fgy(x, Q—)=2f 2 om ln%d,?,y(ez)%‘*,
I

dy -dy \ag(u?
@, @3 \%
s 2) H
aslu ) ] (2.33)
dge — dj, (a,(g )) ay
dy —dy \a,(u?)
N
(2.34)

tics of parton cross sections but not of the dis-
tribution function.

vMP. is basically- unknown in the present scheme
since f§*” (2) is not given in (2.37). Therefore
we use for these parts the vector-dominance mod-
el and assume simple structure functions for vec-
tor mesons as many authors do.*%° Moreover
we neglect the gluon distribution from the vector-
dominance model and the @2 dependence in the
assumed structure functions. This simplification
is valid for our present study since our point here

is to show explicitly that their corrections do not

h=g

0 L | l |
0 02z 04 06 08 1.0

FIG. 1. The photon structure functions with three
quark flavors.
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FIG. 2. The electron structure functions with three
quark flavors.

spoil the characteristic signatures of the leading
QCD effects for the azimuthal asymmetries.

For f 440 (x) we get by the vector-dominance
model

fat(x)= Zv: 4;0;;'" Jaiv (%)= M, Faip(%).

fo
(2.38)

From the experimental value of T'po_, .+~ We ob-
tain roughly

b7
Lx2.

Assuming f 0 (1 -x)/x and 50% of the gluon
component, we finally get

1-
£ ()~ S Gy =, (2.39)
=
/Py
‘{ \/y APr
< I

q P,

/N,

FIG. 3. Kinematics. k4 and k; are the momenta for
incident and outgoing electrons which couple to the
virtual photon. p; is the momentum of the incidént par-
ton. p, and p 3 are the momenta of the scattered partons.

where the average momentum (x),; carried by
the quarks inside p° is taken to be

0.25 for u,%,d,d
()t = :

0 for s,5,c,C

(2.40)

It is rather a rough estimation but sufficient for
our purpose. :

The electron structure function is obtained using
the equivalent photon approximation. Since we
restrict ourselves to the single tag events, we
should use the following form of the equivalent-
photon spectrum (in the leading approximation):

dN _ oy lnsamnz 1+(1-x)?

ax or Mam? T % (2.41)

where x is not too close to 0 or 1, and the elec-

tron is constrained to lie inside a cone of half-
angle 6., . By the convolution

tdz dN x
fae(x,Q2)=£ ;_ d—z_fa“'y"(z—’ Qz)y (2.42)
we get the structure functions of the electron.
The results of the leading QCD part are shown
in Fig. 2 for three flavors. For the VMD part

we can obtain the results from (2.39), simply
replacing the factor (1 —x)/x by

ko k2
+
Py P
P, 2
Pz
Py P3

(al) (a2)
(a)
‘kz ko
k| ki
+
P, P2 P . P3
P3 2
(b)
ka k2
K, . K,
Po P3
>Py P2
| P

p

(c)

FIG. 4. The Feynman graphs for parton cross sec-
tion. (a) Electron-quark scattering. (b) Electron-gluon
scattering. (c) Electron-photon scattering.
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o 1 $0ma* [Ln L _ 7Y, 3 L, %
7 1n4m2[x(1nx 4+ +1nx+4.

(2.43)

III. PARTON CROSS SECTION

Now we calculate the parton cross sections
which we need for our purpose. The kinematics
are shown in Fig. 3 and the contributing diagrams

are given in Fig. 4. We introduce the usual vari- |

do,

_Q%,(1 —2z)(1 ~xp)

ables
__e? _Di'q _bi'b,
% 2p,°q’ Y pivky’ % pig’ ¢ Pr
(3.1)
where q =k, —k,, @*=—¢*? and, as illustrated in Fig.

3, the azimuthal angle ¢ and the transverse mo-
mentum p, are defined in the frame where §|p,.
The results are?®

— %Yy 0 - 2
dx,dy dz,dpr2dd  OF @ Zﬂsz € 5("’ T

where e, is the charge of the quark hit by the hard
photon with momentum g. The subscript 7 =(a), (b)
stands for the diagrams (al) +(a2), (b1) + (b2) of
Fig. 4,

Cay=C2(R)=%, ¢4 =T(R)=3,
and A;, B;, and C; are given as follows:?°

Apy =81 —y)x,y2,

+1+1 -9)7 [(1 =x) (1 =2,) + (1_1;:;_—_—.%:9:5],
(3.3a)
Ay, =16(1 - 9)x,(1 - x,)

HL+ (=)l 2+ (=) 2 A2 (3 g

,(1-2,)
1/2
Buy= =42 =) -2 e — e _z,)]
X[xp2, + (1 = x,)(1 -2,)], (3.4a)
- 1/2
B,=-4@2-y)1 —y)l/z[f:-g—_-’;—:;-]
X (1 -2x,)(1 - 2z,), (3.4b)
Ca =401 —9)%,2, (3.5a)
Cy=8(1 =9)x, (1 —2,). (3.5b)

Replacing o (@7 by a.,e,” and the color factor
Cq) by C(¢, =3 in the formulas of Fig. 4(b), we get
the cross section for the diagrams Fig. 4(c) with

A= Apy B~ Bry Cio=Cpy- (3.6)

Since experimentally we are not yet in a position
to distinguish quark jets from gluon jets nor from
antiquark jets, we should find an alternative way
of defining the direction of the hadron plane. Sup-
pose we require z, to be larger than 3. Then the
sense of the direction of the hadron plane is re-

) c;(A; + B; cos¢ +C, cos2¢), . (3.2)

'defined in-terms of the “more energetic jet” axis.
With the definition (3.1) we have

217"; “1-g,. (3.7)
1
Then we introduce the following newly defined z;:
z —max{—l—;-:-—; %—2“1}, s<zp<1. (3.8)
1

The corresponding B;’s are obtained from (3.4)
by noting the sign change in the substitution
2p~1l=-2,, p=T+¢:

v 1/2
By = - 4= -y1(;%)

’ 1/2 1
X %, [(lz_pz;) z;_( z,z,) a- z,)]

(3.4a")

B, ==8(2-y)(1 =3)"2[x, (1 - x,)]"/2

<o -of(ey) - (5]

(3.4b")
where z, is constrained to the region ,
3<z)<l. : (3.9)

It is to be noted here that B,, and B, are al-

ways negative and that this fact is characteristic
of the vector coupling of gluons. If we calculate
with scalar gluons, we obtain

- _ Y, XpZ 1/2
B %22 -3)(1 )2 ]

X[x,(l —Zp) +(1 ‘xp)zp], (3.10)
B(’a), scalar 2(2 _y)(l_y)1/2[xb(1 _xﬁ)]llz

’ /2 ’\ 1/2
2 \'"%, 1-2 ot
<[5z s -(5%) 0-4),

(3<zp<1). (3.10")
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Bay,scatar and B ) s are always positive. It should
be noted that the sum of direct terms [i.e., |(al)]|?
+ [(a2) |2 in Fig. 4a] has essentially the same

structure in both cases of the scalar and the vec-
tor couplings, and the difference comes from the
interference terms. This means that the negative
definiteness of B, and B is not at all a trivial

I

do (o7

_do  _anel k
dxpdydzpdprzd¢_W[(l +9=<Z_ >[1+(1 y)2]+8(1 y) Q2

kinematical result and that it is very important
to observe it for the test of perturbative QCD.

The details of the above calculations are given
in Appendix B. Finally we present the parton
cross section with primordial 2, in the frame-
work of the NPM'3:

ki

- —%T—z-(z -9)(1 —y)*”2 cos¢ +4 %T—: (1 —y)cos2¢] (1 —x,)8(1 —2,)8(p —k42).

IV. AZIMUTHAL ASYMMETRIES

It is a straightforward problem of convolution
to get the azimuthal asymmetry formulas for
(cos¢) and {cos2¢). We regard partons as jets
and measure ¢ with regard to “the more energetic
jet,” that is, the jet with the larger zj,. Thus the
zje Of “the more energetic jet” may be identified
as the 2z} introduced by (3.8) in the previous sec-
tion.

Since typical three-jet events are expected to
be rare in the @2 region where we have a suf-
ficient number of events, some well-defined pro-
cedure should be used to determine the hadron
plane and ¢ experimentally. The most natural
one is as follows (see Fig. 5):

(1) Choose a Lorentz frame where the virtual
photon is parallel to the target electron (or posi-
tron), e.g., the c.m. frame of the virtual photon
and the electron (positron).

(2) Determine the hadron plane so as to mini-
mize the acoplanarity®! with respect to the out-
going hadrons under the condition that the chosen
plane should include the axis of the virtual photon
and the target electron (or positron).

(3.11)

(3) Divide the outgoing hadrons into two groups
(jets) by another plane including the above axis
and being perpendicular to the hadron plane.

(4) Calculate zj for each group as

. )

Bjer = 'l_)_—(P_EiZ;) ) (4.1)
where P is the momentum of the target electron
(or positron).

(5) Determine the angle ¢ between the lepton
plane and the half of the hadron plane containing
the group (jet) with the larger zj,, .

We present the results for the electron structure
functions with three flavors because the charm
contribution is expected to be suppressed due to its
large mass in most of the Q2 range considered
here.?? Even if we have the charm contribution
at very large @®, its effect results in the increase
of the cross sections, but does not affect very
much the characteristics of the effective ratios
of the cross sections such as {cos¢) and {cos2¢).

We calculate the azimuthal asymmetries with
fixed @* and x, at a given s =(100 GeV)?, using the
following formula:

doy

2 d )
(cos¢>xﬂ'& [Z fdg dxpdzjet de2d¢ cos¢ d dede,et dprzd(p f{e(g Q )5(.%'” Ex?)] /‘-l;gﬁé? ’ (4'2)

where do ©°’ is the cross section in the leading
order of InQ?, and 7 stands for a parton (¢, 7, G,
and y). f,, (@=4,7,G) was introduced by (2.42),
whereas f,, is equal to dN/dx defined by (2.41) and
contributes to the “direct photon” process which
will be discussed later. The formula for
(code))x , g2 can be obtained replacing cos¢ by
cos2¢ in the above Eq. (4.2). We have used the
relation

Q*=x,ys (4.3)

‘and put A =500 MeV.

To compare our results with those of the naive
parton model (NPM), we estimate the latter by
assuming the following primodial &, distribution
in the VMD part of the photon structure functions
and using (3.11):

f(kp)2nky dly=

1.
gt 22 KRT2) ok ke

(4.4)
There is no room for this kind of 2, in the leading
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q
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Z;’eH <zje72 -¢ = ¢0+7r
FIG. 5. The experimental determination of ¢.

part of the photon structure functions which is
proportional to InQ?/A2%, For numerical purposes
we take {k42) = (400 MeV)? as in Ref. 15,2

We remind you here that in the contributions
to the azimuthal asymmetries there are the direct-
photon processes shown in Fig. 4(c) besides the
perturbative QCD processes corresponding to ]
Figs. 4(a) and 4(b). The direct-photon contribu-
tions turn out to be substantially large. They
are backgrounds when we want to detect the
azimuthal asymmetries as a QCD effect. But we
emphasize that these QED contributions are
calculable without ambiguity and enter as the-
oretically well-determined quantities. In fact,
their experimental detection is itself an interesting
problem.

We should not forget that hadrons in a jet are
expected to be distributed symmetrically around
the jet axis with the average p, of about 300 MeV.
This p, spread works to diminish the azimuthal
asymmetries. The best method to take this effect
into account is to perform the Monte Carlo simula-
tion used in jet analyses, but here we simply
adopt the p cutoff method as a substitute for the
elaborate Monte Carlo simulation. We present
the results with a simple p, cutoff of the jet mo-
mentum requiring p > 300 MeV as well as those
without p, cutoff.

We show the x dependence of the azimuthal
asymmetries for @*=5 and 25 GeV ? in Figs. 6-11.
The QCD as well as direct-photon contributions
to (cos¢) are sensitive to the p cutoff (compare
Figs. 6 and 7). This means that we must be very

careful to make definite predictions. But the p
cutoff method seems to be a good alternative to
the Monte Carlo simulation and Fig. 7 may be
compared with experiments.

Note that the characteristic features in the xy
dependence and the relative importance between
the QCD and direct-photon contributions are not
changed very much by the cutoff effect. Where
xy is large the direct-photon contribution is do-
minant, whereas at smaller x, it tends to be
suppressed and we can clearly see the enhanced

0 , —
//
Q%=56ev? _
-lOr— —
20 -~ —

s (4)

(%)

{cos¢)>

(3)

_20 l
0 0.5 1.0
XH
FIG. 6. The xy dependence of {cos¢) without p 5 cut-
off. (1) QCD. (2) NPM with (&, = (400 MeV)%. (3)
QCD + “direct photon”. (4) NPM [as in (2)] + direct
photon.
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FIG. 7. The xy dependence of {cos¢) with the condi-
tion p p> 300 MeV. (1) QCD. (2) NPM with (k%) = (400
MeV)%. (3) QCD + direct photon. (4) NPM [as in (2)] +
direct photon.

QCD effects. In particular, around x5~ 0.2,
(cos¢> is overwhelmingly dominated by the QCD
contribution.

To discriminate the QCD effect from the %
effect of NPM, the Q® dependence is helpful (see
Fig. 8). QCD with p, cutoff predicts gradually
increasing |{cos¢) | with @2 (though it is mainly
due to the p, cutoff), whereas NPM with VMD
predicts |{cos¢) | to decrease rapidly with in-
creasing Q2.

The asymmetry (cos2¢) arises predominantly
from the direct-photon contribution and is in-
sensitive to p, cutoff (compare Figs. 9 and 10).
Thus its absolute value is a reliable prediction.
For the reasons stated before, the values with pp

0

(%)

Ccosg)

-20 |

-30

0 10 100
‘ Q? (Gev?)
FIG. 8. The @° dependence of {cos¢) at x5 =0.2. (1)
QCD + direct photon without p, cutoff. (2) NPM + di-
rect photon without p , cutoff. (3) QCD + direct photon

with p,> 300 MeV. (4) NPM + direct photon with
pp=300 MeV.

cutoff (i.e., Fig. 10) are to be more realistic.
(cos2¢) has little to do with the QCD test, but it is
certainly worthwhile comparing experimental re-
sults with our calculations since it will verify
the direct-photon coupling very clearly. Its @
dependence with a fixed x;=0.2 is shown in Fig.
11.
The cross sections are shown in Figs. 12 and 13.
There might be disturbances to azimuthal asym-
metries due to fluctuation of parton 2, as in Drell-
Yan processes® which appears to be caused by
soft-gluon bremsstrahlung. If there should be
these disturbances, our result for {cos¢) would
be changed. ((cos2¢) would not change because
it came mainly from the direct-photon contri-
bution.) But even if these effects were contri-
buting, we could get rid of them by changing the
experimental determination of ¢. We suggest
disregarding the momentum axis of the virtual
photon and the target electron (or positron) in
determining the hadron plane. A possible choice
of ¢ is the following:

(1) In the frame where ¢°=0 and q|| P (=mo-
mentum of the target electron or positron), select
those hadrons of momentum p which satisfies
the condition p+q> 0 (which means “not emitted
in the forward hemisphere of the target»).

(2) Define Pun=27,p ‘¥, where the summation
is over all hadrons selected in (1).
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FIG. 9. The x 5 dependence of {cos2¢) without p, cut-
off. (1) QCD. (2) NPM with (k;2) = (400 MeV)?. (3) QCD
+ direct photon. (4) NPM [as in (2)] + direct photon.

(3) In the frame with ¢°=0 and q | -ﬁ,m (not -P.),
determine ¢ following the same procedure as that
sugg_gsted px_'.eviously, but replacing P by P’
=(|B,,.|, - B, in (4.1).

This method is related to the following calcula-
tional constraints of x,>3% and z}<x, in the pre-
vious calculations. That is, only those events
satisfying these constraints contribute to the

1201
10
5 —
= -
A s ~
N
8 10 Q%=25Gev2
(&)
A\
(3)
° I (4 7]
()
- e
0 == — — =
0 0.5 1.0

XH
FIG. 10. The x 5 dependence of (cos2¢) with the con-
dition p »> 300 MeV. (1) QCD. (2) NPM with (k;%)

=(400 MeV)%. (3) QCD + direct photon. (4) NPM [as in
(2)] direct photon.

azimuthal asymmetries of the new ¢.

Another merit of the above definition of ¢ is
that we can single out as the pure direct-photon
events satisfying the conditions x,>3 and z}<x,
those events without any jets in the forward hemis-
phere of the target electron (or positron). We call
those events accompanying a forward jet “the QCD
events”. (Actually this class of events contains
some direct-photon events which are not counted
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FIG. 11. The @* dependence of (cos2¢) at x ;=0.2.
(1) QCD + direct photon without p, cutoff. (2) QCD
+ direct photon with p,> 300 MeV.

in the above selection.) We could measure the
angular asymmetries of each category of events
independently. In the direct-photon events P’ will
be parallel to P in almost all events because the
characteristic value of %2, of the target virtual
photon is of the order of electron mass. So we
cansafely use P instead of the elaborately de-
fined P’.

In the following we present our results for the

T T T T
o' |
o
3 107 Q2= 5GevZ
(O]
Ko
=2
N
P e
ol ©
I
3%
o'+ —
Q2=25GeV?
10-2 | L 1

0 0.2 0.4 0.6 0.8 1.0
XH
FIG. 12. The x; dependence of the total cross section
for electron deep-inelastic scattering (/s =100 GeV).

1 L | AN I

—2
107 10 100

02 (Gev3)

FIG. 13. The §? dependence of the total cross section
for electron deep-inelastic scattering (/s =100 GeV).

azimuthal asymmetries with respect to the newly
defined ¢. We show the results without p, cutoff
in Fig. 14 and those with py cutoff requiring p,
> 300 MeV in Fig. 15. (cos2¢) of the QCD events
may be too small to be detected. {cos¢) is again
sensitive to p, cutoff and that of the QCD events
after the cutoff is small as shown in Fig. 15. (If
the effective p; cutoff due to the hadronization is
to be smaller, it will of course be more en-
hanced.) For the direct-photon events both {cos¢)
and (cosz¢) seem to be large enough for their
detection. (The increase of (cos2¢) after the p,
cutoff is due to the drop of the direct-photon
cross section with p, cutoff and is somewhat
artificial.)

The @* dependence of the azimuthal asymmetries
is shown in Figs. 16 and 17 for various cases.

The cross sections for the direct-photon events
are shown in Fig. 18.

V. CONCLUSIONS AND REMARKS

The photon structure functions are studied in
the framework of Curci, Furmanski, and Pe-
tronzio. A focus is given on the renormalization
mechanism of the collinear mass singularities
in the case of the target photon. The electron
structure functions can be studied on equal footing
due to the equivalent-photon approximation.
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FIG. 14. The x 4 dependence of the azimuthal asym-
metries with the improved definition of ¢ (without p,.

cutoff). As to the direct-photon events, the result is
almost Q2 independent.

Then the azimuthal asymmetries in the deep-
inelastic e *e” scattering are investigated. The
detailed results are shown in Figs. 6-11. {cos¢)
is large but expected to be diminished consider-
ably in hadronization processes. We take this
effect into account phenomenologically by re-
quiring the p, cutoff of p,=> 300 MeV. The sig-
nals and characteristics of (cos¢) seems to be
enough to be detected. Its @* dependence will be
helpful to distinguish QCD from NPM. (cos2¢) is
large and not expected to be diminished much in
hadronization processes. It serves as a very
good test for the direct-photon contributions in
the photon deep-inelastic scattering.

The method is suggested to get rid of possible
backgrounds due to parton 2, from soft-gluon
emission or from any other mechanism. In this

XH

FIG. 15. The x 5 dependence of the azimuthal asym-
metries with the improved definition of ¢ (with the
condition p = 300 MeV).

method (cos¢) of the QCD events is diminished
and seems difficult to detect. Their {(cos2¢) de-
tection is likely to be harder. On the other hand,
(cos¢) and {cos2¢) of the direct-photon events
(i.e., events with no forward jet of the target
electron or positron) turn out to be large and we
conclude that they can provide clean signals for
the direct-photon process.

Finally, we remark that the higher-order cor-
rections and the inclusion of charm quark effects
are left as future problems.
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APPENDIX A: ANOMALOUS DIMENSIONS

We list the expressions for the anomalous di-
mensions which appeared in the text:

dﬁ'f':CZfaf)[l N(N+1 42( T“I+N- 1))]

1=2

(NS indicates nonsinglet),

T T T T T

Direct Phoion
Events

(%)

{cos2¢>

<

(%)

{cos¢>

I 10 100
Q2 (Gev?)
FIG. 17. The @? dependence of the azimuthal asym-

metries for the direct-photon events (x ;=0.2). Dashed
line: without p , cutoff. Solid line: with p,= 300 MeV.
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FIG. 18. The x4 dependence of the cross section for
the direct-photon events. Dashed line: without p , cut-
off. Solid line: with p,> 300 MeV.

496 = 4T(R) 2+N+N?
¥ B, N(N+1)(N+2)’
6o 2Co(R) 2+ N +N?
L 8, N(N%2-1)’
466 = C,(G) [l _ 4 _ 4
¥ B, L3 N(N-1) (N+1)}(N+2)
4 T(R)
+4E< TI+N- 1)*302(3)]’
gy = 2+N+N?

N(N+1)(N+2)’

dt_ _{(dls +dGG)i[(st _dGG)2+qudG¢]1/2}

where
Bo=73Cs(G) -% 7(R)
and
c(r)=X =1 rry=L, c,6)=N

2N’ 2’

for SU(N) color gauge group with f flavors.

APPENDIX B: CALCULATION OF PARTON
CROSS SECTIONS

The calculation is most easily done in the frame
where ¢°=0 and iill '51. We define the unit vectors
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in this frame as follows:

1 d%, dp, d3py  (4maem)es

do =

—u A 4p, -k, (2m)32R0 (27)°2p% (27)32p) Q“
CEoTET €=(1,0,0,0), b= -
q 1782 X (L“”)spm(ww>spm(21f)454( ky+by —ky =Dy = bs)
and
1 d3k, a3 (4na g )2e,? (L% )ein
e = 2 _ - 2 em/ ©g N /spin
€°€,=0, ¢ ‘ 1 (i=0,T,L) (B1) 41)1 %, @rr2Re @nret & g
with
- X 5* -p,)?
0,3, FreE=(0.5+E). (82) R e e R LS
Defining the leptonic tensor Since we have
(L*") =3 Tr(k v *kyv"), (B3)
e find By ra -2 =2,5(prt -2 (1-x)(1 -2)@),
u . - —v)2 B8
= Z;zm -4 zy)<é‘<S+ }-i(—l-ry—)—k‘;e;«‘e:e:) ' (B8)
y y d*py  _ dpsidz,d (B9)
_ RS 2m)32p9 2134z,
L, 22 2;(21 ») (ehehrene?) (2mP2p; (2m)4z,
dp, y dy dx,
a7 = k B10
+ 2(1y—22) (€hel —ebel) . (B4) (@mP2rs TPy Ry @n® ’ ( )
We define the hadronic tensor we finally obtain
do a’e’ 9 (L*)sin
(W duin=$01 | 7,(0) | 22, 25)¢ P, 5| 1,00 | ) T @, rd e e Wy
(B5) .
with the normalization x5 (pT - _; (1-x)1-2,Q )
(plp")=@m2p° (5 -5"). (B6) (B11)
The cross section is then given by When the initial parton is a quark, we find
J
"'Zqz P ‘q pl ‘q v
(Wuv . =o2(02)C.(R) - ___,_—[( b _£1 L Vo
>sp|n 8s (Q) 2( )(P1°P3)(1’2'P3) pl q2 q pl qz q
. 2 . 2 v
+(P1'—.Pz)+ (pl 2) +2(p2 2) (guv_q 2q )]
q q
B 4y Pep pEpY  2x,2,+ (1 =22+ (1 =5,
= 2 —_ Xy 1P PPy s M
flms(Q )C,(R) T=x)1=%) [Zx, rE o g
+(terms proportional to q“,q")] . (B12)

For a gluon as the initial parton, we have

By 2( N2 22 ) ‘y._p *
W) =44 (Q") T(R) 5= pa)[(pz e

+(pa~ bs) +

“) (pz” __p;%q q")

(pq) +(bg 'q)z( oy _ q“q")]

Q* q®

=471a,(Q%) T(R) __(.1___2__). [2x,—é‘ﬁ571’;-2£ - 1 -2(2,(1 =2,) +x,(1 =x,)) P

2x,,

+ (terms proportional to q *, q")] .
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Using the relations

NIO

Pt =g (1 =2)(L =2+ 5y, ]et +

(1 _.____2>€L+Q[ 2 -2z,)(1 —x,)] kcosgbe&‘-

2 1/
+Q[;c—’ (1-2z,)01 —x,)] sing €% | (B14)
»
P = 23 [x,(1 = 2,) +2,(1 = x,)Jet +— ( —L)e QE—L (1-2,)1- x,,)] cos¢el
£
z /2
—Q[;L (1-2,)(1 -x,)]1 singpe? , (B15)
A :
we obtain the formulas in Sec. III.
If we calculate with scalar gluons, (B12) becomes
uy\scalar —qz [( p3 u) ( V_—-a———p °q ") + ——a—g——(p . )2 ( uv_.q_uq.v. )]
(w >spin gz (pl Pa)(l’z pa) b5 - e q“) (Ps qz q e g qz
2%, PPy o=l v iy ortional to g* "] . (B16)
<& Ax)1=2,) [2”’ Q@ 2x, & (terms propor 7
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