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Quantum-chromodynamic predictions for direct photons in e+e collisions
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We analyze the direct photon production in e+e collisions in quantum chromodynamics using the cut-vertex
formalism and the renormalization-group method. The two-loop anomalous dimensions of timelike cut vertices are
calculated from the two-loop parton decay probability functions. The moments of the transverse structure function

W~ are calculated up to the next-to-leading order. The nonleading. corrections to $F~ turn out to be large, and even

larger than those to the photon structure function I', in photon-photon scattering. Also, the moments of the
longitudinal structure function 8 ~ are calculated in the leading order. The corrections are found to be small.

I. INTRODUCTION

For some time it has been emphasized that the
measurement of the photon structure function in
high-energy e'e colliding-beam experiments
should provide a good test of quantum chromody-
namics (QCD). Because of the pointlike nature
of the photon, definite predictions have been ob-
tained for the photon structure functions in the
leading and the next-to-leading orders of asymp-
totic freedom. ' The pointlike nature of the pho-
ton also leads to precise predictions for many
processes involving real photons.

One such process is direct photon production
in e e collisions as shown in Fig. 1,

e e —r*(q) —y«„„(p)+ hadrons(e =+) . (1.1)

Here the virtual photon with momentum q is far
off shell (large q') 0) and the observed photon
having momentum p is "direct, " which means
that it is not a decay product of radiatively de-
caying hadrons. The unobserved hadrons have
charge conjugation 6 =+.

If we define the timeline photon structure func-
tions S'~r and W2 as

W" =- — d xd yd re"'e'~ " "'1
4~

x&o
I
7 (&,(.)&.(z))7(J'(v) z.(o)) I o)

=
i
—g„.+ ", ')W"|(P '.q, q l

+It. — z q. l P.— z q. lwa(P'q q)( P'q t P 'q l —r
q "I "

q "I '
(1 2)

with T representing anti-time-ordered products,
then the cross section for the direct photon pro-
duction can be written as

P' 2

dz dQ 4
= --- ooz 2W,"(z, q ) + sin ~ W2(z, q )

(1.3)

Here v =p
'

q, z =2v/q, & is the angle between

the photon momentum and the e e collision axis,
and

4gn2
0'0 = (1.4)

is the total cross section for e e - p p, with
o.'= e /4m being the electromagnetic coupling con-
stant. In terms of the transverse and longitu-
dinal structure functions such as

Wp ——Wr~

and
2

%'1. —Wg+ ~ W2,

we can rewrite the cross section (1.3) as

=—oozl. W&(z, q )(1+cos'e)

+ W" ( z, q )(1—cos e)) .
Direct photon production in e'e collisions was

first studied in the parton model (PM) by Walsh
and ~erwas. Evaluating the s-channel discon-
tinuity of the box diagrams in Fig. 2, they obtain

1+ (1 - z)' q'(1 - z)
r m=«r

z . m

hadrons (C=+)

e+ e
FIG. 1. Direct production of photons in e e collisions.

The observed photons are assumed not to be radiative
decay products of hadrons.
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where

5„=3f&e')=3g e,', (i.io)

we evaluate in Sec. IV the first three leading
terms of S'& moments. In Sec. V we evaluate
the leading term of 8'~ moments. Section VI is
devoted to a brief summary of this paper and some
comments on the backgrounds to the direct photon
production.

the sum i runs over quarks of f flavors, and m,
is the quark mass. Because of the pointlike
coupling of photon to quarks W"r

l ~„does not
scale, but grows logarithmically with q .

Recently QCD predictions for this process have
been obtained in the leading order of asymptotic
freedom by Llewellyn Smith' in the framework of
perturbative QCD and Koller ef al. ' in the frame-
work of the Altarelli-Parisi approach. They
found that the structure function 8'~ maintains
the nonscaling lnq behavior, but its shape changes
substantially from the simple parton-model pre-
diction.

The calculation of the next-to-leading-order
contributions is important at least in two respects.
It is important for perturbation theories to esti-
mate how large the corrections to the leading
term are. Secondly, it is known that ~, the sin-
gle free parameter of QCD, is not specified by a
leading-logarithm calculation. ' In order to de-iQ, ii

termine A it is necessary to include the next-to-
leading-order contributions.

In this paper we shall analyze direct photon
production in e e collisions using the cut-vertex
formalism developed by Mueller and shall cal-
culate the next-to-leading-order QCD corrections.
It is crucial in the analysis to introduce the bare
cut vertex for two photons in addition to the usual
fermion and gluon cut vertices. The yointlike
nature of photons is taken into account by inclu-
sion of two-photon cut vertices. The situation is
very similar to the case of the deep-inelastic
scattering off a photon target where we must con-
sider the twist-two photon operator in addition to
the usual quark and gluon operators.

In the next section we derive a formal expression
for the moments of 8'~ and 8'& in the framework
of the cut-vertex formalism. e discuss in some
detail the necessity of introducing the bare cut
vertex for two photons. In Sec. III we present
one-loop and two-loop anomalous dimensions of
cut vertices. Using these anomalous dimensions

II. CUT-VERTEX FORMALISM FOR DIRECT PHOTON
PRODUCTION

In order to analyze hard-scattering processes
we need to separate the dynamics into two re-
gimes —that of large-distance effects which are
connected with the formation of hadrons, and that
of short-distance effects which are calculable in
perturbative techniques. In deep-inelastic scat-
tering, the light-cone expansion makes it possible
to separate the large- and short-distance effects.
This separation can be done even in semi-inclusive
processes by using the cut-vertex formalism which
has been developed by Mueller.

In his pioneering work, Mueller showed that
the moments of the structure functions in single-
particle inclusive e e annihilation factorize, for
large q, into a singular function depending on the

q of the virtual photon, but completely indepen-
dent of the particle produced, times a cut vertex
which depends on the particle observed. He has
introduced the bare cut vertices for two fermions,
for two fermions with arbitrary number of gluons,
and for gluons (see Fig. 5 below). But if the ob-
served particle is a photon, we should consider
an additional cut vertex —the cut vertex for two
photo ns.

First consider the inclusive haChon production
in e e collisions. For a given Feynman graph
contributing to this process, we break up the
graph into two parts which are connected by fer-
mion and/or gluon propagators as shown in Fig. 3.'
Call the right-hand part of the graph & and the left-
hand part &. Because of the composite nature of
the hadron produced, we decompose the graph
such that large momenta of order q flow through
&, and not through &. The addition subtraction

pg p (b) (c)
I

I

I

gq
FIG. 2. Box diagrams for direct photon production.

FIG. 3. Examples of decomposition of the amplitudes
for inclusive hadron production in e e annihilation:
(a) involving two fermions; (b) involving two fermions
and many gluons; (c) involvipg two gluons. Double lines,
solid lines, curly lines, and wavy lines represent
hadron, quark, gluon, and photon, respectively.
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procedure enables us to pick up the dominant
term for large q and to show that the moments
of cross section are factored into a cut vertex
times a singular function. (Details are discussed
in Ref. 12.) Roughly speaking, after renormaliza-
tion & contributes to the xenoxmalized-fermion and
gluon cut vertices, and the right-hand part & con-
tributes to the timelike coefficient functions.

Now consider the direct photon production in
e e annihilation. The photon has two features. '

the photon interacts as though it were a vector
meson with a transverse-momentum cutoff, but
on the other hand it couples pointlike to quarks.
H the photon has the first feature only, each con-
tributing Feynman graph can be broken up into
two parts just like those in Fig. 3, and the mo-
ments of the cross section (or the timelike photon
structure functions) can be written in the factor-
ized form, i.e. , the fermion and gluon cut verti-
ces times the timelike coefficient functions. How-
ever the second feature, the pointlike coupling of
the photon to quarks, allows the different con-
figuration of momentum flows from the ones in
Fig. 3. charge momenta of order q can flow all
the way down to the real photon vertices, and the
decomposition of the types shown in Fig. 3 is not
adequate. e should include the contribution of
each graph with this configuration of momentum
flows, which is illustrated in Fig. 4. This latter
contribution to the moments can also be written
in a factorized form'. this time, the baze cut ver-
tex fox two Photons times a coefficient function.
To lowest order in a the photon cut vertex needs
no renormalization. Therefore, the base pho-
ton cut vertex, when summed over the photon
polarization and multiplied by an appropriate
kinematical factor, turns out to be simply equal
to one. The situation is exactly analogous to
deep-inelastic scatterings off the photon target,
in which we have introduced the photon operator,
and the matrix element of the photon operator in
a photon state is, to lowest order in &, equal to
one.

I.et us examine the contribution of Fig. 4 more
closely. Call M ~,„„(P,q) the renormalized amp-
litude for the four-photon vertex. For the mo-
ment we forget the polarization sum of the out-
going photon. Now consider the case where large

momenta of order q flow through the vertex and
the decompositions of the types shown in Fig. 3
are not allowed. Then we should consider the
vertex itself as a whole. Decompose M, z,„„(P,q)
into the different tensor structures as follows'.

M z...(P, q)= Z &'~,..(P, q)M,"(P',P'q, q')+"',
y2

(2.1)
where

f.', .(P q)=2(g. A' -q. q.)

x[g ~(P q) (q Pz+qzp~)P ~ q

1
+q'aqnP ] I zis s

'Lg )

t2 ( qQPV PQ qVt..,..(P, q)=~g, .— . +~&. ~
D 0.)P q

x[ g~a(P ~ q) (q„Pz y qp„)P q

(2.2)

1
+qaqnP J

( &)z ~ (2.2)

and the neglected terms in Eq. (2.1) do not con-
tribute when we sum over the photon polarization
in the final state. Setting p =v=-, and for
large q and q, we obtain

2 2
2q qp r 2

f a ~
--= —

(
~ ~ tg sP- -P-(g Pz+ g'g4 )-

kq J

2
+ga-gal@' ~ i (2.4)

2
r

fsze - I zwzigszP- P (fs Pg gzP5)"
kq )

2+ga-gz-P ~ ~' (2.6)

(2.6)

Taking the (-, -) combination for W"„„in Eq. (1.2)
and comparing it with the result of Eq. (2.6), we
find, for the contribution of graphs with the
large- momentum-Qow configurations shown in
Fig. 4 to the photon structure functions

W", (z, q') =z'M", (0, z, q'), (2.'r)

v W2(z, q ) =zM,"(0,z, q ) . (2.6)

hen we sum up the polarization of the final pho-
ton, we obtain

22
—Pg zM

z (P, q} = P„z M~(0, v, q)

M2(0, v, q).

p, a q, v

FIG. 4. The amplitude occurring in direct photon
production, where large momenta of order q flow
through the blob.

The moments are then given as

r
l

dz z"Wi (z, q ) = dz z Mi(0, z, q )

=&i,„(q'), (2.9)
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dzz" vW2(z, q ) = dzz" M2(0, z, q )
0 0

(2.10)

The above equations can be rewritten in another
form,

1

dz z"W," (z, q') =v"„(p')&i„(q,'),
0

1

dz z"'v W",(z, q') =v"„(p')&2,„(q'),
0

where

v"„(p') =1
= Q d"'l p "'I'."g..(p)-

(2.11)

(2.12)

(2.13)

and

I "...(p) =4lg.zp '- p-( g. p, +g&-p. }-
+g- g -p'~(p-} (2.14)

Fig. 5(c): I'„",„'(p, 0) = T.', (p+ k) 1,

Fig. 5(d): I"„';„"(p,k) =- „7'„'p "1. (2.15)

The indices a, b refer to a representation 8 of the
color group SU(3} for fermions, g is the strong
coupling constant of the theory, and 1 is then f &&f

unit matrix. These vertices obey the following
Ward- Takahashi (WT) identities:

r I'„'!„'(p,n) =g T.', I'„",„(p+a),
u I'„",„"(p,a) =-gI"„'",„(p)r„', .

(2.16)

e must add the cut vertices for two fermions
with more gluons. Vertices with extra gluons be-

The expression of Eq. (2.14}is exactly the same
form as the two-gluon cut vertex [see Eq. (2.17)
below], and we can call I'"„~,„(p) the bare cut ver-
tex for two photons. It is illustrated in Fig. 5(a).

Now we list the other (timelike) bare cut ver-
tices which we need for analysis of the direct
photon production in 8 e annihilation. The flavor-
singlet cut vertices for two fermions without and
with one gluon are

Fig. 5(b): ;I,'„(p)=r p -5„1,

come rather complicated, but their form is es-
sentially fixed by the %T identities and the bare
fermion cut vertices without gluons. Therefore
we have not listed higher-order vertices.

The formulas for the flavor-nonsinglet cut ver-
tices for two fermions without and with gluons
are the same as the singlet ones with the replace-
ment of 1 by (Q~' -(8'}1), where Q~' is the square
of the fxf quark charge matrix, and (e ) is the
average quark charge squared.

The cut vertex for two gluons is given by Fig.
5(e),

I'.",,„(a)=4 5„[.g.,u '-a (g. a, +g, a.)

+g. g, I'](I.)- '. (2.17)

e need cut vertices for more gluons. The high-
er-order vertices are straightforward to con-
struct with resort to the %'T identities, but they
are somewhat cumbersome. The three-gluon
vertices, for example, are shown in Ref. 12.

With all these cut vertices at hand, we follow
Mueller's cut vertex formalism which has been
discussed in detail in Ref. 12. Then for large
q the moments of the timelike photon structure
functions are given in a factorized form as fol-'

lows'.

1

dz z"W" (z, q ) = P v„'8',„(4, d, q),
0

(2.18)

J
1

dz z""v
Wk (z, q') =Q z'dk', „dq, d; q (,

0

(2.19)
where the sum i runs over g, G, NS, and y, and

is the subtraction peale at which the theory is
renormalized. The q dependence of the struc-
ture functions enters into the timelike coefficient
functions E&,„and &2,„. On the other hand, v„
does not depend on q, but is dependent on the
particle observed. Especially we have v"„=I
from Eq. (2.13). The hadronic feature of the pho-
ton is taken into account within v~, v„, and v„.

The same cut vertices contribute to the moments
of W~ and vW2. Therefore, from Eqs. (1.5) and
(1.6) the moments of the transverse structure
function TV& are given with the same v„' as follows. '

f1 2

dz z"W". (z, q ) = g z„jjjzk,„(Lg, qk, q),
0

yp, P

/P, Q

FIG. 5.
duction.

b, b )b ~ k, b ~k. i P k, b Qk, q, j

(b) (c) (o) (e)
Timelike cut vertices for direct photon pro-

(2.20}

with i = P, G, NS, and r. In what follows we work
with the moments of 8'~ and 8'~.

The q dependence of &r(,„and E~,„ in Eqs. (2.20)
and (2.18) is governed by the same renormaliza-
tion-group equation (RGE). If we describe the
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coefficient function by the column vector

2
~krtt Y 7 g

&t,.~,g',

,
t' q 2

tsnl I tg 1
— ENs q 2

~ rtt

g~~,.~,g',
p,

.).
)

k=7, L,

2.21

I ~ —+P(rl —IE .. -E,r, ~)
I' a 6

ap ag&
"" p'

=i(g, ~)E... -z, g, ~),ttt
p

7

(2.22)

where P(g) is the well-known renormalization
function and r„(g, &) is the anomalous-dimen-
sion matrix of the cut vertices. To lowest order
in + this matrix has the form

r"„(g') r",„(g') 0 0

r"„,( g') r„(g') 0 0
r„(g', o() =

0 0 rNs(g ) 0

Z",(g', o.) 1Q (g', n) Z"„s(g', o() 0

(2.28)

The solution of the RGE (2.22) is given by

then E&,„obeys the lowest order in &, the follow-
ing ROE,

timelike photon structure functions 8 & and W~.
Moreover we can adopt the formulas in Secs. II,
XD, and V of Ref. 2 with the replacement of the
anomalous dimensions of operators by those of
cut vertices, and of the coefficient functions
C„'(1,g', &) by &,',„(1,g', e) .

III. ANOMALOUS DIMENSIONS OF CUT VERTICES

2
0 rtt g M rtt g'""g '= "' 16++»t (16')'+"' (8.2)

e2 e2 2

2P)(g, c()= K, '" --Z('". tt+ '' ,', i=/, G, NS,
16m ' j16m j

with"

g
16m (16m )

(8.4)

Pt=ll- 'sf~ Pa=102-Vf .
We also expand g (q ), the solution of E(l. (2.25)

with P(g) given by (8.4), in powers of g (( (q ), the
effective coupling constant calculated in the one-
loop approximation, with the result

2

g'(q') =gg'(q') - —'
1

q, ln ln g~ + 0(g t'),

For the evaluation of the 7-ordered exponential
in E(l. (2.24) we expand r„(g, c() and p(g) in powers
of g as follows. '

2
tt I 2t M ttt g & ttt g ~ ~ ~r";&(g =r(J 16

. +r ~ (16 z)2
+' '', z, J=J, G,

(8.1)

T, exp dg' ",' E, ,„(l,g, n) .
hs

where

(8.6)

(2.24)

Here T, represents T ordering, and g is the run-
ning coupling constant of the strorig interaction
which satisfies the following equation. '

2 16vP
gt (q )

p l ( z/pz) (8.6)

Now we list the one-loop and the two-loop anom-
alous dimensions of cut vertices.

—„,g(&, g)=&&g), g(0 g)=g
d-

(2.26)

with t =(-,') ln(q'/p').
We observe that the RGE (2.22), the anomalous-

dimension matrix in (2.28), and the solution (2.24)
of the ROE have exactly the same forms as those
we had in the deep-inelastic scattering off the pho-
ton target. ' In the latter case Bardeen and auras
have explained the solution of the ROE in detail
and have calculated the next-to-leading-order con-
tributions in Ref. 2. Therefore we can follow
the same procedures as they did to evaluate the
first few leading terms for the moments of the

A. One-loop anomalous dimensions

~+'

r„' =rNt ———-8-
)

+4&~(n),-a.. -0,. 2

n n+&
+B+2tg"=-'f

(n l)n(n+1)

16 n2+n+2
Y n(n+1)(n+2) '

(8.'t)

(8.6)

(8.9)

For the hadronic sector the one-loop anoma-
lous dimensions have been calculated in Refs. 12
and 16,
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11 4 4
8 ( 1) (n+i)(n+2)

4

s, (n) =Q-. .1
g»i j

The anomalous dimensions E„'"and EN&" are ob-
tained from (3.8) by replacing the group-theory
factor f/2[= T(R)] by the relevant charge factors,
with the result

2+ +2~own 8
+ +

8f( 2)
(n- i)n(n+ i)

—.p,„s+'pl + 2 4
2

&Ns". =8
( 1) ( +1)8y((8)-(e) ).

Also we have in one-loop approximations

K~ —0.

(8.12)

(8.14)

B. Two-loop anomalous dimenions

For the pure hadronic sector the two-loop anom-
alous dimensions of cut vertices can be obtained
by taking moments of the next-to-leading parton
decay probability functions, i.e. , a generaliza-
tion of the Altarelli-Parisi probabilities to two-
loop level. Recently three groups have calculated
the probability functions in two-loop approxima-
tions. ' ' The g corrections to &„',„(1,g, o.') in
Eg. (2.24) can be obtained by taking moments of
the one-loop corrections to the "short-distance
cross sections" (SDCS) which have been calculated
by Altarelli et al. and later by the authors of
Hefs. 1V and 1.8.

It is well known that in deep-inelastic scatter-
ings the anomalous dimensions of the relevant
operators in the two-loop and the g corrections
to the coefficient functions C„'(l,g') are renormal-
ization-prescription dependent. Only when both
are calculated in the same renormalization scheme
and are put into the physical quantities does their
renormalization-prescription dependence cancel
out. The same thing happens in the case of the
single-particle inclusive e'e annihilation. In our
analysis of W&, therefore, we should use the two-
loop anomalous dimensions of cut vertices and the
g corrections to the coefficient functions @r,„(1,

n/2
1

Sz —— ~ for evenn,
y=1 j

(
tt/2

for even n,
I2

e obtain for n~ 2

with

=-8[C~ A~,(n) + C~co B„„(n)

+ C, T(Z)B,„(n)], (8.18)

g, u) which are calculated in the same renormali-
zation scheme. [ln the case of W~, we do not
need the two-loop anomalous dimensions of cut
vertices and the g' corrections to &z, ,„(l,g', n)
are renormalization- prescription independent.
See Sec. V.]

So far, the calculations of the two-loop probability
functions by three groups ' and of the g correc-
tions to the SDCS by four groups ' have been done
in the same 't Hooft minimal-subtraction scheme.
However there still remains a subtle scheme de-
pendence. As shown clearly in Ref. 19 a different
convention to define the SDCS gives a different re-
sult for the two-loop probability functions, al-
though the physical quantities are scheme inde-
pendent. In what follows we shall adopt the re-
sults of Ref. 1V for the next-to-leading probability
functions, and of Ref. 20 for the SDCS, since the
authors of both references have used the same
convention to define the SDCS.

The two-loop anomalous dimensions of cut ver-
tices p &~" in the singlet sector are obtained by
taking the moments of the two-loop parton decay
probability functions P~~ (x) given in the second
paper of Ref. 1V. Before presenting the results,
we need several definitions:

C, =f. , C, =8, T(ft) = —,2'

&&&(n)= 2sq(n)- -6S2(n) +2S2~ — + —
w -8S(n) +Sg +SS2(n)+ ~ — g Sg(n)

1 , rn '2 2

n n+1 L2 3 2 n n+1
1 1 1 1 1 3

n (n+1) (n+1) n n+1 8
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and

B„~(n)= 2'(n) —
1 2S&(n) - Sg —

i

- —+4&(n) —aSs I+ 3 Ss(n)
1 6V i, n'II 11

n n+1 2) 18 2) 3

11 1 11 1 14 1 14 1 1V+ + +
6 n 6 (n+1)' 3 n 3 n+1 24'

10 1 4 4 4 32 1 52 1 16 1
D~~(n) =

9
'S(n —„(„~1)—3S~(n)+~+(„i1) +

3
~+ 3 (n~1) +

3 („~2)'
52 1 28 1 112 1 4P 1 1+ ~ +
3 n 3 n+1 9 n+2 9 n-1 6'

1

y„g =-8 Pz~ (x)x" dx =-16[C~T(R)D~(n) + C+T(R)Hqz(n)],&Q C EQ

(3.18)

(3.19)

(3.20)

n+n+2 g, g 8 8 6 4 4 2
D„(n)=(

) ( )
S, (n)-3S,(n)- ~ +S,(n)

( ), ~+( )z
— +-—

16 33 1 9 1 8 5 1 2
n-1 2 n 2 n+1 (n-1) 2 (n+1) n (n+1)

(3.21)

n'+n+2 2 , (n'i 4 4 4 4 4 2
Boa(n) =

( ) ( )
S& (n} +Vs&(n) -Sll

2 i
+Si(n) —

( 1}.+ ~ - (- „).+, - - +
1' ~a I%I

4 2 lp 'T 8 1 91 1 1'7 1 44 1
(n-1)' n (n+1) (n-1) (n+1) 3 (n+2)' 9 n-1 n n+1 9 n+2 '

(3.22)

1

Yg'q =-'8 &ay (x) x" dx = 4[C~ ~-&(n) +C+COBq~(n)+ C+ T(R)D0&(n)],2TR

with

(3.23)

+„(n} = [-2S (n) +los (n)jnn+1 n+2

4 16 16 6 12 12
( )' ( + )'

2 4 5 8 16 12
n (n+ 1}' n (n + 1)' (n+ 2)' n

5 8
n+1 g+2 '

Bg„(n)= 2Sg (n) —2'(n) —2sg —i- —m
n +n+2 2 , (g'I 4

n n+1 n+2 (2j 3

8 24 24 22 1 44 1 44 1
+Sr(n) ~- + ~~ +

n (n+1) (n+2) 3 n 3 n+1 3 n+2

(3.24)

n (n+1) 3 n 3 (n+1) (n+2) 9 n-1 9 n 9 n+1 9 n+2 '

n +n+2 8 40 8 1 4 4
n(n+1)(n+2) 3 9. 3 n(n+.1)' (n+2)' (3.26)

1a~cV' ( )-& 'd = SfC» T(R}Dca-(n) + Cc T(R)ace(n}+Ca'lac(n)),
0

with

(3.2V)
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4 4 16 1 10 14 16 1 O2 1 4 12
(n+1)' Y (n- 1)' ~n (n+1)' Y (n+2)' O n-1 n n+1

8 1 41 4 8 1 46 1
+cG(n) 3 2{n) + 9S1{n)+3 ( 1)l 3

Y+
( +1)z 3 ( +2)2 O

38 1 38 1 46 1 4 4 ,+ + + 7T p9 n 9 n+1 9 n+2 3 9

164 1 -1, (s.a8)

(s.ao)

Lae(n) =-4S{n) +~Sq(n) + —,Sa — + Sl(n)- + —— —+ -8S&(n) +2S& —+-v22 & I 1 1 1 1 , n 42
n-1 n n+1 n+2 2 3

4 4 4 4 6'7" 8 4 4 10 1
(n 1)'— ~n (n+ 1)' (n+ 2)' O ( 1I' 7 (n+ 1)' S (n- 1)'

11 1 7 34 1 4 SV 1 SV 1 4 8 11
n (n+1) 3 (n+2)~ n —1 18 n 18 n+1 n+2 3 O

(S.so)

The factors 2T(R)/Cl, and Cl, /2T(R) have been inserted in Eqs. (3.20) and (3.23), respectively, for the
following reason: the authors of Ref. 1V have calculated PPe '(x) by summing over gluons but not over
quark flavors, and P~~z~ (x) by summing vice versa. However, in order to obtain p', ~" we should sum over
quark flavors but not over gluons. For pz'~ we should sum vice versa. In fact we can obtain the correct
one-loop nondiagonal anomalous dimension y~" and y&'„" in Egs. (3.8) and (S.O) by taking moments of the
one-loop nondiagonal probability functions P~e (x) and Pe~+~ (x) given in Ref. 1V, and multiplying them by
2T(R)/Cz and Cz/2T(R), respectively.

The two-loop anomalous dimension of the nonsinglet cut vertex has been calculated first in the first pa-
per of Ref. 1V with the result for even n~ 2

2 1 3 2+1y'"=y„'e" —16C~ —2S,(n)+ (,+ — 2Sl(n)—n(n+ 1J n (n+13

where

74s =(Cz ~cence) 16Sl(n) q z +16 2Sl(n) — Sl(n) —Sl — +64S(n)+24Sl(n)tn 2n+ 1 1 I n
n n+1 n n+1 2

, /n) 3n +n —1
1

2n +2n+1
n'(n+1)' n'(n+1)'

536 2n+ 1 52 8 43
+C~Cz Sq n — — +8 &, &

—16Sq n S2 n +S2 n ——+
n in+1 n&n+1 6

(3.31)

151n'+ 263n'+ 97n'+ Sn+ 9
On'(n+ 1)'

+C, T(R) —
O

S,(n)+ —S,( )+-+16 (3.32)

Kl™=16C D (n)3f(e'),

K~1™=16C~D&q (n)3f((e ) -(e ) ),
Kc' =8' Dc@(n) sf(e ) .

(3.33)

(s.s4)

(3.36)

W'e give numerical values for the two-loop
anomalous dimensions of timelike cut vertices

is the two-loop anomalous dimension of the non-
singlet operator which appears in the deep-in-
elastic scatterings.

The two-loop anomalous dimensions E&'", EN'8,

and Ko'" can be obtained from y'&f and ygP by pick-
ing the terms proportional to CF T(R), replacing
the factor T{R)(=f/2) by the relevant charge fac-
tors, with the result

in Table I. It is interesting to compare these
values with those for the two-loop anomalous di-
mensions of relevant operators in deep-inelastic
scattering off a photon target, which are listed in
Tables I and H of Ref. 2. Note large negative
values of E~'" and &Ns" for the first several n's.& sn &~n

They result from a term -( r—2)v in the expression
for D~e(n) in Ell. (3.21). Also w terms appear in
the expressions of two-loop anomalous dimen-
sions of timelike cut vertices. They are due to
the analytic continuation from a spacelike region
to a timelike region.

For large n we obtain the following asymptotic
forms for y', &"(i,j= g, 6) and yNS":

r,","„.~'„,"„.[(+ fv')C C, --+'C, T(R)]inn,
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'ARABLE I. Coefficients of g /(16m ) in the anomalous dimensions pNs, y&&, y&&, y&&, and

ycc, and coefficients of sing /(16)I ) in the anomalous dimensions K 0&, IC nss, and Knc for f=4

2 36.15
4 85.52
6 116.8
8 139.8

10 158.0
12 173.1
14 186.0
16 197.2
18 207.2
20 216.1

61.43
90.21

118.9
141.0
158.8
173.7
186.4
197.5
207.4
216.3

-184.3
-191.8
-112.8
-76.60
—56.29
-43.41
-34.58
-28.19
-23.38
-19.64

+ din

23.43
7.169
3.536
1.646
0.494

-0.266
-0.794
-1.172
-1.451
-1.660

. -70.30
-61.80

33.50
97.54

146.0
185.0
217.8
246.0
270.7
292.8

-249.9
-102.8
-57.71
-36.46
—24.33
-16.61
-11.34
-7.56
-4.75
-2.60

-24.99
-10.28
-5.771
-3.646
-2.433
-1.661
-1.134
-0.756
—0.475
-0.260

g isni"

-85.60
37.72

-36.11
—35.79
—35.68
-35.63
-35.60
-35.59
-35.58
-35.57

ln2
y', c „„-16(Cr —Cc)T(R)

—isn inn2
y '"„„-8(C -C )C

ycc ~ l(~ fiT )-Cc -~CcT(R)]inn. (3.36)

As was expected, y„'" and yNs" have the same
asymptotic behaviors as the spacelike counter-
parts. Also lt&'" and &&s" behave as (1/n) ln n,
and Rcl™becomes 0(1) for large n

IVn TRANSVERSE PHOTON STRUCTURE
FUNCTION W~

First we expand the coefficient functions
Er „(1,g', c() in powers of g' up to one-loop cor-
rections as follows:

—2

~e'5„ i+ g, a",,, i=i|, (4.i)16m'

2

e 5~ qBg,~, i=G,2 g
6m

(4.2)

e
Br".r16m

where

E,',„(I,g', ~)=g 2

e 5ssl I+ ~ Rss,r, i=NS,

(4.3)
(4 4)

2 —.
=rf- &c,r . (4.9)

With all information needed, we now follow the
same procedures as Bardeen and Buras did in Ref.
2 to solve the RGE (2.24) for Wr. We obtain the
@CD prediction for the moments of Wr, which is
given in the following form:

B1I)sT ~NS sT

4=—10$z(n) + nnz (n) +
(

I — )S&(n)
2

3 n n+1
3 4 6—.+i —~ '(.+i)' -'

yg +g+2 4
(n-i)n(n+i) '"
4+M- ~ z ~ (4.8)
n jn+1j

In Eq. (4.8) we have changed factor s in Eq. (65)
of Ref. 20 to 2f [=4T(R)] to match our definition
of the coefficient functions. Also in Eqs. (4.7)
and (4.8) we have discarded the terms proportion-
al to In(4v - ys), since it is possible to absorb
them through a redefinition of the scale parameter
A [modified minimal-subtraction (M~S scheme]. '

B„",& is obtained from B&,T by removing the
group factor T(R) and is given as

5, =(e') =Q e', /f,

&Ns =1

(4.5)

(4.6)

2 2

nzz"In" (z, z)=n n„)nz+n„'InIng+6). '„
0

(4.io)

and 5„ is given in Eq. (1.10). The g corrections
to Er,„(l,g, o.') with i = ((t, G, and NS are obtained
by taking moments of the one-loop "short-distance
cross sections" d, (z) and dc(z) given in Eqs. (64)
and (65) of Ref. 20. They are

The parameters a„, a„', and 5„have the same ex-
pressions as a„, a„, and b„ in Eqs. (3.23)-(3.25)
of Ref. 2 except that all the anomalous dimen-
sions and one-loop corrections to the coefficient
functions are replaced by the timelike counter-
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parts. They are given as follows. '

GC ~ NS NS (4 11)
d k 2pp 1 + yN's/2pp

&a'"~~&~"+ &Ns"&Ns

&+&" &~s

(K 0'"5«Rp, r +K N«5 N«R Ns.r)Oin n Oin

0

and

PO
(4.i2) + J3,",~5, , n) 2.

Here we have defined

(4.13)

1(yM tt y yp tt [(yM«tt yp ~ tt)2 + 4yp ~ttypfn]1P] (4.14)

(4.is)

J3n 0«n

Pn tb«T y + 4G
2P

~n
pn ~NS «T

Ns.r 1 ~ ~In/2P

Rc r yctt 4e Pl (Y ) +2POY + Y Y

YNS" + 2&1

y."."(1+y,"/W, )

(4.16)

(4.17)

—0«n —1in—0 n +—0 n —1 in —0in —0«rt —1 in—0in —0«n-1 in-0«n
yl yM, + YG. Y.GYCG +YCCYCit yttC —Y.GYCGYG« YCCY—» YGC

YCtt «G» GC 2Q+0
(4.18)

Pl 0 —0+ = ——„K~5~ygG
d Po

(4.19)

where az is evaluated from (4.11) and the index
n=2 has been dropped in the second term. The
Eqs. (4.12), (4.13), and (4.19) are new results.

The parton model predicts for the asymptotic
behavior of the moments W"r from Eq. (1.8) as

1 2

«s"W"r(s e ) lpM= ~ 0.» (4.20)

where

The Eq. (4.11) for the leading term a„ is valid
for n) 2, and agrees with the results of Refs. 3
and 7. The Eqs. (4.12) and (4.13) are valid for
n) 2. For n=2, ~' vanishes and we cannot eval-
uate the constant term b„since this constant
term depends on the unknown fermion and gluon
renormalized cut vertices. For a2 we obtain

o z az+ — 5J.Ktty»-RCy«G]
PP + 0

I

sion is suppressed at large values of z as com-
pared with the parton model predictions. The
large negative value of a,' is due to large nega-
jve values of K~' and Kg' .

The parameters 5„are negative and large, They
decrease with increasing n slightly faster than an,
but still remain large relative to a„. In Table III
we list the ratio of 5'„ to an as functions of n, and
also the corresponding ratio 5„/a„ in the case of
the photon structure function &," in the photon-pho-
ton scattering. Note that these values have been
calculated in the MS scheme. In comparison with
the case of I"2~, the higher-order corrections to the
timelike photon structure function 8'~ are very
large.

Now we evaluate the moments of W&. We shall
take A=0.30 GeV as a "standard" value in the Ma
scheme. ' In Fig. 6 we plot the moments of 8'& in
units of tz,'ln(Q /A') as predicted by the parton
model, by QCD in the leading order, and by QCD

n2+n+2
"(n-1)n(n+1) (4.2i)

TABLE II. Numerical values of the parameters a„, a„,
bn, and pn for f=4.

and m, has been replaced by a mass parameter
ApM The above PM prediction is also obtained
from Eq. (4.11) if all anomalous dimensions ex- .

cept &&'" and EN&" are set equal to zero.
We give in Table II the numerical values for the

parameters an, a„', F„, and P„as functions n in the
case of four flavors. For increasing n, a„de-
creases faster to zero than p„. In fact an van-
ishes as 1/(n inn) for large n, while p„behaves
as 1/n. Therefore, the photon structure function

Wr(s, q ) as given by the leading-order expres-

2

6
8

10
12
14
16
18
20

4.98
1.01
0.508
0.328
0.238
0.185
0.150
0.126
0.018
0.0944

-4.99
0.745
0.375
0.243
0.176
0.137
0.111
0.0932
0.0799
0.0698

-6.95
-3.14
-1.92
-1.35
—1.02
-0.818
-0.676
-0.574
-0.497

6.72
1.85
1.06
0.740
0.570
0.464
0.391
0.338
0.298
0.266
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b„/a„ b„/a„

6
8

10
12
14
16
18
20

-6.88
—6.18
-5.85
-5.67
-5.51
-5.45
-5.37
—5.31
-5.26

-2.04
-2.26
-2.44
-2.59
—2.70
-2.81
-2.89
—2.95
-3.01

TABLE III. Numerical values of the ratios b„/a„and
b„/a„. The ratios b„/a„ in photon-photon scattering have
been calculated from the results of Ref. 2.

behaves as Inn/n. However, the last term I3„"5„

behaves also as Inn/n in the large-n limit with the
same coefficient but the opposite sign, and it can-
cels the leading contribution from the first four
terms. Therefore the ratio 5„/a„grows not as
(Inn) but as inn. " This is also the case for the
moments of the photon structure function &2~. The
situation here is quite different from cases of
deep-inelastic scatterings off hadronic targets
and semi-inclusive hadron productions in e'~ an-
nihilation. For instance, the moments of non-
singlet nucleon structure function in deep-inelas-
tic scattering can be written generally as

(4.32)

2.0
a)

l.5lC

OJ

N i.o

IW

N
N

0.5~o

2)

2)

v2)

eV

with higher-order corrections. From Fig. 6 it is
seen that QCD higher-order effects are Significant.
The substantial suppressions of the first few mo-
ments are due to the large negative values of 5„.
For example, the moment of n=4 almost vanishes
at q' =25 GeV and indeed it turns out ta be nega-
tive at q =20 GeV'.

This may suggest that even at q =20 GeV the
contributions from the hadronic nature of the pho-
ton, which vanish for large q as (Inq /A ) " with
some positive constant h and so fax have been ne-
glected, are still significant, or that the QCD cal-
culation for the direct photon production in e'e
annihilation breaks down.

The structure function for large-z values is
governed by the Iarge-~ behavior of the moments.
The asymptotic behavior of a„ is I/(n inn). From
Eq. (4.13) we find the parameter 5'„behaves as I/n,
but not as Inn/n for large n In fac.t the contribu-
tion from the first four terms in Eq. (4.13) to 5„

where &„ is the matrix element of the nonsinglet
operators. The higher-order correction R„has
been calculated ' and grows as (Inn) for large
n In t.he case of the moments of Wr (&,"), the
corresponding quantity to R„ in Eq. (4.22) is pob„/
a„(pob„/a„). It behaves as Inn in the large-n limit,
since cancellation occurs among its leading (Inn)
terms. The pointlike nature of the photon plays
an important role for the cancellation of leading
(Inn) terms.

Finally, a few comments are in order. The
mass effects due to heavy quarks have not been
taken into account in our formulas for the mo-
ments of 8'~. The quantities necessary to evalu-
ate a„, a„', and F„have been calculated for arbi-
trary f-quark flavors with all quark masses zero,
and the results have been presented for f=4 only.
Up to q'=20 GeV mass effects due to charm
production couldbe important. As q increases
the charm-quark mass effects may be neglected.
And we expect that our predictions for four flavors
are valid in the range of q from 25 GeV up to 100
GeV . Above q' =100 GeV the b-quark contribu-
tion should be added, but it is small compared
with the charm contribution by a factor of 16 due
to its charge.

Secondly, the expressions of the two-loop anom-
alous dimensions given in Sec. III B are valid for
even values of n. In fact, taking moments of the
two-loop parton probability functions with arbi-
trary n, we find that the anomalous dimensions
can be written in the following form"' '

e)
d)
c)

yt Itl yA y ( I)tlyB (4.33)
10
n

20

FIG. 6. Moments of the transverse structure function
~& in units. of G. lnq2/A2 as predicted by the parton model
{a); @CD in the leading order {LO) {b), and QCD with
the higher-order {HO) corrections {c), {d), and {e). For
comparison we choose A = 0.3 GeV and four flavors for
all cases.

The expressions in Sec. ID 8 have been obtained
by taking the (+) combination, i.e. , y„"+y„. Be-
cause of the crossing relation for the structure
function Wr, the (+) combination should be adopt-
ed here and it can be analytically continued to any
value of n Therefore. , expressions (3.16)-(3.35)
for two-loop anomalous dimensions can be also
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A A'= yA,

~n ~n = ~n + an lnI(' (4.24)

used to compute b„ for odd values of n.
Thirdly, we have so far used the MS scheme.

Since our perturbative expansion is a truncated
one, its rate of convergence depends on the
scheme used to define the running coupling con-
stant g.' ' We can change schemes by changing
A and 5„as follows'.

2.0

I .5

1.0
N

C
N

0.5

a)

2)

2)

V2)

GeV

With the choice ~=2.16, we can obtain the results
for the momentum-space subtraction (MOM)
scheme. We give in Table IV the numerical
values for bMo" and the ratio 5„" "/a„. In Fig. 7
we take" A«„= 0.55 GeV and plot the QCD pre
dictions for the moments of 8'~ in the MOM
scheme. The values of 5„" "and 5„ /a„have be-
come smaller than those in the MS scheme, but
the higher-order corrections are still large.

0
0

e)
d)

c)

10
n

15 20

FIG. 7. Predictions of the MOM scheme for the mo-
ments of g& (c), (d), and (e) in units of o lnq /A . Also
shown for comparison are the results of the parton model
(a), and @CD in the leading order (b). We choose A=0.55
GeV and four flavors for all cases.

V. LONGITUDINAL PHOTON STRUCTURE
FUNCTION Vi

44
B&,L —BNS g = ~3 s (5.5)

Z,',„(I,g', ~) =(

-2
e 5q s BqL, i =G, (52)' i6~

2 g —
ne 5N s 16 ~ BNs.L ) i = NS,

(5 8)

4e n

)6 q 5~Br,L &
(5.4)

The QCD prediction for the longitudinal photon
structure function WL has not been considered so
far, since it is expected that W& gives a small
contribution to the direct photon production cross
section. We proceed with the same steps of Sec.
IV and expand EL,„(1,g, &) as follows:

-2
~e 5p, Bp,L, i= P, (5.1)

8
GyL

( I)

2Bc,L

(5.6)

(5.7)

The above results are renormalization-prescrip-
tion independent, since no renormalization is
needed for the calculation of the one-loop correc-
tions to E, ,„(1,g', n).

The moments of WL can be obtained from Eqs.
(4.12), (4.16), and (4.17) by putting there all two-
loop contributions to zero and replacing the param-
eters B";,~ by B";,L. As the result we obtain

f1

dz z"W" (z, q ) = o' c„+O(g ), (5.8)
0

We obtain the one-loop corrections to &L,„(l,g, &)

by taking moments of the relevant short-distance
cross sections which have been calculated in Ref.
20. They are

where

c„= ~ (Kp'"5qRq, L +Rss"5„sR„"s~)+ 5,B„"LA+0

and
(5.9)

TABLE IV. Numerical values of bn&oM and the ratio
b„ //a„ for f=4 in the MOM scheme.

Bn 0 ~n Bn 0sn
&ca Bc& rgb+d„2Pp d„2Pp (5.10)

'MOM
bn b MOMy-

n
BNS sL

~"Ns.L 1+ rzs"/2pp ' (5.11)

6
8

10
12
14
16
18
20

-5.39
—2.36
-1.41
-0.983
-0.735
—0.587
-0.482
-0.408
—0.352

—5.34
—4.64
-4.31
-4.13
-3.97
-3.91
-3.83

3 +77

3 F72

(5.12)

C„.SM =5rBr.L ~

and d„ is given by Eg. (4.15).
From Eg. (1.9) the parton model predicts for

the moments of WL

dz z"WL (z, q )
1 sM = o' c„,sM,



QUANTUM-CHROMODYNAMIC PREDICTIONS FOR DIRECT. . . 1 )89

TABLE V. Numerical values for the parameters e„
and 0 pM for f=4, hadrons (C=-)

Cn

2
4
6
8

10
12
]4
16
18
20

12.2
1.85
0.726
0.386
0.239
0.163
0.118
0.0890
0.0697
0.0560

10.1
1.68
0.672
0.360
0.224
0.153
0.111
0.0840
0.0658
0.0530

For the longitudinal structure function, both QCD
and the parton model predict scaling. Numerical
values for c„and c„,~M are given in Table V.

%e find that the numerical values of c„are very
close to t pM. For large n the difference c„
—c„pM vanishes as 1/(n'inn). This means that the
renormalization effects as given by the first two
terms in Eq. (5.9) are small. In consequence, except
for very small z, QCD gives the shape of WJ. very
similar to that obtained in the parton model.
Similar predictions had been made for the longitu-
dinal photon structure function I'I, in photon-photon
scattering". ' The renormalization effects of QCD
on E~ are small, and the parton model and QCD
predict a similar shape for &~.

VI. SUMMARY AND COMMENTS

In this paper we have analyzed in QCD the pho-
ton structure functions W~ and W~ which can be
observed in direct photon production in e e colli-
sions. %e have used Mueller's cut-vertex formal-
ism and have introduced the bare cut vertex for
two photons in addition to the usual fermion and
gluon cut vertices. The two-loop anomalous di-
mensions of cut vertices have been calculated by
taking moments of the two-loop parton decay prob-
ability functions. The g corrections to the coef-
ficient functions E~,„(1,g, o') in Eq. (2.21) have
also been calculated. With this information and
with the already known one-loop anomalous dimen-
sions of cut vertices, we have evaluated the next-
to-leading-order corrections to W& and the lead-
ing-order corrections to WL, . The higher-order
corrections to W~ are found to be considerably
large and to be much larger than those to I"2~ in
deep-inelastic photon-photon scattering. On the
other hand, the leading-order corrections to Wl.
are small. QCD and the parton model give a very
similar shape for S'I, .

Finally we comment on the backgrounds to di-
rect photon production. First there is a large
yield of photons from v (and q) mesons which are

+ (e = =e+)

e e+
FIG. 8. Photon bremsstrahlung off electrons and posi-

trons.

produced in e'e collisions. hen we compare
the QCD predictions for the direct photon produc-
tion with experimental data, we need to somehow
subtract photons coming from m . This subtrac-
tion is in principle possible if we have detailed
data on the m production in e'e collisions. The
ratio of the direct photon to m production in e'e
annihilation has been considered by Koller et al.
They have used the QCD formulas for fragmenta-
tion functions to photon and m calculated in the
leading order with appropriate assumptions. They
have found that the y/~ ratio grows with q owing
to the logarithmic increase of the photon yield
combined with the logarithmic decrease of the m

yield. Also the ratio sharply rises with z. The
photons from ~ 's tend to be softer than the direct
ones. At PEP-PETRA energies the yield of hard
direct photons is expected to be larger than the ~
yield and the separation of the photons from m

(and q) mesons becomes feasible.
Another significant background to direct photon

production arises from the "bremsstrahlung" pro-
cess in Fig. 8, where the photon is emitted from
an initial lepton rather than from a final quark
line. However, as stated in Ref. 7 the photons
from the bremsstrahlung process and the direct
photons have different angular correlations with
the e e beam axis and the quark-jet directions.
This background can be quantitatively estimated
and can thus be subtracted.
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